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Optimality Conditions for Inventory Control

Eugene A. Feinberg
Stony Brook University, Stony Brook, New York 11794, eugene.feinberg@stonybrook.edu

Abstract This tutorial describes recently developed general optimality conditions for Markov
decision processes that have significant applications to inventory control. In particular,
these conditions imply the validity of optimality equations and inequalities. They
also imply the convergence of value iteration algorithms. For total discounted-cost
problems, only two mild conditions on the continuity of transition probabilities and
lower semicontinuity of one-step costs are needed. For average-cost problems, a single
additional assumption on the finiteness of relative values is required. The general
results are applied to periodic-review inventory control problems with discounted and
average-cost criteria without any assumptions on demand distributions. The case of
partially observable states is also discussed.

Keywords inventory control; Markov decision process; policy; optimality equation; sufficient
conditions

1. Introduction
This tutorial describes recent progress in the theory of Markov decision processes (MDPs)
with infinite-state and action sets that have significant applications to inventory control. Two
groups of results are covered: (i) optimality conditions for MDPs with total-, discounted-, and
average-cost criteria and (ii) optimality conditions for partially observable Markov decision
processes (POMDPs) with total and discounted cost criteria.

Inventory control studies and applications are important motivating factors for studies
of MDPs. The MDP studies provided important tools for the analysis of inventory control
problems. The parallel development of these fields since the beginning of the second half
of the 20th century is broadly recognized. For example, the abstract of the historical essay
by Girlich and Chikán [37] on the history of inventory control studies states, “. . .we report
how inventory problems have motivated the improvement of mathematical disciplines such
as Markovian decision theory and optimal control of stochastic systems to provide a new
basis of inventory theory in the second half of our century” (p. 351). However, over a long
period of time, there was a gap between the modeling needs for inventory control, which
require mathematical methods for the analysis of infinite-state controlled stochastic systems
with unbounded action sets and weakly continuous transition probabilities, and available
results for the corresponding models for MDPs. This gap was recently closed. Another
topic covered in this tutorial is the recent progress in the development of optimality condi-
tions for POMDPs. The literature on MDPs and inventory control is huge, and we do not
attempt a comprehensive survey in this tutorial. For the most part, only directly relevant
references are provided. The reader may find coverage of these topics in books on MDPs
(Bäuerle and Rieder [3], Bertsekas and Shreve [12], Dynkin and Yushkevich [22], Feinberg
and Shwartz [29], Heyman and Sobel [42], Hernández-Lerma [38], Hernández-Lerma and
Lasserre [40, 41], Puterman [47], Sennott [54]) and on inventory management (Bensous-
san [5], Heyman and Sobel [42], Porteus [46], Simchi-Levi et al. [59], Zipkin [68]).

Optimality results for MDPs provide sufficient conditions for the existence of stationary
and Markov optimal policies satisfying optimality equations and inequalities, describe conti-
nuity properties of the value function, and guarantee the convergence of values and optimal
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actions when the horizon length tends to infinity or the discount factor tends to 1. These
results provide useful tools to analyze specific inventory control problems and to prove the
optimality of particular policies. In Section 4 this is illustrated with the classic periodic-
review single-product stochastic inventory problem with nonnegative arbitrarily distributed
i.i.d. demand. Most of the literature on inventory control is limited to discrete or continuous
demand distributions.

Consider the classic periodic-review single-product stochastic inventory problem with
backorders. For a finite horizon and continuous demand, Scarf [50] established under some
conditions the optimality of (s,S) policies. Zabel [66] indicated some gaps in Scarf [50], cor-
rected them, and mentioned in the last paragraph of his note that the proofs there can be
adapted to arbitrary demand distributions. Iglehart [44] and Veinott and Wagner [64] estab-
lished the optimality of (s,S) policies for the infinite horizon for continuous and discrete
demand, respectively. Zheng [67] provided an alternative proof for discrete demand. Beyer
and Sethi [13] described and corrected gaps in the proofs in Iglehart [44] and Veinott and
Wagner [64]. As shown in Heyman and Sobel [42, Section 7.1], under appropriate conditions
(s,S) policies are optimal for a finite-horizon problem with arbitrarily distributed demand.
In general, (s,S) policies may not be optimal for finite horizons. For example, for a problem
with convex holding costs, the appropriate condition is Assumption GB in Section 4. This
assumption means that, as the amount of backordered inventory increases, the backordering
cost per unit time becomes larger than the value of the backordered inventory. However, as
shown in Veinott [63], for discrete demand, (s,S) policies are always optimal for the following
three criteria: (i) infinite-horizon average costs per unit time, (ii) infinite-horizon discounted
problems with a large discount factor, and (iii) finite-horizon problems with a large discount
factor and appropriately selected terminal costs. Chen and Simchi-Levi [17, 18] described
optimal policies for coordinating inventory control and pricing for finite and infinite-horizon
problems with general demand under a technical assumption. If the price is fixed, the prob-
lem in Chen and Simchi-Levi [17, 18] becomes the periodic-review inventory control problem,
the technical assumption becomes Assumption GB, and the results in Chen and Simchi-
Levi [17, 18] imply the optimality of (s,S) policies. For coordinating inventory control and
pricing, Huh et al. [43] provided a method for proving the optimality of stationary policies
by adding specific assumptions that hold for inventory control to the MDP assumptions.

Using the results from Feinberg et al. [31] on the existence of stationary optimal poli-
cies and their properties for MDPs with general state and action sets and with possibly
unbounded one-step cost functions, Feinberg and Lewis [26] proved the optimality of (s,S)
policies for a general demand distribution for criteria (i)–(iii) mentioned in the previous
paragraph. Feinberg and Liang [28] provided a complete description of optimal discounted
policies for arbitrary demand. These results cover the results under Assumption GB as
a special case. Feinberg and Liang [27] proved the validity of the optimality equation for
average costs per unit time, while the general results for MDPs (Feinberg et al. [31]) imply
only the validity the optimality inequality. The conclusions from Feinberg and Lewis [26],
Feinberg and Liang [27, 28] are presented in Section 3.

Studies of MDPs started with investigations of models with finite-state and action sets.
Problems with infinite-state and action sets were investigated later. The two classic objec-
tive criteria for infinite-horizon problems are (i) minimization of expected total discounted
costs and (ii) minimization of long-run average costs per unit time. Problems with average-
cost criteria are usually more difficult. In particular, optimality equations can be written
for expected total costs under mild conditions, and for total expected discounted costs their
analyses lead to the proof of optimality of stationary policies for infinite-horizon problems.
For long-run average costs, stationary policies are optimal under stronger conditions than
for discounted costs, and proofs of their optimality for average-cost criteria usually use the
existence of stationary optimal policies for discounted criteria, when the discount factor
increases to 1. This is the so-called vanishing discount factor approach. In particular, this
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approach can be used to establish the validity of optimality equations (sometimes called
canonical equations) and inequalities for MDPs with long-run average costs. Average-cost
optimality equations and inequalities imply the existence of optimal stationary policies for
long-run average costs. In applications, average-cost optimality equations and inequalities
can be written without an explicit use of the vanishing discount factor approach by using gen-
eral results on the validity of average-cost optimality equations and inequalities for MDPs.
However, as mentioned above, this approach is typically used in the theory of MDPs to
establish the validity of such equations and inequalities.

Let us discuss optimality conditions for MDPs that are general enough to provide optimal-
ity conditions for broad classes of inventory control models. First, the state space should be a
possibly unbounded subset of a Euclidean space. This level of generality is covered by Borel
state spaces (more precisely, Borel subsets of complete separable metric spaces). Euclidean
spaces are examples of Borel spaces, and the general theory of MDPs with Euclidean state
spaces is not simpler than for Borel spaces. Similar to subsets of Euclidean spaces, Borel
spaces either are finite, are countable, or have the cardinality of the continuum. A reader who
is not familiar with the notion of Borel spaces may view all the state and action sets in this
tutorial as subsets of Euclidean spaces. Second, the cost functions may be unbounded. More
precisely, the cost functions should be inf-compact as a function of two variables: a state
and action. For inventory control, inf-compact cost functions can be interpreted as lower
semicontinuous functions tending to infinity if either the inventory/backorder or the order
size tends to infinity. Cost functions may not be continuous. For example, they are not con-
tinuous in models with positive ordering costs. Third, transition probabilities should satisfy
the property of continuity in distribution, also known under the name of weak continuity.
In particular, transition probabilities are typically weakly continuous for periodic-review
stochastic inventory control problems with arbitrary demand distributions; see Feinberg and
Lewis [25, Section 4] for details. In particular, it is explained there that the case of setwise
continuous transition probabilities, which is often considered in the MDP literature, typi-
cally covers only discrete and continuous demand distributions. Fourth, action sets may be
unbounded. This corresponds to a potentially unlimited production/supply capacity. For
example, if a production/supply capacity is limited, then (s,S) policies may not be optimal;
see, e.g., Federgruen and Zipkin [23] and Shaoxiang [56].

For discounted costs, Shapley [57] introduced a zero-sum two-person stochastic game with
finite state and action sets. If one of the players has only one action at each state, this model
becomes an MDP. This publication is considered the first paper on MDPs. Blackwell [15]
developed the theory for discounted costs and Borel state and action sets. In particular,
Blackwell [15] studied problems with bounded costs and discovered that the objective func-
tions may not be Borel measurable, and the dynamic programming approach to such problem
should deal with more general policies than Borel measurable ones. The appropriate theory
is developed in Bertsekas and Shreve [12]. Schäl [51] developed the theory for discounted
costs, Borel state spaces, compact action sets, possibly unbounded above cost functions,
and continuous transition probabilities. Results for two types of continuity for transition
probabilities, setwise and weak continuity, are obtained in Schäl [51]. The results on weak
continuity are more important for applications and more complicated. The theory for prob-
lems with setwise continuous transition probabilities and possibly noncompact action sets is
described in Hernández-Lerma and Lasserre [40]. Feinberg and Lewis [25] provided results
for discounted MDPs with weakly continuous transition probabilities, possibly uncountable
action sets, and inf-compact cost functions. Feinberg et al. [31] introduced the notion of
K-inf-compact functions and obtained more general results than in Feinberg and Lewis [25];
see Theorem 5.1, which is a version of Feinberg et al. [31, Theorem 2] adapted in Feinberg
and Lewis [26] to problems with possibly nonzero terminal costs.

For average costs per unit time, Blackwell [14] and Derman [19] established the existence
of stationary optimal policies for the case of finite-state and action sets. Derman [20] and
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Taylor [62] introduced optimality equations for infinite-state problems with bounded one-
step costs. These equations and their version for multichain problems are called canonical
in Dynkin and Yushkevich [22]. Sennott [53] introduced optimality conditions that lead to
the validity of optimality inequalities whose solutions define stationary optimal policies; see
also Sennott [54, 55] and the references therein. Cavazos-Cadena [16] provided an exam-
ple when optimality inequalities do not hold in the form of equalities. Schäl [52] extended
Sennott’s results to Borel state spaces, compact action spaces, and weakly and setwise con-
tinuous transition probabilities. Hernández-Lerma [39] generalized Schäl’s [52] results for
setwise continuous transition probabilities to possibly noncompact action sets. Feinberg and
Lewis [25] provided sufficient optimality conditions for weakly continuous transition proba-
bilities and possibly noncompact action sets. Feinberg et al. [31] provided results for weakly
continuous transition probabilities that generalize the corresponding results in Schäl [52]
and Feinberg and Lewis [25]; see Section 5.2.

The second topic covered in this tutorial is optimality conditions for POMDPs and, in par-
ticular, for inventory control problems with incomplete information on inventory levels. Re-
search on inventory management with incomplete information was pioneered by Bensoussan
et al. [6, 7, 8, 9], where particular problems are studied and the existence of optimal policies
and convergence of value iterations are established. In general, for POMDPs there is a well-
known reduction, introduced by Aoki [1], Åström [2], Dynkin [21], and Shiryaev [58] of a
POMDP to an MDP whose states are posterior probabilities of the states of the original
process. This reduction holds for problems with Borel state, action, and observation sets,
as well as with measurable transition probabilities (Bertsekas and Shreve [12], Hernández-
Lerma [38], Rhenius [48], Yushkevich [65]). However, it provides little information about the
existence of optimal policies and the validity of optimality equations.

This reduction is based on Bayes’ formula, which has an explicit form only for problems
with transition probabilities that either are discrete or have densities. As a result, except
the case of finite-state, action, and observation sets, very little was known for a long time
about the existence of optimal policies for POMDPs. Therefore, the common approach
is to study applications by problem-specific methods. The general approach for verifying
optimality conditions for POMDPs, applicable to a large variety of applications, is developed
in Feinberg et al. [36], and one of the applications there deals with inventory control. The
general optimality results on POMDPs are presented in Section 6, and an application to
inventory control is presented in Section 7.

2. Markov Decision Processes: Definitions and
Optimality Conditions

An MDP is defined by a tuple {X,A, P, c}, where X is the state space, A is the action
space, P is the transition probability, and c is the one-step cost function. The state space X
and action space A are both assumed to be Borel subsets of Polish (complete separable
metric) spaces. If an action a∈A is selected at a state x∈X, then a cost c(x,a) is incurred,
where c: X×A→ R̄ = R∪{+∞}, and the system moves to the next state according to the
probability distribution P (· |x,a) on X. The function c is assumed to be bounded below and
Borel measurable, and P is a transition probability; that is, P (B |x,a) is a Borel function
on X×A for each Borel subset B of X, and P (· |x,a) is a probability measure on the Borel
σ-field of X for each (x,a)∈X×A.

