1. Let \(\{A_n\} \) be a sequence of sets and \(P \) a probability function.

 (a) Show
 \[
P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i).
 \]

 (b) Show the Bonferroni’s inequality,
 \[
P(\bigcap_{i=1}^{n} A_i) \geq \sum_{i=1}^{n} P(A_i) - (n - 1).
 \]
2. Let $F_{m,n}$ denote a random variable having the F distribution with m and n degrees of freedom in the numerator and denominator, respectively. Let χ^2_m denote a chi-squared random variable with m degrees of freedom. Show that $n F_{n,m}$ converges to χ^2_n as $m \to \infty$, where n is fixed.
3. Let \(\{X_1, X_2, \ldots\} \) denote a sequence of independent and identically distributed random variables with zero mean and variance \(\sigma^2 < \infty \). Show that

\[
\lim_{n \to \infty} E(|X_1 + \cdots + X_n|/\sqrt{n}) = (2/\pi)^{1/2}\sigma.
\]

(Hint: Suppose that \(\{Y_1, Y_2, \ldots\} \) is a sequence of non-negative random variables such that

(a) For \(p > 1 \), \(\sum_{n=1,2,\ldots} E(Y_n^p) < c \) for some constant \(c \),

(b) \(Y_n \) converges in distribution to a random variable \(Y \).

Then \(E(Y) \) is finite, and \(\lim_{n \to \infty} E(Y_n) = E(Y) \). You don’t need to show this.)
4. Let X_1, \ldots, X_n be iid random variables with

$$P_\theta(X_j = 1) = \theta = 1 - P_\theta(X_j = 0), \quad j = 1, \ldots, n,$$

where n is a fixed constant and $0 < \theta < 1$.

(a) Let T_k denote the UMVUE of θ^k. Give an explicit formula for T_k, $k = 1, \ldots, n$.

(b) Suppose we are interested in estimating the odds ratio

$$r = \frac{\theta}{1 - \theta}.$$

Note that r does not have an unbiased estimator (you don’t need to show this). What is the MLE \hat{r} of r? What is the bias of \hat{r}?
5. Let X_1, \ldots, X_n be iid Bernoulli(p), and $Y = \sum_{i=1}^{n} X_i$. Assume the prior distribution on p is distributed as beta with density

$$h(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1}(1 - p)^{\beta-1}, \quad \alpha > 0, \beta > 0.$$

(a) Find the Bayes estimator of p under the square error loss.

(b) Find the MSE of the Bayes estimator obtained in (a).
6. Let X_1, \ldots, X_n be a random sample from the distribution with density $f_\theta(x)$. Determine the UMP test for testing $H_0 : \theta \leq \theta_0$ versus $H_1 : \theta > \theta_0$ when the density is

$$f_\theta(x) = \frac{1}{\theta} \exp(-x/\theta), \quad x > 0.$$
7. Let X_1, \ldots, X_{n_1} be a random sample from the $N(\mu_1, \sigma^2)$ and let Y_1, \ldots, Y_{n_2} be a random sample from the $N(\mu_2, \sigma^2)$ distribution which is independent of the first random sample. Consider the likelihood ratio test for testing $H_0 : \mu_1 = \mu_2$ versus $H_1 : \mu_1 \neq \mu_2$.

(a) Find the unrestricted MLE’s of μ_1, μ_2 and σ^2.

(b) Find the MLE’s of $\mu = \mu_1 = \mu_2$ and σ^2 under H_0.

(c) Show that
$$
\sum_{i=1}^{n_1}(x_i - \hat{\mu})^2 + \sum_{i=1}^{n_2}(y_i - \hat{\mu})^2
= \sum_{i=1}^{n_1}(x_i - \bar{x})^2 + \sum_{i=1}^{n_2}(y_i - \bar{y})^2 + n_1(\bar{x} - \hat{\mu})^2 + n_2(\bar{y} - \hat{\mu})^2.
$$

(d) Show that the likelihood ratio test is
$$
\phi(x) = \begin{cases}
1 & \text{if } F > c, \\
0 & \text{if } F < c,
\end{cases}
$$

$$
P_{H_0}(F > c) = \alpha, \text{ where }
F = \frac{n_1(\bar{x} - \hat{\mu})^2 + n_2(\bar{y} - \hat{\mu})^2}{[\sum_{i=1}^{n_1}(x_i - \bar{x})^2 + \sum_{i=1}^{n_2}(y_i - \bar{y})^2]/(n_1 + n_2 - 2)}.
$$