Summary on normal distribution

1. The Normal Distribution

(a) The normal distribution with mean μ and variance σ^2: $X \sim N(\mu, \sigma^2)$

(b) The standard normal distribution: $X - \mu \sigma = Z \sim N(0, 1)$

i. The distribution curve is bell-shape.

ii. Use the standard normal table of $P(Z < z)$

iii. Z is symmetric about 0: $P(Z < z) = 1 - P(Z < -z)$

iv. $P(Z < -z) = P(Z > z)$

v. Standard normal percentiles and critical values:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>90</th>
<th>95</th>
<th>97.5</th>
<th>99</th>
<th>99.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>.1</td>
<td>.05</td>
<td>.025</td>
<td>.01</td>
<td>.005</td>
</tr>
<tr>
<td>z_α</td>
<td>1.28</td>
<td>1.645</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>

vi. Values of $z_{\alpha/2}$:

| $1 - \alpha$ | .80 | .90 | .95 | .98 | .99 |
| $z_{\alpha/2}$ | 1.28| 1.645| 1.96 | 2.33| 2.58 |

2. The Normal Approximation to the Binomial Distribution

If $X \sim Bin(n, p)$ with large n, then $Z = \frac{X - np}{\sqrt{np(1-p)}}$ is approximately standard normal.

(a) Type of the Problems

A discrete random variable X is involved. $X \sim Bin(n, p)$. Probability is required. Typically n is large, $np \geq 5$, $n(1-p) \geq 5$: approximation is appropriate.

(b) Method of approximation

Step 1 $\mu = np$, $\sigma^2 = np(1-p)$

Step 2 Use $N(\mu, \sigma^2) = N(np, np(1-p))$

Step 3 Remember to use continuity correction.

i. $P(X = 3) = P\left(\frac{3.5-\mu}{\sigma} \leq Z \leq \frac{3.5-\mu}{\sigma}\right)$

ii. $P(X < 3) = P(Z \leq \frac{3.5-\mu}{\sigma})$

iii. $P(X \leq 3) = P(Z \leq \frac{3.5-\mu}{\sigma})$

iv. $P(X > 3) = P(Z \geq \frac{3.5-\mu}{\sigma})$

v. $P(X \geq 3) = P(Z \geq \frac{3.5-\mu}{\sigma})$

Example: $P(0 < X \leq 3) = P\left(\frac{3.5-\mu}{\sigma} \leq Z \leq \frac{3.5-\mu}{\sigma}\right)$
3. Sampling Distributions

(a) The r.v.’s X_1, X_2, \ldots, X_n are a random sample (iid) of size n if
i. X_1, X_2, \ldots, X_n are independent.
ii. Every X_i has the same probability distribution.

(b) Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and standard deviation σ, then
i. $\text{E}(\overline{X}) = \mu$
ii. $\text{Var}(\overline{X}) = \sigma^2/n$ and $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

(c) Let X_1, X_2, \ldots, X_n be a random sample from any distribution with mean μ and variance σ^2. Then for large n ($n \geq 30$),
\begin{enumerate}
 \item \overline{X} is approximately $N(\mu, \sigma^2/n)$
 \item Central Limit Theorem (CLT):
 \[Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \text{ is approximately } N(0, 1) \]
\end{enumerate}

(d) For unknown σ

If X_1, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, and $S^2 = \sum_{i=1}^{n} (X_i - \overline{X})^2/(n-1)$, then
\[T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1} \]

Example

Review on Sampling Distribution of the Mean

i. Type of the Problems
 (Population) mean μ and standard deviation σ of a random variable X is given. Then it asks for probability concerning the sample mean \overline{X}. (In some problems, probability of sum is required).

ii. II. Method
 A. If $X \sim N(\mu, \sigma^2)$, $\overline{X} \sim N(\mu, \sigma^2/n)$, $n \geq 1$
 B. If X is not normal, $\overline{X} \simeq N(\mu, \sigma^2/n)$, $n \geq 30$

iii. In any case, we calculate probability using $N(\mu, \sigma^2/n)$.
 Do not use continuity correction.
 Eg. X has mean $\mu = 5$, standard deviation $\sigma = 20$, $n = 100$.
 \overline{X} is approximately $N(\mu, \sigma^2/n) = N(5, 4)$.
 Hence $P(\overline{X} > 6) = P(Z > \frac{6-5}{2}) = P(Z > .5) = .3085$.

2