The decision process proceeds as follows: At time t = 0,1, . . ., the current state of the
system, xt, is observed. A decision maker decides which action, a, to choose; the cost c(x,a)
is accrued; the system moves to the next state according to P (· |x,a); and the process
continues. Let Ht = (X× A)t × X be the set of histories for t = 0,1, . . . . A (randomized)
decision rule at epoch t= 0,1, . . . is a regular transition probability πt from Ht to A. In other
words, (i) πt(· |ht) is a probability distribution on A, where ht = (x0, a0, x1, . . . , at−1, xt), and
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(ii) for any measurable subset B ⊆A, the function πt(B | ·) is measurable on Ht. A policy π
is a sequence (π0, π1, . . .) of decision rules. Moreover, π is called nonrandomized if each
probability measure πt(· |ht) is concentrated at one point. A nonrandomized policy is called
Markov if all decisions depend only on the current state and time. A Markov policy is called
stationary if all decisions depend only on the current state. Thus, a Markov policy φ is
defined by a sequence φ0, φ1, . . . of measurable mappings φt: X→A. A stationary policy φ is
defined by a measurable mapping φ: X→A.

The Ionescu Tulcea theorem (see Bertsekas and Shreve [12, pp. 140–141] or Hernández-
Lerma and Lasserre [40, p. 178]) implies that an initial state x and a policy π define a unique
probability distribution Pπx on the set of all trajectories H∞ = (X×A)∞ endowed with the
product σ-field defined by the Borel σ-fields of X and A. Let Eπx be the expectation with
respect to this distribution. For a finite horizon N = 0,1, . . . and a bounded below measurable
function F: X→ R̄ called the terminal value, define the expected total discounted costs:

vπN,F, α(x) := Eπx
[N−1∑
t=0

αtc(xt, at) +αNF(xN )
]
, (1)

where vπ0,F, α(x) = F(x), x ∈ X, α ≥ 0, and, if N =∞, then α ∈ [0,1). When F(x) = 0 for
all x ∈ X, we shall write vπN,α(x) instead of vπN,F, α(x). When N =∞ and F(x) = 0 for all
x∈X, (1) defines the infinite-horizon expected total discounted cost of π denoted by vπα(x)
instead of vπ∞, α(x). The average costs per unit time are defined as

wπ(x) := lim sup
N→∞

1
N

Eπx
N−1∑
t=0

c(xt, at). (2)

For each function V π(x) = vπN,F, α(x), vπN,α(x), vπα(x), or w(x), define the optimal cost,

V (x) := inf
π∈Π

V π(x), (3)

where Π is the set of all policies. A policy π is called optimal for the respective criterion if
V π(x) = V (x) for all x∈X.

The defined model is too general for the existence of optimal policies. However, optimal
policies exist under modest conditions, which typically hold for inventory control appli-
cations. The natural conditions for inventory control applications are that the transition
probability P is weakly continuous and the cost function c is inf-compact.

The transition probability P is called weakly continuous if for every bounded continuous
function f : X→R the function

f̃(x,a) :=
∫

X
f(y)P (dy |x,a), x∈X, a∈A,

is a continuous function on X×A. For an R̄-valued function f , defined on a subset U of a
metric space U, consider the level sets

Df (λ;U) :=
{
y ∈U : f(y)≤ λ

}
, λ∈R, (4)

A function f is called inf-compact if all the level sets Df (λ;U) are compact. In particular,
the cost function c is defined on U := X×A and the level sets for c are

Dc(λ;X×A) =
{

(x,a)∈X×A: c(x,a)≤ λ
}
, λ∈R. (5)

As shown by Feinberg and Lewis [25], for the discounted costs, weak continuity of P and
inf-compactness of c imply the existence of optimal policies. However, the condition that the
function c is inf-compact can be relaxed by considering the class of K-inf-compact functions.

For two sets U and V , where U ⊂ V , and for two functions f and g defined on V and U ,
respectively, function g defined on U is called the restriction of f to U if g(x) = f(x) when
x∈U .
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Definition 2.1 (cf. Definition A.1 in the Appendix). Let S̃i be metric spaces and
Si ∈ B(S̃i), where Si 6= ∅, i = 1,2. A function f : S1 × S2→ R̄ is called K-inf-compact if,
for every nonempty compact subset K of S1, the restriction of this function to K × S2 is
inf-compact.

For MDPs, Definition 2.1 corresponds to Definition A.1 of a K-inf-compact function
f : S1 × S2→ R̄ on GrS1(Φ), where S1 and S2 are metric spaces, in the following way. Let
(S̃1, ρ1) and (S̃2, ρ2), where ρ1 and ρ2 are metrics, be complete separable metric spaces in
which the Borel sets X and A are defined. Let us consider the metric spaces (X, ρ1), (A, ρ2)
and define S1 := X, S2 := A, and Φ(x) := A for all x∈X. The assumption that the function
f : X×A→ R̄ is K-inf-compact in the sense of Definition 2.1 is equivalent to the assumption
that the function f : GrS1(Φ)→ R̄ is K-inf-compact in the sense of Definition A.1. In many
inventory control applications, X and A are Polish spaces. In this case, it is natural to set
S̃1 = X and S̃2 = A. The examples include X = R, X = [0,∞), A = R, and A = [0,∞).

For a function f : X×A→ R̄, K-inf-compactness is a more general and natural property
than inf-compactness. For example, for X = A = R the function f(x,a) = |x− a| is K-inf-
compact, but it is not inf-compact. As shown in Feinberg et al. [31], the following assumption
is sufficient for the existence of optimal policies for discounted MDPs.

Assumption W∗. The following conditions hold:
(i) The transition probability P is weakly continuous.
(ii) The cost function c is K-inf-compact.
We list some of the properties of MDPs that take place under Assumption W∗ (see Theo-

rem 5.1 for details):
1. For a bounded below, lower semicontinuous terminal value function F, the final-horizon

optimality equation holds for all α≥ 0:

vn+1,F, α(x) = min
a∈A

{
c(x,a) +α

∫
X
vn,F, α(y)P (dy |x,a)

}
, x∈X, n= 0,1, . . . , (6)

where v0,F, α(x) = F(x) for all x∈X. In particular, this is true for F≡ 0 and v0, α ≡ 0.
2. The function vα is lower semicontinuous, where α ∈ [0,1). If the function F is

bounded below and lower semicontinuous, then the functions vn,F, α, for n = 0,1, . . . and
α≥ 0, are lower semicontinuous. If, in addition, F(x) ≤ vα(x) for all x ∈ X, then vα(x) =
limn→∞ vn,F, α(x), where α ∈ [0,1). In particular, this is true for F ≡ 0; that is, vα(x) =
limn→∞ vn,α(x), where α∈ [0,1).

3. For α∈ [0,1), the infinite-horizon value function vα satisfies the optimality equation

vα(x) = min
a∈A

{
c(x,a) +α

∫
X
vα(y)P (dy |x,a)

}
, x∈X, (7)

a stationary optimal policy exists, and a stationary policy φ is optimal if and only if

vα(x) = c(x,φ(x)) +α

∫
X
vα(y)P (dy |x,φ(x)), x∈X. (8)

4. If the one-step cost function c is inf-compact, then the value function vα is inf-compact,
when α ∈ [0,1). The same is true for the value functions vn,F, α, n = 1,2, . . . , when the
terminal value F is a bounded below, lower semicontinuous function and α≥ 0.

In particular, the fourth property is useful for proving the existence of stationary optimal
policies for inventory control problems. It is well known that, for average costs per unit time,
optimal policies may not exist under Assumption W∗. For example, optimal policies may not
exist for a countable state space and finite action sets (see, e.g., Ross [49, Section 5.1]) and
for a finite-state set, compact action sets, and continuous transition probabilities and costs
(see, e.g., Dynkin and Yushkevich [22, Section 7.8]). Next we formulate a general condition
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that typically holds for inventory control problems, which, together with Assumption W∗,
guarantees the existence of optimal policies for average cost MDPs. If infx∈Xw(x)<+∞,
define for α∈ [0,1):

mα := inf
x∈X

vα(x), uα(x) := vα(x)−mα.

Assumption B. The following conditions hold:
(i) infx∈Xw(x)<+∞; and
(ii) supα<1 uα(x)<∞ for all x∈X.
We note that the function uα is nonnegative, and Assumption B implies that mα cannot

take infinite values; see Schäl [52]. If Assumption B(i) does not hold, then the average-cost
problem is trivial: all policies lead to infinite average losses per unit time. This assump-
tion holds in all well-defined problems, and usually, it is easy to verify. The validity of
Assumption B(ii) probably follows from various ergodicity and communicating conditions,
but this relation has not been studied in the literature. As explained in the text following
Theorem 5.5 below, Assumption B(ii) holds and can be easily verified for inventory control
problems. As shown in Feinberg et al. [31], Assumptions W∗ and B imply the existence
of stationary optimal policies for average-cost MDPs, which follows from the validity of
optimality inequalities.

For α∈ [0,1), consider

w= lim inf
α↑1

(1−α)mα, w̄= lim sup
α↑1

(1−α)mα.

According to Schäl [52, Lemma 1.2], Assumption B(i) implies

0≤w≤ w̄≤w∗ <+∞. (9)

According to Schäl [52, Proposition 1.3], if there exists a measurable function u: X→ [0,∞)
and a stationary policy φ satisfying the optimality inequality

w+u(x)≥ c(x,φ(x)) +
∫
u(y)P (dy |x,φ(x)), x∈X, (10)

then φ is average-cost optimal, and w(x) =w = w̄ for all x ∈ X. Assumptions W∗ and B
imply the existence of a stationary policy φ satisfying optimality inequality (10).

Another form of an optimality inequality was introduced in Feinberg et al. [31], where
it was shown that, if there exists a measurable function u: X→ [0,+∞) and a stationary
policy φ such that

w̄+u(x)≥ c(x,φ(x)) +
∫

X
u(y)P (dy |x,φ(x)), x∈X, (11)

then φ is average-cost optimal, and

w(x) =wφ(x) = lim sup
α↑1

(1−α)vα(x) = w̄, x∈X. (12)

Observe that inequality (11) is weaker than (10) because (10) implies (11).
The existence of stationary optimal policies satisfying inequality (11) is proved in Feinberg

et al. [31] under Assumptions W∗ and B there, which consists of Assumption B(i) and the
following assumption (Feinberg et al. [31]):

lim inf
α↑1

uα(x)<∞, for all x∈X, (13)

which is weaker than Assumption B(ii). However, an example of an MDP, satisfying Assump-
tions W∗ and B but not satisfying Assumption B(ii), is currently unknown.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

49
.1

09
.1

22
] 

on
 1

0 
N

ov
em

be
r 

20
16

, a
t 2

2:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Feinberg: Optimality Conditions for Inventory Control
Tutorials in Operations Research, c© 2016 INFORMS 21

Remark 2.2. The definition of an MDP usually includes the sets of available actions
A(x)⊆A, x ∈X. We do not do this explicitly because we allow c(x,a) to be equal to +∞.
In other words, a feasible pair (x,a) is modeled as a pair with finite costs. To transform
this model to a one with feasible action sets, it is sufficient to consider the sets of available
actions A(x) such that A(x) ⊇ Ac(x), where Ac(x) = {a ∈ A: c(x,a) < +∞}, x ∈ X. To
transform an MDP with action sets A(x) to an MDP with the action set A, it is sufficient
to set c(x,a) = +∞ when a ∈A\A(x), x ∈X. Early works on MDPs by Blackwell [15] and
Strauch [61] considered models with A(x) = A for all x ∈ X. This approach caused some
problems with the generality of the results because the boundedness of the cost function c
was assumed, and therefore, c(x,a)∈R for all (x,a). If the cost function is allowed to take
infinitely large values, models with A(x) = A are as general as models with A(x)⊆A, x∈X.

3. MDPs Defined by Stochastic Equations
Inventory control problems are often defined by equations

xt+1 = F (xt, at,Dt+1), t= 0,1, . . . , (14)

where xt is the amount of inventory available at the end of day t, at is the ordered quantity
at the end of day t, and Dt+1 is the demand on day t+ 1. For the classic periodic-review
problem with backlogs, F (x,a,D) = x+a−D, and for a problem with lost sales, F (x,a,D) =
(x + a − D)+. The system can also incur losses of inventory, there could be lead times,
and so on. So the function F can have a more complicated form, and interpretations of
its parameters may be different for different problems. Also, in this paper we only consider
independent and identically distributed demands—that is, D1,D2, . . . are independent and
identically distributed.

Let S be a metric space, B(S) be its Borel σ-field, and µ be a probability measure on
(S,B(S)). Consider a stochastic sequence xt, whose dynamics are defined by Equation (14),
where D0,D1, . . . are independent and identically distributed random variables with values
in S whose distributions are defined by a probability measure µ and F : X×A× S→X is a
measurable mapping.

Equation (14) defines the transition probability

P (B |x,a) =
∫

S
1{F (x,a, s)∈B}µ (ds), B ∈B(S), (15)

from X×A→X, and P (· |xt, at) is the distribution of xt+1 given xt and at, where 1 is the
indicator function.

The following lemma relates Assumption W∗(ii) to the problems defined by stochastic
equations.

Lemma 3.1 (Hernández-Lerma [38, p. 92]). If the function F is continuous, then
the transition probability P is weakly continuous.

Consider an MDP with the transition probability P defined by a continuous function F .
If the one-step cost function c is inf-compact, then, for a random variable D with the same
distribution as D1, formulae (6)–(8) can be rewritten as

vn+1,F, α(x) = min
a∈A

{
c(x,a) +αEvn,F, α(F (x,a,D))

}
, x∈X, n= 0,1, . . . , (16)

vα(x) = min
a∈A

{
c(x,a) +αEvα(F (x,a,D))

}
, x∈X, (17)

and
vα(x) = c(x,φ(x)) +α

∫
X
vα(F (x,φ(x),D)), x∈X. (18)

Equation (10) becomes

w+u(x)≥ c(x,φ(x)) + Eu(F (x,a,D)), x∈X, (19)

and inequality (11) becomes the same as (19), with w replaced with w̄.
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4. The Classic Periodic-Review Problem with Backorders
In this section we consider a discrete-time periodic-review inventory control problem with
backorders and discuss the existence of an optimal (s,S) policy. For this problem the dynam-
ics are defined by the following stochastic equation:

xt+1 = xt + at−Dt+1, t= 0,1,2, . . . , (20)

where xt is the inventory at the end of period t, at is the amount ordered at the end of
period t, and Dt+1 is the demand during period (t+ 1). The demand is assumed to be i.i.d.
In other words, the dynamics of the system is defined by Equation (14) with the function
F (x,a,D) = x+ a−D. Of course, this function is continuous. Here, we consider the case
when there is a single commodity. In this case, xt, at, andDt+1, t= 0,1, . . . , are real numbers.

A decision maker views the current inventory of a single commodity at the end of the day
and makes an ordering decision. In the case of zero lead times considered here the products
are immediately available to meet demand. Demand is then realized, the decision maker
views the remaining inventory, and the process continues. Assume the unmet demand is
backlogged and the cost of inventory held or backlogged (negative inventory) is modeled as
a convex function. The demand and the order quantity are assumed to be nonnegative. The
dynamics of the system are defined by (20). Let

(a) α∈ (0,1) be the discount factor;
(b) K ≥ 0 be a fixed ordering cost;
(c) c̄ > 0 be the per-unit ordering cost;
(d) D be a nonnegative random variable with the same distribution as Dn, and P (D> 0)

> 0; and
(e) h( · ) denote the holding/backordering cost per period. It is assumed that h: R→ [0,∞)

is a convex function, h(x)→∞ as |x| →∞, and Eh(x−D)<∞ for all x∈R.
Without loss of generality, assume that h(0) = 0. The fact that P (D> 0)> 0 avoids the

trivial case. For example, if D = 0 almost surely (a.s.), then the policy that never orders,
when the inventory level is nonnegative, and orders up to zero, when the inventory level is
negative, is optimal under the average cost criterion. Note that ED <∞ since, in view of
Jensen’s inequality, h(x−ED)≤Eh(x−D)<∞.

Let us define the state space X = R; the action set A = R+, where R+ = [0,∞); the
transition probability P defined in (15) with F (x,a,D) = x+ a−D; and the one-step cost
function

c(x,a) =K1{a>0}+ c̄a+ Eh(x+ a−D).

The function c is inf-compact, and, of course, the function F is continuous. Therefore,
Assumption W∗ holds. It is relatively easy to show that Assumption B holds. Thus, opti-
mality equations hold for finite-horizon and infinite-horizon problems. In particular, they
exist for problems with total discounted- and average-cost criteria.

Optimality equations and inequalities can be written as

vn+1,F, α(x) = min
{

min
a>0

[K +Gn,F, α(x+ a)],Gn,F, α(x)
}
− c̄x, (21)

vα(x) = min
{

min
a>0

[K +Gα(x+ a)],Gα(x)
}
− c̄x, (22)

w+u(x) ≥ min
{

min
a>0

[K +H(x+ a)],H(x)
}
− c̄x, (23)

where n= 0,1, . . . and

Gn,F, α(x) := c̄x+ Eh(x−D) +αEvn,F, α(x−D), (24)

Gα(x) := c̄x+ Eh(x−D) +αEvα(x−D), (25)

H(x) := c̄x+ Eh(x−D) + Eu(x−D). (26)

We also write Gn,α instead of Gn,F, α when F≡ 0.
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Definition 4.1. Let st and St be real numbers such that st ≤ St, t= 0,1, . . . . Suppose xt
denotes the current inventory level at decision epoch t. A policy is called an (st, St) policy
at step t if it orders up to the level St if xt < st and does not order when xt ≥ st. A Markov
policy is called an (st, St) policy if it is an (st, St) policy at all steps t= 0,1, . . . . A policy is
called an (s,S) policy if it is stationary and is an (s,S) policy at all steps t= 0,1, . . . .

The standard method for proving the optimality of (st, St) and (s,S) policies for dis-
counted costs was introduced by Scarf [50], and it is based on the notion of a K-convex
function.

Definition 4.2. A function f : R→ R is called K-convex, K ≥ 0, if for each x ≤ y and
for each λ∈ (0,1),

f((1−λ)x+λy)≤ (1−λ)f(x) +λf(y) +λK.

For an inf-compact function g: R→R, let

S ∈ arg min
x∈R

{g(x)}, (27)

s := inf{x≤ S |g(x)≤K + g(S)}. (28)

These real numbers exist because the function g is inf-compact. In addition, s is defined
uniquely and does not depend on the choice of S if there is more than one S satisfying (27).

The standard method for proving the optimality of (st, St) policies, t= 0,1, . . . ,N −1, for
N -horizon problems, N = 1,2, . . . , is to consider g =GN−1, α and prove by induction that
these functions are inf-compact and K-convex. As follows from the optimality equation (21),
this implies the optimality of (st, St) policies with St and st defined by (27) and (28),
respectively, with g =GN−t=1, α. The next step would be to consider t→∞ and prove the
optimality of (s,S) policies for infinite horizon problems.

However, it is possible that the functions GN−1, α are not inf-compact, and the described
approach fails. Then the natural approach is to try to do the same steps for the function
GN−1,F, α for a specially selected terminal value function F. The natural candidate is the
function F = v0

α, where v0
α is the infinite-horizon value for the problem with the ordering cost

K = 0. It is possible to show that there exists α′ ∈ [0,1) such that the functions GN−1, v0α, α
are inf-compact if α ∈ [α′,1). This implies the optimality of (st, St) policies for all finite-
horizon problems with the terminal value F = v0

α for all α∈ [α′,1), which implies optimality
of (s,S) policies for the infinite horizon discounted criterion with the discount factor α. In
addition, it is always true that GN,v0α, α→Gα, and the following lemma holds.

Lemma 4.3 (Feinberg and Lewis [26], Veinott and Wagner [64]). There exists
α′ ∈ [0,1) such that Gα(x)→∞ as |x| →∞ for all α∈ [α′,1) and for all setup costs K ≥ 0.

The optimality of (s,S)-optimal policies for large discount factors implies optimality of
(s,S) policies for average costs per unit time. The following theorem takes place.

Theorem 4.4 (Feinberg and Lewis [26]). Consider α′ ∈ [0,1), whose existence is
stated in Lemma 4.3. The following statements hold for the inventory control problem:

(i) For α ≥ α′ and n = 0,1, . . . , define g(x) := Gn,v0α, α(x), x ∈ R. Consider real numbers
S∗n,α satisfying (27) and s∗n,α defined in (28) with g = Gn,v0α,α, n = 0,1, . . . . Then for each
N = 1,2, . . . , the (st, St) policy with st = s∗N−t−1, α and St = S∗N−t−1, α, t = 0,1, . . . ,N − 1, is
optimal for theN -horizon problem with the terminal values F(x) = v0

α(x), x∈R.
(ii) For the infinite-horizon expected total discounted-cost criterion with a discount factor

α ∈ [α′,1), define g(x) := Gα(x), x ∈ R. Consider real numbers Sα satisfying (27) and sα
defined in (28). Then the (sα, Sα) policy is optimal for the discount factor α. Furthermore,
the sequence of pairs {(s∗n,α, S∗n,α)}n=0,1,... is bounded, where s∗n,α and S∗n,α are described
in statement (i), n= 0,1, . . . . If (s∗α, S

∗
α) is a limit point of this sequence, then the (s∗α, S

∗
α)

policy is optimal for the infinite-horizon problem with the discount factor α.
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(iii) Consider the infinite-horizon average-cost criterion. For each α∈ [α′,1), consider an
optimal (s′α, S

′
α) policy for the discounted-cost criterion with the discount factor α, whose

existence follows from statement (ii). Let αn ↑ 1, n= 1,2, . . . , with α1 ≥ α′. Every sequence
{(s′αn , S

′
αn)}n=1,2,... is bounded, and each limit point (s′, S′) defines an average-cost optimal

(s′, S′) policy.

As explained above, (st, St) policies may not be optimal for finite-horizon problems for
all discount factors, and (s,S) may not be optimal for infinite-horizon discounted problems
with a small discount factor. Let us consider the assumption on the growth of backordering
costs that was probably introduced by Veinott and Wagner [64] for problems with discrete
demand. This assumption ensures that the functions GN−1, α and Gα are inf-compact, and,
as explained above, this implies the optimality of (st, St) policies and (s,S) policies for
finite-horizon and infinite-horizon discounted problems, respectively, for all N = 1,2, . . . and
for all α∈ [0,1).

Assumption GB. There exist z, y ∈R such that z < y and

h(y)−h(z)
y− z

<−c̄. (29)

Lemma 4.5 (Chen and Simchi-Levi [17, 18], Feinberg and Lewis [26], Heyman
and Sobel [42]). Suppose that Assumption GB holds. Then the functions Gα(x) and
GN,α(x), N = 0,1, . . . , are inf-compact and K-convex.

The following theorem describes the optimality of (st, St) policies and (s,S) policies for
finite-horizon and infinite-horizon discounted problems under Assumption GB.

Theorem 4.6 (Chen and Simchi-Levi [17, 18], Feinberg and Lewis [26]). Suppose
that Assumption GB holds. Then,

(i) For α≥ 0 and n= 0,1, . . . , consider real numbers Sn,α satisfying (27) and sn,α defined
in (28), with g(x) = Gn,α(x), x ∈ R. Then for every N = 1,2, . . . , the (st, St) policy with
st = s∗N−t−1, α and St = S∗N−t−1, α, t= 0,1, . . . ,N −1, is an optimal policy for the N -horizon
problem with the zero terminal values.

(ii) Let α ∈ [0,1). Consider real numbers Sα satisfying (27) and sα defined in (28) for
g(x) := Gα(x), x ∈ R. Then the (sα, Sα) policy is optimal for the infinite-horizon problem
with the discount factor α. Furthermore, a sequence of pairs {(sn,α, Sn,α)}n=0,1,... considered
in statement (i) is bounded, and, if (s∗α, S

∗
α) is a limit point of this sequence, then the (s∗α, S

∗
α)

policy is optimal for the infinite-horizon problem with the discount factor α.

As stated in Theorem 4.4, (s,S) policies are optimal for average costs per unit time. How-
ever, Theorem 4.6 states the optimality of (st, St) policies and (s,S) policies for finite-horizon
and infinite-horizon discounted problems for all discount factors only under Assumption GB.
The structure of discount optimal policies for all discount factors is investigated in Feinberg
and Liang [28], where the following parameters were introduced:

kh :=− lim
x→−∞

h(x)
x

(30)

and
α∗ := 1− kh

c̄
. (31)

For example, α∗ = 1−h−/c̄ for models with linear holding and backordering costs h consid-
ered in Bensoussan [5] and Bertsekas [11], when

h(x) =

{
h+x, if x≥ 0,
−h−x, otherwise,

where h− and h+ are positive holding and backordering cost rates, and typically h− >h+.
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The convexity and inf-compactness of h imply that 0<kh ≤+∞. Therefore,−∞≤ α∗ < 1.
Also, Assumption GB is equivalent to α∗ < 0. In addition, α′ := max{α∗,0} is the minimal
possible value of the parameter α′ whose existence is claimed in Lemma 4.3. These facts
and their corollaries are summarized in the following theorem.

Theorem 4.7 (Feinberg and Liang [28]). Assumption GB holds if and only if α∗>0.
Therefore, if α∗ < 0, then the statements (i) and (ii) of Theorem 4.6 hold. In addition, α′ =
max{α∗,0} is the minimal value of the parameter α′ whose existence is stated in Lemma 4.3.
Therefore, statements (i) and (ii) of Theorem 4.4 take place for α′ = max{α∗,0}.

Define S0 := 0 and

St :=
t∑

j=1

Dj , t= 1,2, . . . . (32)

Then, E[St] = tE[D]<+∞ for all t= 0,1, . . . .
Define the following function for all t= 0,1, . . . and α≥ 0:

ft,α(x) := c̄x+
t∑
i=0

αiE[h(x−Si+1)], x∈X. (33)

Observe that f0, α(x) = c̄x+ E[h(x−D)] =G0, α. Since h(x) is a convex function, then the
function ft,α(x) is convex for all t= 0,1, . . . and α≥ 0.

Let Ft,α(−∞) := limx→−∞ ft,α(x) and

Nα := inf{t= 0,1, . . . : Ft,α(−∞) = +∞}, (34)

where the infimum of an empty set is +∞. Since the function h(x) is nonnegative, then
the function ft,α(x) is nondecreasing in t for all x ∈ X and α ≥ 0. Therefore, (i) Nα is
nonincreasing in α, that is, Nα ≤Nβ , if α > β; and (ii) in view of the definition of Nα, for
each t∈N0,

Ft,α(−∞)<+∞, if t <Nα and Ft,α(−∞) = +∞, if t≥Nα. (35)

The following theorem provides the complete description of optimal finite-horizon policies
for all discount factors α.

Theorem 4.8 (Feinberg and Liang [28]). Let α > 0. Consider α∗ defined in (31). If
α∗ < 0 (that is, Assumption GB holds), then the statement of Theorem 4.6(i) holds. If 0≤
α∗ < 1, then the following statements hold for the finite-horizon problem with the discount
factor α:

(i) If α ∈ [0, α∗], then a policy that never orders is optimal for every finite horizon N =
1,2, . . . .

(ii) If α>α∗, then Nα <+∞, and for a finite horizon N = 1,2, . . . , the following is true:
(a) if N ≤Nα, then a policy that never orders at steps t= 0,1, . . . ,N − 1 is optimal;
(b) if N > Nα, then a policy that never orders at steps t = N − Nα, . . . ,N − 1 and

follows the (sN−t−1, α, SN−t−1, α) policy at steps t= 0, . . . ,N −Nα− 1 is optimal, where the
real numbers St,α satisfy (27), and st,α are defined in (28) with g(x) :=Gt,α(x), x∈X.

The conclusions of Theorem 4.8 are presented in Table 1 and Figure 1.
The following theorem provides the complete description of optimal infinite-horizon poli-

cies for all discount factors α.

Theorem 4.9 (Feinberg and Liang [28]). Let α∈ [0,1). Consider α∗ defined in (31).
The following statements hold for the infinite-horizon problem with the discount factor α:
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Table 1. The structure of optimal policies for a discounted N -horizon problem with N <+∞ and
α≥ 0.

α∗ < 0 0≤ α∗ <α α∗ ≥ α

There is an optimal For the natural number Nα defined in (34), The policy that
(st, St) policy. if N >Nα, then a policy, that never orders at never orders

steps t=N −Nα, . . . ,N − 1 and is an (st, St) is optimal.
policy at steps t= 0, . . . ,N −Nα− 1, is optimal;

if N ≤Nα, then a policy that never orders
is optimal.

Table 2. The structure of optimal policies for a discounted infinite-horizon problem with
α∈ [0,1).

α∗ <α α≤ α∗

There is an optimal (s,S) policy. The policy that never orders is optimal.

(i) if α∗ <α, then an (sα, Sα) policy is optimal, where the real numbers Sα satisfy (27)
and sa are defined in (28) with g(x) := Gα(x), x ∈ X. Furthermore, a sequence of pairs
(st,α, St,α)t=Nα,Nα+1,... considered in Theorem 4.8(ii,b) is bounded, and, for if (s∗α, S

∗
α) is

a limit point of the sequence, then the (s∗α, S
∗
α) policy is optimal for the infinite-horizon

problem with the discount factor α;
(ii) if α∗ ≥ α, then the policy that never orders is optimal.

The conclusions of Theorem 4.9 are presented in Table 2 and Figure 2.
The above theorems describe optimal policies for all discount factors. However, it is pos-

sible that for a given discount factor, at some states there are multiple optimal actions.
Therefore, there may exist multiple optimal policies. It is also possible to describe additional
optimal policies; see Feinberg and Liang [28]. The results on MDPs imply that the functions
vα and vN,α are lower semicontinuous. However, for this problem, they are continuous; see
Feinberg and Liang [28]. In addition, optimality inequalities (10) and (23) hold in the form
of equalities; see Feinberg and Liang [27].

5. MDPs with Infinite-State Spaces and Weakly Continuous
Transition Probabilities

This section describes the theory of dynamic programming for infinite-state problems with
weakly continuous transition probabilities. The main focus is on the existence of optimal
policies and the validity of optimality equations for problems with discounted costs and
optimality inequalities for average-cost problems. We also discuss the convergence of optimal
values and actions when the horizon length tends to infinity for finite-horizon problems and
when the discount factor increases to 1 for infinite-horizon problems.

Figure 1. The structure of optimal policies for a discounted N -horizon problem with N < +∞
and α≥ 0.

There is an
optimal (st,St)

policy.

For N > N�, a policy that does not
order on the last N� steps, and is
 an (st,St) policy prior to that, is

optimal.

The policy that
never orders is

optimal.

For N ≤ N�, the policy that
never orders is optimal.

�*

0 1�
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Figure 2. The structure of optimal policies for a discounted infinite-horizon problem with
α∈ [0,1).

There is an optimal (s,S) policy.

The policy that
never orders is

optimal.

10

�*

�

5.1. Total Discounted Costs
The following theorem describes the validity of optimality equalities, the lower semiconti-
nuity of value functions, and the convergence of value iterations. For zero terminal values,
this theorem is presented in Feinberg et al. [31]. The case of nonzero terminal values is
added in Feinberg and Lewis [26]. The case of inf-compact cost functions c, which leads
to the inf-compactess of value functions, is studied in Feinberg and Lewis [25]. The inf-
compactness of value functions is important for the analysis of average-cost problems. The
proof of Theorem 5.1 uses the generalization of Berge’s theorem, described in the appendix.

Theorem 5.1 (Feinberg and Lewis [26], Feinberg et al. [31]). Let Assumption W∗

hold. Consider a bounded below, lower semicontinuous function F: X→ R̄ and α≥ 0. Then,
(i) The functions vn,F, α, n= 0,1, . . . , are lower semicontinuous.

(ii) The finite-horizon optimality equalities (6) hold with v0,F, α(x) = F(x), for all x∈X,
and the nonempty sets

An,F,α(x) :=
{
a∈A: vn+1,F,α(x)=c(x,a)+α

∫
X
vn,F,α(y)P (dy |x,a)

}
, x∈X, n=0,1,...,

satisfy the following properties:
(a) the graph GrX(An,F, α) = {(x,a): x ∈ X, a ∈ An,F, α(x)}, n= 0,1, . . . , is a Borel

subset of X×A; and
(b) if vn+1,F, α(x) = +∞, then An,F, α(x) = A, and if vn+1,F, α(x) < +∞, then

An,F, α(x) is compact.
(iii) For a problem with the terminal value function F, for each N = 1,2, . . . , there exists

a Markov optimal N -horizon policy (φ0, . . . , φN−1), and if for an N -horizon Markov policy
(φ0, . . . , φN−1) the inclusions φN−1−n(x) ∈ An,F, α(x), x ∈ X, n = 0, . . . ,N − 1 hold, then
this policy is N -horizon optimal.

(iv) If the cost function c is inf-compact, the functions vn,F, α, n = 1,2, . . . , are inf-
compact.

(v) For α ∈ [0,1), if F(x) is constant or F(x)≤ vα(x) for all x ∈X, then vn,F, α(x)→
vα(x) as n→+∞ for all x∈X.

(vi) For α ∈ [0,1), the infinite-horizon optimality Equation (7) holds, and the non-
empty sets

Aα(x) :=
{
a∈A: vα(x) = c(x,a) +α

∫
X
vα(y)P (dy |x,a)

}
, x∈X,

satisfy the following properties:
(a) the graph GrX(Aα) = {(x,a): x∈X, a∈Aα(x)} is a Borel subset of X×A; and
(b) if vα(x) = +∞, then Aα(x) = A, and if vα(x)<+∞, then Aα(x) is compact.

(vii) For an infinite-horizon problem with α ∈ [0,1), there exists a stationary discount-
optimal policy φα, and a stationary policy φα is optimal if and only if φα(x)∈Aα(x) for all
x∈X.

(viii) If the cost function c is inf-compact, then the infinite-horizon value function vα is
inf-compact, α∈ [0,1).

The following theorem describes convergence properties of optimal finite-horizon actions
as the time horizon increases to infinity.
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Theorem 5.2 (Feinberg and Lewis [26]). Let Assumption W∗ hold and α∈ [0,1). Let
F: X→ R̄ be bounded below, lower semicontinuous, and such that for all x∈X,

F(x)≤ vα(x) and v1,F, α(x)≥F(x). (36)

Then for x∈X, such that vα(x)<∞, the following two statements hold:
(i) There is a compact subset D∗α(x) of A such that An,F, α(x)⊆D∗α(x) for all t= 1,2, . . . ,

where the sets An,F, α(x) are defined in Theorem 5.1(ii).
(ii) Each sequence {a(n) ∈ An,F, α(x)}n=1,2,... is bounded, and all its limit points belong

to Aα(x).

Theorem 5.2 is useful for the analysis of the classic periodic-review inventory problem
described in Section 4. As demonstrated in Table 1, (st, St) policies may not be optimal for
finite-horizon problems, and the function F = v0

α is used to approximate optimal infinite-
horizon thresholds, where v0

α is the optimal value in the same problem with zero ordering
costs.

5.2. Average Costs per Unit Time
We start with the formal introduction of Assumption B.

Assumption B. The following conditions hold:
(i) infx∈Xw(x)<+∞; and
(ii) lim infα<1 uα(x)<∞ for all x∈X.
Recall that the functions vα and uα are defined only for α∈ [0,1). Let us set

u(x) := lim inf
(y,α)→(x,1−)

uα(y), x∈X. (37)

An equivalent definition is that u(x) is the largest number such that u(x) ≤
lim infn→∞ uαn(yn) for all sequences {yn→ x} and {αn→ 1−}.

Theorem 5.3 (Feinberg et al. [31, Theorem 3]). Suppose Assumptions W∗ and B
hold. Then there exists a stationary policy φ satisfying (11) with u defined in (37). Thus,
equalities (12) hold for this policy φ. Furthermore, the following statements hold:

(i) The function u: X→R+ is lower semicontinuous.
(ii) The nonempty sets

A∗u(x) :=
{
a∈A: w̄+u(x)≥ c(x,a) +

∫
X
u(y)P (dy |x,a)

}
, x∈X, (38)

satisfy the following properties:
(a) the graph Gr(A∗u) = {(x,a): x∈X, a∈A∗u(x)} is a Borel subset of X×A; and
(b) for each x∈X, the set A∗u(x) is compact.

(iii) A stationary policy φ is optimal for average costs and satisfies (11) with u defined
in (37), if φ(x)∈A∗u(x) for all x∈X.

(iv) There exists a stationary policy φ with φ(x)∈A∗(x)⊆A∗u(x) for all x∈X, where

A∗(x) :=
{
a∗ ∈A: u(x,a∗) = inf

a∈A

{
c(x,a) +

∫
X
u(y)P (dy |x,a)

}}
, x∈X, (39)

where
u(x,a∗) := c(x,a∗) +

∫
X
u(y)P (dy|x,a∗), a∗ ∈A.

(v) If, in addition, the function c is inf-compact, then the function u is inf-compact.

Stronger results hold under Assumption B.
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Theorem 5.4 (Feinberg et al. [31, Theorem 4]). Suppose Assumptions W∗ and B
hold. Then there exists a nonnegative lower semicontinuous function u and a stationary
policy φ satisfying (10)—that is, φ(x)∈A∗u(x) for all x∈X. Furthermore, every stationary
policy φ for which (10) holds is optimal for the average costs per unit time criterion:

wφ(x) =w(x) =w∗ =w= w̄= lim
α↑1

(1−α)vα(x) = lim
N→∞

1
N
vφN,1(x), x∈X. (40)

Moreover, the following statements hold:
(i) The nonempty sets A∗u(x), x∈X, satisfy the following properties:

(a) the graph GrX(A∗u) = {(x,a) : x∈X, a∈A∗u(x)} is a Borel subset of X×A; and
(b) for each x∈X, the set A∗u(x) is compact.

(ii) There exists a stationary policy φ with φ(x)∈A∗u(x) for all x∈X.

As an alternative to (37), as follows from Feinberg et al. [31, Theorems 3 and 4, p. 603],
for each sequence αn→ 1−, the function u can be defined as

ũ(x) := lim inf
(y,n)→(x,∞)

uαn(y), x∈X. (41)

An equivalent definition is that ũ(x) is the largest number such that ũ(x) ≤
lim infn→∞ uαn(yn) for all sequences {yn→ x}. It follows from these definitions that u(x)≤
ũ(x), x∈X. However, the questions, whether u= ũ and whether the values of ũ depend on
a particular choice of the sequence αn, have not been investigated. If the cost function c is
inf-compact, then the functions vα, u, and ũ are inf-compact as well; see Theorem 5.1 for
the proof of this fact for vα and Feinberg et al. [31, Theorem 4(e), Corollary 2] for u and ũ.
We denote by A∗ũ(x) the sets defined in (37), when the function u is replaced with ũ.

In addition, if the one-step cost function c is inf-compact, the minima of the functions vα
possess additional properties. Set

Xα := {x∈X: vα(x) =mα}, α∈ [0,1). (42)

In view of Theorem 5.1(viii), the function vα is inf-compact and Xα 6= ∅. Since Xα = {x∈X:
vα(x)≤mα}, this set is closed. The following theorem is useful for verifying the validity of
Assumption B(ii) in inventory control applications; see Feinberg and Lewis [25, Lemma 5.1]
and the references therein.

Theorem 5.5 (Feinberg et al. [31, Theorem 6]). Let Assumptions W∗ and B(i) hold.
If the function c is inf-compact, then there exists a compact set K⊆X such that Xα ⊆K for
all α∈ [0,1).

Theorem (5.5) implies that the minimum in x ∈ X of vα(x) is achieved on a compact
set K, which does not depend on α. This typically means that to prove Assumption B(ii) it
is sufficient to show that for each x∈X it is possible to reach every point in K in a way that
the expected time and cost are finite. In inventory control applications, this can be shown by
lowering the inventory levels below the levels in K and then by ordering up to a point in K.
Exact mathematical justifications are usually problem specific and use renewal theory. Here,
we provide a short version of the proof from Feinberg and Lewis [26]. Choose K= [x∗L, x

∗
U ];

see Figure 3, where the existence of a set K is stated in Theorem 5.5, and this set can be
chosen to be equal to a closed interval because each compact subset of R is contained in a
closed finite interval. Let φα be a stationary optimal policy for a discount factor α ∈ [0,1),
and let xα be a state such that vα(xα) = vφ

α

α (xα) =mα. Since xα ∈Xα, then xα ∈ [x∗L, x
∗
U ].

Consider a policy σ such that, if the initial point x< xL, then σ orders up to the level that
the policy φα would order at state xα, and then σ makes the same decisions as φα. Since a
move from state x0 to x1 can be presented as two instant moves—from x0 to xα and from xα

to x1, as shown in Figure 3 (in this case, τ = 0, x= xτ , and only the move from xτ to xτ+1
is relevant to (43)), then

vα(x)≤ vσα(x)≤K + c̄(xα−x) + vα(xα)≤K + c̄(x∗U −x) +mα, x < x∗L. (43)
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Figure 3. Verification of Assumption B(ii) for inventory control.

x� xL
* x�–1 x�+1 x� x*

U x2 x1 x0

For the initial inventory level x≥ x∗L, where x= x0, the policy σ is defined in the following
way. It does not order as long as the inventory level is greater than or equal to x∗L. Then, as
soon as the inventory level is less than x∗L, the policy σ behaves in the same way it would
if xτ were the starting point, where τ := inf{t= 0,1, . . . : xt < x∗L} is the first epoch when
the inventory level is less than x∗L. Standard arguments from renewal theory imply that
E[xτ ]>−∞ and C(x, τ)<+∞, where C(x, τ) is the expected total undiscounted holding
(or backordering) cost paid until the system reaches the level xτ . Then

vα(x)≤ vσα(x)≤C(x, τ) +K + c̄E[x∗U −xτ ] +mα, x≥ x∗L. (44)

Inequalities (43) and (44) imply that Assumption B(ii) holds. Though the above proof was
applied in Feinberg and Lewis [26] to the classic periodic-review system with backorders,
it is generic and applicable to other systems. For problems with lost sales, the proof may
be even simpler because it may be possible to define σ so that τ is the first time when
there is no inventory. Then xτ = 0, and the expected cost of a lost sale will be added to the
right-hand side of (43). This expected cost is typically finite.

Certain average-cost optimal policies can be approximated by discount optimal policies
with a vanishing discount factor; see Feinberg et al. [31, Theorem 5]. The following theorem
and its corollary follow from such approximations. In particular, the theorem and its corol-
lary are useful for verifying that a limit point of optimal thresholds for vanishing discount
factors is an optimal threshold for average costs per unit time.

Recall that, for the function u(x) defined in (37), for each x ∈ X there exist sequences
{αn ↑ 1} and {x(n)→ x}, where x(n) ∈ X, n= 1,2, . . . , such that u(x) = limn→∞ uαn(x(n)).
Similarly, for a sequence {αn ↑ 1}, consider the function ũ defined in (41). Then for each
x ∈ X there exist a sequence {x(n)→ x} of points in X and a subsequence {α∗n}n=1,2,... of
the sequence {αn}n=1,2,... such that ũ(x) = limn→∞ uα∗

n
(x(n)).

Theorem 5.6 (Feinberg and Lewis [26]). Let Assumptions W∗ and B hold. For x∈X
and a∗ ∈A, the following two statements hold:

(i) For a sequence {(x(n),αn)}n=1,2,... with 0≤αn ↑1, x(n)∈X, x(n)→x, and uαn(x(n))→
u(x) as n→∞, if there are a sequence of natural numbers {nk→∞}k=1,2,... and actions
{a(nk)∈Aαnk (x(nk))}k=1,2,..., such that a(nk)→a∗ as k→∞, then a∗∈A∗u(x), where the
function u is defined in (37).

(ii) Let {αn ↑ 1}n=1,2,... be a sequence of discount factors, let {α∗n}n=1,2,... be its subse-
quence, and let {x(n)→ x}n=1,2,... be a sequence of states from X such that uα∗

n
(x(n))→ ũ(x)

as n→∞, where the function ũ is defined in (41) for the sequence {αn}n=1,2,.... If there are
actions a(n) ∈Aα∗

n
(x(n)) such that a(n)→ a∗ as n→∞, then a∗ ∈A∗ũ(x).

Corollary 5.7 (Feinberg and Lewis [26]). Let Assumptions W∗ and B hold. For x∈X
and a∗ ∈A, the following two statements hold:

(i) If each sequence {(α∗n, x(n))}n=1,2,... with 0 ≤ α∗n ↑ 1, x(n) ∈ X, and x(n) → x, n =
1,2, . . . , contains a subsequence (αnk , x

(nk)), such that there exist actions a(nk) ∈Aαnk (x(nk))
satisfying a(nk)→ a∗ as k→∞, then a∈A∗u(x) with the function u defined in (37).
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(ii) If there is a sequence {αn ↑ 1}n=1,2,..., such that for every sequence of states {xn→ x}
from X there are actions an ∈ Aαn(x(n)), n = 1,2, . . . , satisfying an→ a∗ as n→∞, then
a∗ ∈A∗ũ(x), where the function ũ is defined in (41) for the sequence {αn}n=1,2,....

The following theorem is useful for proving asymptotic properties of optimal actions for
discounted problems when the discount factor tends to 1.

Theorem 5.8 (Feinberg and Lewis [26]). Let Assumptions W∗ and B hold. For x∈X,
the following two statements hold:

(i) There exists a compact set D∗(x)⊆A such that Aα(x)⊆D∗(x) for all α∈ [0,1).
(ii) If {αn}n=1,2,... is a sequence of discount factors αn ∈ [0,1), then every sequence of

infinite-horizon αn-optimal actions {a(n) ∈Aαn(x)}n=1,2,... is bounded and therefore has a
limit point a∗ ∈A.

6. Partially Observable Markov Decision Processes
POMDPs model the situations when the current state of the system may be unknown and
the decision maker uses indirect observations for decision making. A POMDP is defined
by the same objects as an MDP but, in addition to the state space X and action space A,
there is an observation space Y. The states and observations are linked by the transition
probability Q(dyt+1 |at, xt+1), from A×X to Y, t= 0,1, . . . . Thus, a POMDP is defined as
the tuple {X,Y,A, P,Q, c}, where the Borel state and action spaces X and A, the transition
probability P, and the cost function c are the same objects as in an MDP. In addition, Y
is the observation space, which is also assumed to be a Borel subset of a Polish space, and
Q is the observation probability, which is a regular transition probability from A×X to Y.
Sometimes we say a transition kernel or a stochastic kernel instead of transition probability.
Though the initial state of the system may be unknown, the decision maker knows the
probability distribution of the initial state p(dx0), and there is an observation probability
for the first observation Q0(dy0 |x0).

In various applications it is possible that there are continuous states and discrete obser-
vations or discrete states and continuous observations; both spaces can be discrete or con-
tinuous. So we consider a general situation by assuming that X and Y are Borel subsets of
Polish spaces.

The following subsection describes the classic transformation of a POMDP to a completely
observable MDP (COMDP), whose states are posterior probability distributions of states in
the POMDP. This transformation was introduced by Aoki [1], Åström [2], Dynkin [21], and
Shiryaev [58]. These ideas were advanced in the book by Striebel [61] and in the references
provided in the following subsection. The main results of this section describe optimality
conditions for POMDPs and COMDPs introduced in Feinberg et al. [36].

The POMDP evolves as follows. At time t = 0, the initial unobservable state x0 has a
given prior distribution p. The initial observation y0 is generated according to the initial
observation kernel Q0(· |x0). At each time epoch t = 0,1, . . . , if the state of the system is
xt ∈X and the decision maker chooses an action at ∈A, then the cost c(xt, at) is incurred;
the system moves to state xt+1 according to the transition law P (· |xt, at). The observation
yt+1 ∈Y is generated by the observation kernels Q(· |at, xt+1), t= 0,1, . . . , and Q0(· |x0); see
Figure 4. For the state space X, denote by P(X) the set of probability measures on (X,B(X)).
We always consider a metric on P(X) consistent with the topology of weak convergence.

Define the observable histories: h0 := (p, y0) ∈H0 and ht := (p, y0, a0, . . . , yt−1, at−1, yt) ∈
Ht for all t= 1,2, . . . , where H0 := P(X)×Y and Ht :=Ht−1×A×Y if t= 1,2, . . . . Then a
policy for the POMDP is defined as a sequence π= {πt} such that, for each t= 0,1, . . . , πt is
a transition kernel on A given Ht. Moreover, π is called nonrandomized if each probability
measure πt(· |ht) is concentrated at one point. The set of all policies is denoted by Π. The
Ionescu Tulcea theorem (Bertsekas and Shreve [12, pp. 140–141] or Hernández-Lerma and
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Figure 4. POMDP Diagram.
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Lassere [40, p. 178]) implies that, given a policy π ∈ Π, an initial distribution p ∈ P(X)
and a sequence of transition probabilities Q0, π0, P,Q,π1, P,Q,π2, . . . determine a unique
probability measure Pπp on the set of all trajectories H∞ = (X×Y×A)∞ endowed with the
σ-field, which is the product of Borel σ-fields on X, Y, and A, respectively. The expectation
with respect to this probability measure is denoted by Eπp .

Let us specify a performance criterion. For a finite horizon N = 0,1, . . . , and for a policy
π ∈Π, let the expected total discounted costs be

vπN,α(p) := Eπp
N−1∑
t=0

αtc(xt, at), p∈ P(X), (45)

where α ≥ 0 is the discount factor, and vπ0, α(p) = 0. When N = ∞, we always assume
α∈ [0,1). We always assume that the function c is bounded below.

For any function gπ(p), including gπ(p)=vπN,α(p) and gπ(p)=vπα(p), define the optimal cost

g(p) := inf
π∈Π

gπ(p), p∈ P(X),

where Π is the set of all policies. A policy π is called optimal for the respective criterion, if
gπ(p) = g(p) for all p∈ P(X). For gπ = vπN,α, the optimal policy is called N -horizon discount
optimal; for gπ = vπα, it is called discount optimal.

6.1. Reduction of POMDPs to MDPs
In this section, we formulate the well-known reduction of a POMDP to the corresponding
COMDP (Bertsekas and Shreve [12], Dynkin and Yushkevich [22], Hernández-Lerma [38],
Rhenius [48], Yushkevich [65]). This reduction constructs an MDP whose states are proba-
bility distributions on the original state space. These distributions are posterior distributions
of states after the observations become known. In addition to posterior probabilities, they
are also called belief probabilities and belief states in the literature. The reduction estab-
lishes the correspondence between certain classes of policies in MDPs and POMDPs and
their performances. If an optimal policy is found for the COMDP, it defines in a natural
way an optimal policy for the original POMDP. The reduction holds for measurable tran-
sition probabilities, observation probabilities, and one-step costs. Except for problems with
discrete transition probabilities or with transition probabilities having densities (see Bäuerle
and Rieder [3], Bensoussan [4]), almost nothing had been known until recently about the
existence of optimal policies for POMDPs and how to find them.

To simplify notations, we sometimes drop the time parameter. Given a posterior distri-
bution z of the state x at time epoch t= 0,1, . . ., and given an action a selected at epoch t,
denote by R(B×C |z, a) the joint probability that the state at time (t+ 1) belongs to the
set B ∈B(X) and the observation at time (t+ 1) belongs to the set C ∈B(Y),

R(B×C |z, a) :=
∫

X

∫
B

Q(C |a,x′)P (dx′ |x,a)z (dx), (46)
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where R is a transition kernel on X×Y given P(X)×A; see Bertsekas and Shreve [12], Dynkin
and Yushkevich [22], Hernández-Lerma [38], or Yushkevich [65] for details. Therefore, the
probability R′(C |z, a) that the observation y at time n belongs to the set C ∈B(Y) is

R′(C |z, a) =
∫

X

∫
X
Q(C |a,x′)P (dx′ |x,a)z (dx), (47)

where R′ is a transition kernel on Y given P(X)×A. By Bertsekas and Shreve [12, Proposi-
tion 7.27], there exists a transition kernel H on X given P(X)×A×Y such that

R(B×C |z, a) =
∫
C

H(B |z, a, y)R′ (dy |z, a). (48)

The transition kernel H(· |z, a, y) defines a measurable mapping H: P(X) × A ×
Y→ P(X), where H(z, a, y)[ · ] = H(· |z, a, y). For each pair (z, a) ∈ P(X)×A, the mapping
H(z, a, ·): Y→ P(Y) is defined R′(· |z, a) a.s. uniquely in y; see Dynkin and Yushkevich [22,
p. 309]. It is known that for a posterior distribution zt ∈ P(X), action at ∈ A(x), and an
observation yt+1 ∈Y, the posterior distribution zt+1 ∈ P(X) is

zt+1 =H(zt, at, yt+1). (49)

However, the observation yt+1 is not available in the COMDP model, and therefore yt+1 is
a random variable with the distribution R′(· |zt, at), and (49) is a stochastic equation that
maps (zt, at)∈ P(X)×A to P(X). The stochastic kernel that defines the distribution of zt+1

on P(X) given P(X)×X is defined uniquely as

q(D |z, a) :=
∫

Y
1D[H(z, a, y)]R′ (dy |z, a), (50)

where for D ∈B(P(X)),

1D[u] =

{
1 u∈D,
0 u /∈D;

see Hernández-Lerma [38, p. 87]. A particular choice of a stochastic kernel H in (48) does not
change the measure q(· |z, a) since, for each pair (z, a) ∈ P(X) × A, the mapping H(z, a, ·):
Y→ P(Y) is defined R′(· |z, a) a.s. uniquely in y; see Dynkin and Yushkevich [22, p. 309].

The COMDP is defined as an MDP with parameters (P(X),A, q, c̄), where we have the
following:

(i) P(X) is the state space.
(ii) A is the action set available at all states z ∈ P(X).
(iii) The one-step cost function c̄: P(X)×A→ R̄ is defined as

c̄(z, a) :=
∫

X
c(x,a)z (dx), z ∈ P(X), a∈A. (51)

(iv) The transition probabilities q on P(X) given P(X)×A is defined in (50).
If a stationary or Markov optimal policy for the COMDP exists and is found, it allows the

decision maker to formulate an optimal policy for the POMDP. The details on how to do
this can be found in Bertsekas and Shreve [12], Dynkin and Yushkevich [22], or Hernández-
Lerma [38]. Therefore, a POMDP can be reduced to a COMDP. This reduction holds for
measurable transition kernels P , Q, and Q0. The measurability of these kernels and the cost
function c lead to the measurability of transition probabilities and the cost function for the
corresponding COMDP.
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As follows from Theorem 5.1, if the COMDP satisfies Assumption W∗, then optimal
policies exist, they satisfy the optimality equation, and they can be found by value iterations.
This is formulated in Theorem 6.2 below. The validity of Assumption W∗ for the COMDP
is equivalent to the correctness of the following two hypotheses.

Hypothesis (i). The transition probability q from P(X)×A to P(X) is weakly continuous.

Hypothesis (ii). The cost function c̄: P(X) × A → R̄ is bounded below and K-inf-
compact on P(X)×A.

The following theorem states the correctness of Hypothesis (ii). The question, whether
Hypothesis (i) holds, is more difficult, and the following subsection is devoted to answering it.

Theorem 6.1 (Feinberg et al. [36]). If the function c: X×A→ R̄ is a bounded below,
K-inf-compact (inf-compact) function on X × A, then the cost function c̄: P(X) × A→ R̄
defined for the COMDP in (51) is bounded below by the same constant and K-inf-compact
(inf-compact) on P(X)×A.

In addition to weak convergence, two types of convergence are mentioned in the next
subsection: setwise convergence and convergence in total variation. Here, we recall their
definitions.

Let (Pn)n=1,2,... be a sequence of probability measures on a measurable space (S,F). This
sequence converges setwise to a probability measure P0 on (S,F) if limn→∞Pn(A) = P0(A)
for each A ∈F . This sequence converges in total variation if limn→∞ ‖Pn−P0‖= 0, where
‖Pn(A)− P0(A)‖ = 2 sup{Pn(A)− P0(A): A ∈ F}. Convergence in total variation implies
setwise convergence. If S is a metric space and F is its Borel σ-field, then setwise convergence
implies weak convergence. Recall that P ∗ is a regular transition probability from a metric
space S1 to a metric space S2, if P ∗(· |s) is a probability measure on S1 for each s∈ S2
and P ∗(A | ·) is a Borel function on S1 for each Borel subset A of S2. A transition probability
is weakly (setwise, in total variation) continuous, if, for every sequence (sn)n=1,2,... on S1
converging to s0 ∈ S1, the sequence (P ∗(· |sn))n=1,2,... converges weakly (setwise, in total
variation) to P ∗(· |s0). There are two mathematical tools that are useful for the analysis of
convergence of probability measures and for the analysis of MDPs and POMDPs: Fatou’s
lemma for variable probabilities (see Feinberg et al. [33] and references therein) and uniform
Fatou’s lemma introduced in Feinberg et al. [35].

6.2. Optimality Conditions for Discounted POMDPs
For the COMDP, Assumption W∗ can be rewritten in the following form:

(i) c̄ is K-inf-compact on P(X)×A.
(ii) The transition probability q(· |z, a) is weakly continuous in (z, a)∈ P(X)×A.
Theorem 5.1 has the following form for the COMDP (P(X),A, q, c̄).

Theorem 6.2 (Feinberg et al. [36, Theorem 3.1]). Let the COMDP (P(X),A, q, c̄)
satisfy Assumption W∗. Then,

(i) The functions vn,α, n = 0,1, . . . , and vα are lower semicontinuous on P(X), and
vn,α(z)→ vα(z) as n→∞, for all z ∈ P(X).

(ii) For any z ∈ P(X) and n= 0,1, . . . ,

vn+1, α(z) = min
a∈A

{
c̄(z, a) +α

∫
P(X)

vn,α(z′)q (dz′ |z, a)
}

= min
a∈A

{∫
X
c(x,a)z (dx)

+α

∫
X

∫
X

∫
Y
vt,α(H(z, a, y))Q (dy |a,x′)P (dx′ |x,a)z (dx)

}
, (52)
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where v0, α(z) = 0 for all z ∈ P(X), and the nonempty sets

An,α(z) :=
{
a∈A: vn+1, α(z) = c(z, a) +α

∫
P(X)

vn,α(z′)q (dz′ |z, a)
}
,

where z ∈ P(X), satisfy the following properties: (a) the graph Gr(An,α) = {(z, a): z ∈ P(X),
a ∈ An,α(z)}, n = 0,1, . . . , is a Borel subset of P(X)×A; and (b) if vn+1, α(z) =∞, then
An,α(z) = A, and if vn+1, α(z)<∞, then An,α(z) is compact.

(iii) For any N = 1,2, . . . , there exists a Markov optimal N -horizon policy (φ0, . . . , φN−1)
for the COMDP, and if for an N -horizon Markov policy (φ0, . . . , φN−1) the inclusions
φN−1−n(z)∈An,α(z), z ∈ P(X), n= 0, . . . ,N−1, hold, then this policy is N -horizon optimal.

(iv) For α∈ [0,1),

vα(z) = min
a∈A

{
c̄(z, a) +α

∫
P(X)

vα(z′)q (dz′ |z, a)
}

= min
a∈A

{∫
X
c(x,a)z (dx)

+α

∫
X

∫
X

∫
Y
vα(H(z, a, y))Q (dy |a,x′)P (dx′ |x,a)z (dx)

}
, z ∈ P(X),

and the nonempty sets

Aα(z) :=
{
a∈A: vα(z) = c̄(z, a) +α

∫
P(X)

vα(z′)q (dz′ |z, a)
}
, z ∈ P(X),

satisfy the following properties: (a) the graph Gr(Aα) = {(z, a): z ∈ P(X), a ∈ Aα(z)} is
a Borel subset of P(X) × A; and (b) if vα(z) =∞, then Aα(z) = A, and if vα(z) <∞,
then Aα(z) is compact.

(v) For an infinite horizon, there exists a stationary discount optimal policy φα for the
COMDP, and a stationary policy φ is optimal if and only if φ(z)∈Aα(z) for all z ∈ P(X).

(vi) If the function c is inf-compact, the functions vn,α, n = 1,2, . . . , and vα are inf-
compact on P(X).

Hernández-Lerma [38, Section 4.4] provided the following conditions for the existence of
optimal policies for the COMDP: (a) A is compact, (b) the cost function c is bounded and
continuous, (c) the transition probability P (· |x,a) and the observation kernel Q(· |a,x) are
weakly continuous transition kernels, and (d) there exists a weakly continuous H: P(X)×
A×Y→ P(X) satisfying (48). Consider the following relaxed version of assumption (d).

Assumption H (Feinberg et al. [36]). There exists a transition kernel H on X given P(X)×
A× Y satisfying (48) such that if a sequence {zn} ⊆ P(X) converges weakly to z ∈ P(X),
and {an} ⊆A converges to a∈A, n→∞, then there exists a subsequence {(znk , ank)}k≥1 ⊆
{(zn, an)}n≥1 such that

H(znk , ank , y) converges weakly to H(z, a, y) as k→∞,

and this convergence takes place R′(· |z, a) almost surely in y ∈Y.
The following theorem provides two sufficient conditions for weak continuity of q. State-

ment (ii) can be found in Hernández-Lerma [38, p. 90].

Theorem 6.3 (Feinberg et al. [36]). If the transition probability P (dx′ |x,a) is weakly
continuous, then each of the following two conditions implies weak continuity of the transi-
tion probability q from P(X)×A to P(X):

(i) The transition probability R′(dy |z, a) from P(X)×A to Y is setwise continuous, and
Assumption H holds.
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(ii) The transition probability Q(dy |a,x) from A×X to Y is weakly continuous, and there
exists a weakly continuous H: P(X)×A×Y→ P(X) satisfying (48).

Weak continuity of the transition probability P and continuity of the transition probabil-
ity Q in total variation imply that Assumption H holds, and this leads to the following
theorem.

Theorem 6.4 (Feinberg et al. [36]). Let the transition probability P (dx′ |x,a) from
X×A to X be weakly continuous, and let the transition probability Q(dy |a,x) from A×X to Y
be continuous in total variation. Then the transition probability R′(dy |z, a) from P(X)×A
to Y is setwise continuous, Assumption H holds, and the transition probability q from P(X)×A
to P(X) is weakly continuous.

The following theorem, which follows from Theorems 6.1–6.3, relaxes assumptions (a), (b),
and (d) in Hernández-Lerma [38, Section 4.4].

Theorem 6.5 (Feinberg et al. [36]). Under the following conditions,
(i) The cost function c is K-inf-compact.
(ii) Either

(a) the transition probability R′(dy |z, a) from P(X)×A to Y is setwise continuous and
Assumption H holds, or

(b) the transition probability Q(dy |a,x) from A × X to Y is weakly continuous and
there exists a weakly continuous H: P(X)×A×Y→ P(X) satisfying (48);

the COMDP (P(X),A, q, c̄) satisfies Assumption W∗, and therefore statements (i)–(vi) of
Theorem 6.2 hold.

Theorems 6.4 and 6.5 imply the following result.

Theorem 6.6 (Feinberg et al. [36]). Let Assumption W∗ hold, and let the transition
probability Q(dy |a,x) from A × X to Y be continuous in total variation. Then state-
ments (i)–(vi) of Theorem 6.2 hold.

Theorem 6.5 assumes either the weak continuity of H or Assumption H together with the
setwise continuity of R′. For some applications, including the inventory control applications
described in Section 7, the filtering kernel H satisfies Assumption H for some observations,
and it is weakly continuous for other observations. The following theorem is applicable to
such situations.

Theorem 6.7 (Feinberg et al. [36]). Let the observation space Y be partitioned into
two disjoint subsets Y1 and Y2 such that Y1 is open in Y. Suppose the following assump-
tions hold:

(i) The transition probabilities P to X from X× A to X and Q from A× X to Y are
weakly continuous.

(ii) The measure R′(· |z, a) on (Y2,B(Y2)) is setwise continuous in (z, a) ∈ P(X) × A;
that is, for every sequence {(zn, an)}n=1,2,... in P(X)×A converging to (z, a)∈ P(X)×A and
for every C ∈B(Y2), we have R′(C |zn, an)→R′(C |z, a).

(iii) There exists a transition probability H from P(X)×A×Y to X satisfying (48) such
that

(a) the transition probability H from P(X)×A×Y1 to X is weakly continuous; and
(b) Assumption H holds on Y2; that is, if a sequence {z(n)}n=1,2,... ⊆ P(X) converges

weakly to z ∈ P(X) and a sequence {a(n)}n=1,2,... ⊆A converges to a∈A, then there exists a
subsequence {(z(nk), a(nk))}k=1,2,... ⊆ {(z(n), a(n))}n=1,2,... and a measurable subset C of Y2
such that R′(Y2\C |z, a) = 0 and H(z(nk), a(nk), y) converges weakly to H(z, a, y), for all
y ∈C.
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Then the transition probability q from P(X)×A to P(X) is weakly continuous. If, in addition
to the above conditions, the cost function c is K-inf-compact, then the COMDP (P(X),A, q, c̄)
satisfies Assumption W∗, and therefore statements (i)–(iv) of Theorem 6.2 hold.

The following corollary follows from Theorem 6.7.

Corollary 6.8 (Feinberg et al. [36]). Let the observation space Y be partitioned into
two disjoint subsets Y1 and Y2 such that Y1 is open in Y and Y2 is countable. Suppose the
following assumptions hold:

(i) The transition probabilities P from X×A to X and Q from A×X to Y are weakly
continuous.

(ii) Q(y |a,x) is a continuous function on A×X for each y ∈Y2.
(iii) There exists a stochastic kernel H on X given P(X)×A×Y satisfying (48) such that

the stochastic kernel H on X given P(X)×A×Y1 is weakly continuous.
Then assumptions (ii) and (iiib) from Theorem 6.7 hold, and the transition probability q

from P(X)×A to P(X) is weakly continuous. If, in addition to the above conditions, the cost
function c is K-inf-compact, then the COMDP (P(X),A, q, c̄) satisfies Assumption W∗, and
therefore statements (i)–(vi) of Theorem 6.2 hold.

In conclusion of this section, we would like to mention another model of a controlled
Markov process with partial observations, in which the observation kernel Q is not defined
explicitly, and a state of the system consists of two parts: one part of the state is observable
and another one is not; see, e.g., Rhenius [48], Yushkevich [65], and Bäuerle and Rieder
[3, Chap. 5]. In Feinberg et al. [34, 36], such models were called Markov decision models with
incomplete information, and the most general known sufficient conditions for the existence
of optimal policies for such models with the expected total costs are provided in Feinberg
et al. [34, Theorem 6.2].

7. Inventory Control with Incomplete Information
Bensoussan et al. [8, 9] studied several inventory control problems for periodic-review sys-
tems, when the inventory manager (IM) may not have complete information about inventory
levels. In Bensoussan et al. [8, 9], a problem with backorders is considered. In the model
considered in Bensoussan et al. [8], the IM does not know the inventory level if it is non-
negative, and the IM knows the inventory level if it is negative. In the model considered in
Bensoussan et al. [9], the IM only knows whether the inventory level is negative or nonneg-
ative. In Bensoussan et al. [7], a problem with lost sales is studied where the IM only knows
whether a lost sale happened or not. The underlying mathematical analysis is summarized
in Bensoussan et al. [6], where additional references can be found. The analysis includes
transformations of density functions of demand distributions.

This section describes periodic-review systems with backorders and lost sales, when some
inventory levels are observable and some are not. The goal is to minimize the expected total
costs. Demand distributions may not have densities. This model is introduced in Feinberg
et al. [36, Section 8.2].

In the case of full observations, we model the problem as an MDP with the state space
X = R (the current inventory level), action space A = R (the ordered amount of inventory),
and action sets A(x) = A available at states x ∈X. If in a state x the amount of inventory
a is ordered, then the holding/backordering cost h(x), ordering cost C(a), and lost sale
cost G(x,a) are incurred, where it is assumed that h, C, and G are nonnegative lower
semicontinuous functions with values in R and C(a)→+∞ as |a| →∞. Observe that the one-
step cost function c(x,a) = h(x) +C(a) +G(x,a) is K-inf-compact on X×A. For problems
with backorders (no lost sales), usually G(x,a) = 0 for all x and a.

Let Dt, t= 1,2, . . . , be i.i.d. random variables with the distribution function FD, where Dt

is the demand at epoch t. The dynamics of the system are defined by xt+1 = F (xt, at,Dt+1),
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where xt is the current inventory level and at is the ordered (or scrapped) inventory at
epoch t= 0,1, . . . . For problems with backorders, F (xt, at,Dt+1) = xt + at −Dt+1, and for
problems with lost sales, F (xt, at,Dt+1) = (xt+at−Dt+1)+. In both cases, F is a continuous
function defined on R3. To simplify and unify the presentation, we do not assume X = [0,∞)
for models with lost sales. However, for problems with lost sales, it is assumed that the
initial state distribution p is concentrated on [0,∞), and this implies that states x < 0 will
never be visited. We assume that the distribution function FD is atomless (an equivalent
assumption is that the function FD is continuous). The state transition law P on X given
X×A is

P (B |x,a) =
∫

R
1{F (x,a, s)∈B}dFD(s), (53)

where B ∈ B(X), x ∈X, and a ∈A. Since we do not assume that demands are nonnegative,
this model also covers cash balancing problems and problems with returns; see Feinberg
and Lewis [25] and the references therein. In a particular case, when C(a) = +∞ for a < 0,
orders with negative sizes are infeasible, and, if an order is placed, the ordered amount of
inventory should be positive.

As mentioned above, some states (inventory levels) x∈X = R are observable and some are
not. Let the inventory be stored in containers. From a mathematical perspective, containers
are elements of a finite or countably infinite partition of X = R into disjoint convex sets,
and each of these sets is not a singleton. In other words, each container Bi+1 is an interval
(possibly open, closed, or semi-open) with ends di and di+1 such that −∞≤ di <di+1 ≤+∞,
and the union of these disjoint intervals is R. In addition, we assume that di+1− di ≥ γ for
some constant γ > 0 for all containers; that is, the sizes of all the containers are uniformly
bounded below by a positive number. We also follow the convention that the 0-inventory
level belongs to a container with end points d0 and d1, and a container with end points di
and di+1 is labeled as the (i+ 1)th container Bi+1. Thus, container B1 is the interval in the
partition containing point 0. The containers’ labels can be nonpositive. If there is a container
with the smallest (or largest) finite label n, then dn−1 =−∞ (or dn = +∞, respectively).
If there are containers with labels i and j, then there are containers with all the labels
between i and j. In addition, each container is either transparent or nontransparent. If the
inventory level xt belongs to a nontransparent container, the IM only knows which container
the inventory level belongs to. If an inventory level xt belongs to a transparent container,
the IM knows that the amount of inventory is exactly xt; see Figures 5–8.

For each nontransparent container with end points di and di+1, we fix an arbitrary point
bi+1 satisfying di < bi+1 <di+1. For example, it is possible to set bi+1 = 0.5di+0.5di+1, when

Figure 5. Example with known current inventory level.

0
Inventory level

Figure 6. Example with unknown current inventory level.

0
Inventory level

Figure 7. Example with known inventory levels and unknown backorder levels; the current inven-
tory level is positive.

0
Inventory level
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Figure 8. Example with inventory level 0 and current inventory level inside a nontransparent
container.

0

Inventory level

max{|di|, |di+1|} <∞. If an inventory level belongs to a nontransparent container Bi, the
IM observes yt = bi. Let L be the set of labels of the nontransparent containers. We set YL =
{bi: i∈L} and define the observation set Y = T∪YL, where T is the union of all transparent
containers Bi (transparent elements of the partition). If the observation yt belongs to a
transparent container (in this case, yt ∈ T), then the IM knows that the inventory level
xt = yt. If yt ∈ YL (in this case, yt = bi for some i), then the IM knows that the inventory level
belongs to the container Bi, and this container is nontransparent. Of course, the distribution
of this level can be computed.

Let ρ be the Euclidean distance on R: ρ(a, b) = |a− b| for a, b ∈ Y. On the state space
X = R, we consider the metric ρX(a, b) = |a− b|, if a and b belong to the same container,
and ρX(a, b) = |a− b|+ 1 otherwise, where a, b ∈ X. The space (X, ρX) is a Borel subset of
a Polish space (consisting of closed containers; that is, each finite point di is represented
by two points: one belonging to the container Bi and another one to the container Bi+1).
We notice that ρX(x(n), x)→ 0 as n→∞ if and only if |x(n) − x| → 0 as n→∞ and the
sequence {x(n)}n=N,N+1,... belongs to the same container as x for a sufficiently large N .
Thus, convergence on X in the metric ρX implies convergence in the Euclidean metric.
In addition, if x 6= di for all containers i, then ρX(x(n), x)→ 0 as n→∞ if and only if
|x(n) − x| → 0 as n→∞. Therefore, for any open set B in (X, ρX), the set B\(

⋃
i{di}) is

open in (X, ρ). We notice that each container Bi is an open and closed set in (X, ρX).
It is possible to show that the state transition law P given by (53) is weakly continuous

in (x,a) ∈ X×A. Set Ψ(x) = x if the inventory level x belongs to a transparent container,
and set Ψ(x) = bi if the inventory level belongs to a nontransparent container Bi with a
label i. As follows from the definition of the metric ρX, the function Ψ: (X, ρX)→ (Y, ρ) is
continuous. Therefore, the observation transition probabilities Q0 from X to Y and Q from
A × X to Y, Q0(C |x) := Q(C |a,x) := 1{Ψ(x) ∈ C}, C ∈ B(Y), a ∈ A, x ∈ X, are weakly
continuous.

If all the containers are nontransparent, the observation set Y = YL is countable, and
conditions of Corollary 6.8 hold with Y1 = ∅ and Y2 := Y. In particular, the function
Q(bi |a,x) = 1{x∈Bi} is continuous if the metric ρX is considered on X. If some containers
are transparent and some are not, the conditions of Corollary 6.8 hold too. To verify this,
we set Y1 := T and Y2 := YL, and note that Y2 is countable and the function Q(bi |x) =
1{x ∈ Bi} is continuous for each bi ∈ YL because Bi is open and closed in (X, ρX). Note
that H(B |z, a, y) = P (B |y, a) for any B ∈ B(X), C ∈ B(Y), z ∈ P(X), a ∈ A, and y ∈ T.
The kernel H is weakly continuous on P(X)×A×Y1. In addition, T =

⋃
iB

tr
i , where Btr

i

are transparent containers, is an open set in (X, ρX). Thus the POMDP (X, Y, A, P , Q, c)
satisfies the assumptions of Corollary 6.8. Thus, for the corresponding COMDP, there are
stationary optimal policies for infinite-horizon problems with total discounted costs, optimal
policies satisfy the optimality equations, and value iterations converge to the optimal value.

The models studied in Bensoussan et al. [7, 8, 9] correspond to the partition B1 = (−∞,0]
and B2 = (0,+∞), with the container B2 being nontransparent and with the container B1

being either nontransparent (backordered amounts are not known as in Bensoussan et al. [9])
or transparent (models with lost sales as in Bensoussan et al. [7], backorders are observable
as in Bensoussan et al. [8]). Note that, since FD is atomless, the probability that xt + at−
Dt+1 = 0 is 0, t= 0,1, . . . .
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The model provided in this subsection is applicable to other inventory control problems,
and the conclusions of Corollary 6.8 hold for them too. For example, consider a periodic-
review inventory system with backorders for which nonnegative inventory levels are known,
and when the inventory level is negative, it is known that there is a backorder but its
quantity is unknown. The partition consists of two containers: a nontransparent container
B0 = (−∞,0) and a transparent container B1 = [0,+∞).

8. Conclusions
The tutorial describes general sufficient conditions for the existence and characterization
of optimal policies for Markov decision processes with possibly infinite-state spaces and
unbounded action sets and costs. Expected total discounted-cost and average-cost criteria
are considered. The described conditions imply the existence of optimal Markov policies in
finite-horizon problems and the existence of optimal stationary policies for infinite-horizon
problems. They imply the validity of optimality equations, convergence of value iterations,
and continuity properties of value functions for discounted costs. They also imply the validity
of optimality inequalities for average costs per unit time.

For discounted costs, these conditions consist of two assumptions: the transition proba-
bilities are weakly continuous and the one-step cost function is K-inf-compact. These two
assumptions practically always hold for periodic-review stochastic inventory control prob-
lems. The K-inf-compactness property of one-step costs is weaker than inf-compactness,
which typically holds for cost functions for inventory control problems. One of the reasons
for the generality of the results is that their derivation is linked to a new maximum theorem,
which extends Berge’s maximum theorem to possibly noncompact action sets.

For average-cost MDPs, the single additional assumption is that the relative value function
is well defined. This assumption also holds for inventory control applications and can be
verified easily.

The tutorial also describes optimality conditions for partially observable Markov deci-
sion processes with total discounted costs. These conditions imply the existence of optimal
policies, validity of optimality equations, and convergence of value iterations. The results
are illustrated with inventory control models for which some of the inventory levels are not
observable.

The described results and methods are useful and insightful for investigating new and
existing inventory control problems. As an illustration, a complete classification of possible
solutions for the classic periodic-review stochastic single-product problem is described.
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Appendix. Berge’s Maximum Theorem for Noncompact Action Sets and Some
Properties of K-Inf-Compact Functions

This appendix describes generalizations of Berge’s maximum theorem and the relevant Berge the-
orem on semicontinuity of the value function to possibly noncompact action sets. These theorems
are important for control theory, games, and mathematical economics. The major limitation of
these theorems is that they require compact action sets. The generalizations provided in Feinberg
et al. [30, 32] remove this limitation. Here, we present these results for metric spaces. With slight
modifications, they hold for Hausdorff topological spaces (see Feinberg et al. [30]), but this level of
generality is not needed for the results of this tutorial. Local versions of the results presented in
this appendix can be found in Feinberg and Kasyanov [24].
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Let S1 and S2 be metric spaces, u: S1× S2→ R̄ = R∪{±∞}, and Φ: S1→ 2S2\{∅}. Consider an
optimization problem of the form

v(s1) := inf
s2∈Φ(s1)

u(s1, s2), for each s1 ∈ S1, (54)

which appears, for instance, in optimal control and game theory. Let K(S2) be the set of nonempty
compact subsets of S2. Berge’s theorem has the following formulation.

Berge’s Theorem (Berge [10, p. 116]). If u: S1×S2→ R̄ is a lower semicontinuous function
and Φ: S1→K(S2) is an upper semicontinuous, set-valued mapping, then the function v: S1→ R̄ is
lower semicontinuous.

The well-known Berge’s maximum theorem has the following formulation.

Berge’s Maximum Theorem (Berge [10, p. 116]). If u: S1× S2→R is a continuous func-
tion and Φ: S1 → K(S2) is a continuous set-valued mapping, then the value function v: S1 → R is
continuous, and the solution multifunction Φ∗: S1→ 2S2\{∅}, defined as

Φ∗(s1) =
{
s2 ∈Φ(s1): v(s1) = u(s1, s2)

}
, s1 ∈ S1, (55)

is upper semicontinuous and compact valued.

For an R̄-valued function f , defined on a nonempty subset U of a topological space U, consider
the level sets

Df (λ;U) = {y ∈U : f(y)≤ λ}, λ∈R.

We recall that a function f is called inf-compact (also sometimes called lower semicompact) on U
if all the level sets Df (λ;U) are compact. The following definition deals with the space U = S1×S2

and its subsets GrS1(Φ) and GrK(Φ).

Definition A.1 (Feinberg et al. [32, Definition 1.1]). A function u: S1 × S2→ R̄ is called
K-inf-compact on GrS1(Φ) if for every compact subset K of S1 this function is inf-compact
on GrK(Φ).

The following two theorems generalize Berge’s theorem and Berge’s maximum theorem, respec-
tively, to possibly noncompact action sets.

Theorem A.2 (Feinberg et al. [32, Theorem 1.2]). If the function u: S1×S2→ R̄ is K-inf-
compact on GrS1(Φ), then the function v: S1→ R̄ is lower semicontinuous.

Theorem A.2 (Feinberg et al. [30, Theorem 1.2]). Assume that
(i) Φ: S1→ 2S2\{∅} is lower semicontinuous.

(ii) u: S1× S2→R is K-inf-compact and upper semicontinuous on GrS1(Φ).
Then the value function v : S1→R is continuous, and the solution multifunction Φ∗: S1→K(S2)

is upper semicontinuous and compact valued.

The first statement of the following lemma implies that Theorems A.2 and A.3 are indeed gen-
eralizations of Berge’s theorem and Berge’s maximum theorem, respectively. The second statement
indicates that the class of K-inf-compact functions is broader than the class of inf-compact functions.

Lemma A.4 (Feinberg et al. [32, Lemma 2.1]). The following statements hold:
(i) If u: S1× S2→ R̄ is lower semicontinuous on GrS1(Φ) and Φ: S1→K(S2) is upper semicon-

tinuous, then the function u(·, ·) is K-inf-compact on GrS1(Φ).
(ii) If u: S1 × S2→ R̄ is inf-compact on GrS1(Φ), then the function u(·, ·) is K-inf-compact on

GrS1(Φ).

Luque-Vásquez and Hernández-Lerma [45] provided an example with S1 = R, S2 = Φ(s1) = [0,∞),
continuous Φ, and continuous u(s1, s2), which is inf-compact in s2, where v(s1) is not lower semi-
continuous. The following two lemmas indicate that K-inf-compactness of u is stronger than its
lower semicontinuity and inf-compactness in s2.

Lemma A.5 (Feinberg et al. [32, Lemma 2.2]). If u(·, ·) is a K-inf-compact function on
GrS1(Φ), then for every s1 ∈ S1, the function u(s1, ·) is inf-compact on Φ(s1).
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Lemma A.6 (Feinberg et al. [32, Lemma 2.3]). A K-inf-compact function u(·, ·) on GrS1(Φ)
is lower semicontinuous on GrS1(Φ).

The following lemma provides the necessary and sufficient condition for K-inf-compactness. This
condition is used in Assumption W∗ in Feinberg et al. [31] instead of equivalent Definition A.1.

Lemma A.7 (Feinberg et al. [32, Lemma 2.5]). The function u(·, ·) is K-inf-compact on
GrS1(Φ) if and only if the following two conditions hold:

(i) u(·, ·) is lower semicontinuous on GrS1(Φ).
(ii) If a sequence {s1

n}n=1,2,... with values in S1 converges and its limit s1 belongs to S1, then
any sequence {s2

n}n=1,2,... with s2
n ∈ Φ(s1

n), n= 1,2, . . . , satisfying the condition that the sequence
{u(s1

n, s
2
n)}n=1,2,... is bounded above has a limit point s2 ∈Φ(s1).
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[9] A. Bensoussan, M. Çakanyıldırım, S. P. Sethi, and R. Shi. An incomplete information inventory
model with presence of inventories or backorders as only observations. Journal of Optimization
Theory and Applications 146(3):544–580, 2010.

[10] C. Berge. Topological Spaces. Macmillan, New York, 1963.

[11] D. P. Bertsekas. Dynamic Programming and Optimal Control, 2nd ed. Vol. 1. Athena Scientific,
Belmont, MA, 2000.

[12] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time Case. Athena
Scientific, Belmont, MA, 1996.

[13] D. Beyer and S. P. Sethi. The classical average-cost inventory models of Iglehart and Veinott-
Wagner revisited. Journal of Optimization Theory and Applications 101(3):523–555, 1999.

[14] D. Blackwell. Discrete dynamic programming. Annals of Mathematical Statistics 33(2):
719–726, 1962.

[15] D. Blackwell. Discounted dynamic programming. Annals of Mathematical Statistics 36(1):
226–235, 1965.

[16] R. Cavazos-Cadena. A counterexample on the optimality equation in Markov decision chains
with the average cost criterion. Systems and Control Letters 16(5):387–392, 1991.

[17] X. Chen and D. Simchi-Levi. Coordinating inventory control and pricing strategies with ran-
dom demand and fixed ordering cost: The finite horizon case. Operations Research 52(6):
387–392, 2004.

[18] X. Chen and D. Simchi-Levi. Coordinating inventory control and pricing strategies with ran-
dom demand and fixed ordering cost: The infinite horizon case. Mathematics of Operations
Research 29(3):698–723, 2004.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

49
.1

09
.1

22
] 

on
 1

0 
N

ov
em

be
r 

20
16

, a
t 2

2:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Feinberg: Optimality Conditions for Inventory Control
Tutorials in Operations Research, c© 2016 INFORMS 43

[19] C. Derman. On sequential decisions and Markov chains. Management Science 9(1):16–24, 1962.

[20] C. Derman. Denumerable state Markovian decision processes. Annals of Mathematical Statis-
tics 37(6):1545–1553, 1966.

[21] E. B. Dynkin. Controlled random sequences. Theory of Probability and Its Applications 10(1):
1–14, 1965.

[22] E. B. Dynkin and A. A. Yushkevich. Controlled Markov Processes. Springer, New York, 1979.

[23] A. Federgruen and P. Zipkin. An inventory model with limited production capacity and uncer-
tain demands I. The average-cost criterion. Mathematics of Operations Research 11(2):193–207,
1986.

[24] E. A. Feinberg and P. O. Kasyanov. Continuity of minima: Local results. Set-Valued and Vari-
ational Analysis 23(3):485–499, 2015.

[25] E. A. Feinberg and M. E. Lewis. Optimality inequalities for average cost Markov decision
processes and the stochastic cash balance problem. Mathematics of Operations Research 32(4):
769–783, 2007.

[26] E. A. Feinberg and M. E. Lewis. On the convergence of optimal actions for Markov decision
processes and the optimality of (s,S) policies for inventory control. Preprint arXiv:1507.05125,
http://arxiv.org/pdf/1507.05125.pdf, 2015.

[27] E. A. Feinberg and Y. Liang. On the optimality equation for average cost Markov
decision processes and its validity for inventory control. Preprint arXiv:1609.03984,
http://arxiv.org/pdf/1609.08252.pdf, 2016.

[28] E. A. Feinberg and Y. Liang. Structure of optimal solutions to periodic-review total-cost inven-
tory control problems. Preprint arXiv:1609.03984, http://arxiv.org/pdf/1609.03984.pdf, 2016.

[29] E. A. Feinberg and A. Shwartz, eds. Handbook of Markov Decision Processes: Methods and
Applications. Kluwer, Boston, 2002.

[30] E. A. Feinberg, P. O. Kasyanov, and M. Voorneveld. Berge’s maximum theorem for noncompact
image sets. Journal of Mathematical Analysis and Applications 413(2):1040–1046, 2014.

[31] E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk. Average cost Markov decision pro-
cesses with weakly continuous transition probabilities. Mathematics of Operations Research
37(4):591–607, 2012.

[32] E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk. Berge’s theorem for noncompact
image sets. Journal of Mathematical Analysis and Applications 37(1):255–259, 2013.

[33] E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk. Fatou’s lemma for weakly converging
probabilities. Theory of Probability and Its Applications 58(4):683–689, 2014.

[34] E. A. Feinberg, P. O. Kasyanov, and M. Z. Zgurovsky. Convergence of probability measures
and Markov decision models with incomplete information. Proceedings of the Steklov Institute
of Mathematics 287(1):96–117, 2014.

[35] E. A. Feinberg, P. O. Kasyanov, and M. Z. Zgurovsky. Uniform Fatou’s lemma. Journal of
Mathematical Analysis and Applications 444(1):550–567, 2016.

[36] E. A. Feinberg, P. O. Kasyanov, and M. Z. Zgurovsky. Partially observable total-cost Markov
decision processes with weakly continuous transition probabilities. Mathematics of Operations
Research 41(2):656–681, 2016.

[37] H.-J. Girlich and A. Chikán. The origins of dynamic inventory modelling under uncertainty:
(The men, their work and connection with the Stanford Studies). International Journal of
Production Economics 71(1–3):351–363, 2001.

[38] O. Hernández-Lerma. Adaptive Markov Control Processes. Springer, New York, 1989.

[39] O. Hernández-Lerma. Average optimality in dynamic programming on Borel spaces—Un-
bounded costs and controls. Systems and Control Letters 17(5):237–242, 1991.

[40] O. Hernández-Lerma and J. B. Lasserre. Discrete-Time Markov Control Processes: Basic Opti-
mality Criteria. Springer, New York, 1996.

[41] O. Hernández-Lerma and J. B. Lasserre. Further Topics on Discrete-Time Markov Control
Processes. Springer, New York, 1999.

[42] D. P. Heyman and M. J. Sobel. Stochastic Models in Operations Research, Vol. II. McGraw-Hill,
New York, 1984.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

49
.1

09
.1

22
] 

on
 1

0 
N

ov
em

be
r 

20
16

, a
t 2

2:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://arxiv.org/pdf/1507.05125.pdf
http://arxiv.org/pdf/1609.08252.pdf
http://arxiv.org/pdf/1609.03984.pdf


Feinberg: Optimality Conditions for Inventory Control
44 Tutorials in Operations Research, c© 2016 INFORMS

[43] W. T. Huh, G. Janakiraman, and M. Nagarajan. Average cost single-stage inventory models:
An analysis using a vanishing discount approach. Operations Research 59(1):143–155, 2011.

[44] D. L. Iglehart. Dynamic programming and stationary analysis of inventory problems. H. Scarf,
D. Gilford, and M. Shelly, eds. Multistage Inventory Models and Techniques. Stanford Univer-
sity Press, Stanford, CA, 1-31, 1963.

[45] F. Luque-Vásques and O. Hernández-Lerma. A counterexample on the semicontinuity of min-
ima. Proceedings of the American Mathematical Society 123(10):3175–3176, 1995.

[46] E. Porteus. Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford,
CA, 2002.

[47] M. L. Puterman. Markov Decision Processes. John Wiley & Sons, Hoboken, NJ, 2005.
[48] D. Rhenius. Incomplete information in Markovian decision models. Annals of Statistics 2(6):

1327–1334, 1974.
[49] S. M. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, New York,

1983.
[50] H. Scarf. The optimality of (s,S) policies in the dynamic inventory problem. K. Arrow,

S. Karlin, and P. Suppes, eds. Mathematical Methods in the Social Sciences. Stanford University
Press, Stanford, CA, 196–202, 1959.

[51] M. Schäl. Conditions for optimality in dynamic programming and for the limit of n-stage
optimal policies to be optimal. Zeitschrift fr Wahrscheinlichkeitstheorie und Verwandte Gebiete
32(3):179–196, 1975.

[52] M. Schäl. Average optimality in dynamic programming with general state space. Mathematics
of Operations Research 18(1):163–172, 1993.

[53] L. I. Sennott. A new condition for the existence of optimal stationary policies in average cost
Markov decision processes. Operations Research Letters 5(1):17–23, 1986.

[54] L. I. Sennott. Stochastic Dynamic Programming and the Control of Queueing Systems. John
Wiley & Sons, New York, 1999.

[55] L. I. Sennott. Average reward optimization theory for denumerable state spaces. E. A. Feinberg
and A. Shwartz, eds. Handbook of Markov Decision Processes: Methods and Applications.
Kluwer, Boston, 153–172, 2002.

[56] C. Shaoxiang. The infinite horizon periodic review problem with setup costs and capacity con-
straints: A partial characterization of the optimal policy. Operations Research 52(3): 409–421,
2004.

[57] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the United
States of America 39(10):1095–1100, 1953.

[58] A. N. Shiryaev. Some new results in the theory of controlled random processes. Selected Trans-
lations in Mathematical Statistics and Probability 8(6):49–130, 1969.

[59] D. Simchi-Levi, X. Chen, and J. Bramel. The Logic of Logistics: Theory, Algorithms, and
Applications for Logistics and Supply Chain Management. Springer, New York, 2005.

[60] R. Strauch. Negative dynamic programming. Ann. Math. Statist. 37(4):871–890, 1966.
[61] C. Striebel. Optimal Control for Discrete Time Stochastic Systems. Springer-Verlag, Berlin,

1975.
[62] H. M. Taylor III. Markovian sequential replacement processes. Annals of Mathematical Statis-

tics 36(4):1677–1694, 1965.
[63] A. F. Veinott. On the optimality of (s,S) inventory policies: New conditions and new proof.

SIAM Journal on Applied Mathematics 14(5):1067–1083, 1966.
[64] A. F. Veinott and H. M. Wagner. Computing optimal (s,S) policies. Management Science

11(5):525–552, 1965.
[65] A. A. Yushkevich. Reduction of a controlled Markov model with incomplete data to a problem

with complete information in the case of Borel state and control spaces. Theory of Probability
and Its Applications 21(1):153–158, 1976.

[66] E. Zabel. A note on the optimality of (S, s) policies in inventory theory. Management Science
9(1):123–125, 1962.

[67] Y. Zheng. A simple proof for the optimality of (s,S) policies in infinite horizon inventory
systems. Journal of Applied Probability, 28(4):802–810, 1991.

[68] P. H. Zipkin. Foundations of Inventory Management. McGraw-Hill, New York, 2000.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

49
.1

09
.1

22
] 

on
 1

0 
N

ov
em

be
r 

20
16

, a
t 2

2:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


