AMS501: Differential Equations and Boundary Value Problems I
Lecture 17: Local Behavior Near Ordinary Points

Xiangmin Jiao

SUNY Stony Brook
Outline

1. Solution Near an Ordinary Point
2. Translated Series Solutions
3. Types of Recurrence Relations
4. The Legendre Equation
Solution Near an Ordinary Point

Theorem

Suppose that a is an ordinary point of equation

\[y'' + P(x)y' + Q(x)y = 0, \]

then the equation has two linearly independent solutions, each of the form

\[y(x) = \sum_{n=0}^{\infty} c_n(x - a)^n. \]

The radius of convergence of any such series solution is at least as large as the distance from a to the nearest (real or complex) singular point of the ODE.
Series solutions can be used to solve initial value problems.

Example

Find the general solution in powers of x of

$$(x^2 - 4)y'' + 3xy' + y = 0.$$

Then find the particular solution with $y(0) = 4$, $y'(0) = 1.$
Solution of Example 1

Solution: The only singular points of the equation is $x = \pm 2$, so the series will have radius of convergence at least 2.

We make the usual substitution

$$y = \sum_{n=0}^{\infty} c_n x^n, \quad y' = \sum_{n=1}^{\infty} n c_n x^{n-1}, \quad y'' = \sum_{n=2}^{\infty} n(n-1) c_n x^{n-2},$$

and obtain

$$\sum_{n=2}^{\infty} n(n-1) c_n x^n - 4 \underbrace{\sum_{n=2}^{\infty} n(n-1) c_n x^{n-2}}_{= \sum_{n=0}^{\infty} n(n-1) c_n x^n} + 3 \underbrace{\sum_{n=1}^{\infty} n c_n x^n + \sum_{n=0}^{\infty} c_n x^n}_{\sum_{n=0}^{\infty} n c_n x^n} = 0.$$
Solution of Example 1 Cont’d

After shifting the index of summation, we obtain

\[\sum_{n=0}^{\infty} \left[(n^2 + 2n + 1)c_n - 4(n + 2)(n + 1)c_{n+2} \right] x^n = 0. \]

The identity principle yields

\[(n + 1)^2 c_n - 4(n + 2)(n + 1)c_{n+2} = 0, \]

which leads to the recurrence relation

\[c_{n+2} = \frac{n + 1}{4(n + 2)} c_n \]

for \(n \geq 0 \).
With \(n = 0, 2, \) and \(4 \) in turn, we get

\[
c_2 = \frac{c_0}{4 \cdot 2}, \quad c_4 = \frac{3c_2}{4 \cdot 4} = \frac{3c_0}{4^2 \cdot 2 \cdot 4}, \quad \text{and} \quad c_6 = \frac{5c_4}{4 \cdot 6} = \frac{3 \cdot 5c_0}{4^3 \cdot 2 \cdot 4 \cdot 6}.
\]

Continuing in this fashion, we evidently would find that

\[
c_{2n} = \frac{3 \cdot 5 \cdots (2n - 1)}{4^n \cdot 2 \cdot 4 \cdot 6 \cdots (2n)} c_0 = \frac{3 \cdot 5 \cdots (2n - 1)}{2^{3n} \cdot 1 \cdot 2 \cdot 3 \cdots n} c_0.
\]

Use the notation of double factorial

\[
(2n + 1)!! = 1 \cdot 3 \cdot 5 \cdots (2n + 1) = \frac{(2n + 1)!}{2^n n!},
\]

we obtain

\[
c_{2n} = \frac{(2n - 1)!!}{2^{3m} \cdot n!} c_0.
\]
Solution of Example 1 Cont’d

With \(n = 1, 3, \) and \(5, \) we get

\[
\begin{align*}
c_3 &= \frac{2c_1}{4 \cdot 3}, \\
c_5 &= \frac{4c_3}{4 \cdot 5} = \frac{2 \cdot 4c_1}{4^2 \cdot 3 \cdot 5}, \quad \text{and} \\
c_7 &= \frac{6c_5}{4^2 \cdot 7} = \frac{2 \cdot 4 \cdot 6c_1}{4^3 \cdot 3 \cdot 5 \cdot 7}.
\end{align*}
\]

It is apparent that the pattern is

\[
c_{2n+1} = \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{4^n \cdot 3 \cdot 5 \cdots (2n+1)} c_1 = \frac{n!}{2^n \cdot (2n+1)!!} c_1.
\]

The general solution is therefore

\[
y(x) = c_0 \left(1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{2^{3m} \cdot n!} x^{2n}\right) + c_1 \left(x + \sum_{n=1}^{\infty} \frac{n!}{2^n \cdot (2n+1)!!} x^{2n+1}\right)
\]

\[
= c_0 \left(1 + \frac{1}{8} x^2 + \frac{3}{128} x^4 + \frac{5}{1024} x^6 + \cdots \right) + c_1 \left(x + \frac{1}{6} x^3 + \frac{1}{30} x^5 + \frac{1}{140} x^7 + \cdots \right)
\]
Solution of Example 1 Cont’d

Because \(y(0) = c_0 \) and \(y'(0) = c_1 \), the given initial conditions imply that \(c_0 = 4 \) and \(c_1 = 1 \). Therefore, the first few terms of the particular solution are

\[
y(x) = 4 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{3}{32}x^4 + \frac{1}{30}x^5 + \cdots
\]

Note that in the above, \(y_0(x) = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{2^{3m}.n!} x^{2n} \) is the particular solution for the DE with initial-value conditions \(y_0(0) = 1 \) and \(y_0'(0) = 0 \), and \(y_1(x) = x + \sum_{n=1}^{\infty} \frac{n!}{2^n.(2n+1)!!} x^{2n+1} \) is the particular solution for the DE with initial-value conditions \(y_1(0) = 0 \) and \(y_1'(0) = 1 \). \(y_0 \) and \(y_1 \) are linearly independent, so the general solution can be expressed as \(y = c_0y_0 + c_1y_1 \).
Outline

1 Solution Near an Ordinary Point

2 Translated Series Solutions

3 Types of Recurrence Relations

4 The Legendre Equation
If we need to seek a particular solution with given initial values \(y(a) \) and \(y'(a) \), we would have needed the general solution in the form

\[
y(x) = \sum_{n=0}^{\infty} c_n (x - a)^n,
\]

that is, in power of \((x - a)\) rather than in power of \(x\).

The initial conditions \(y(a) = c_0 \) and \(y'(a) = c_1 \) determine the arbitrary constants \(c_0 \) and \(c_1 \).

Example

Solve the initial value problem

\[
(t^2 - 2t - 3)y'' + 3(t - 1)y' + y = 0; \quad y(1) = 4, \quad y'(1) = 1.
\]
Solution of Example 2

Solution: We need a general solution of form

\[y(t) = \sum_{n=0}^{\infty} c_n (t - 1)^n. \]

It simplifies the computation to make the substitution \(x = t - 1 \), so that the series form would be \(\sum_{n=0}^{\infty} c_n x^n \).

Since \(t^2 - 2t - 3 = (t - 1)^2 - 4 \), so the DE becomes

\[(x^2 - 4)y'' + 3xy' + 4 = 0, \]

with initial conditions \(y(x = 0) = 4 \) and \(y'(x = 0) = 1 \).

The general solution of this DE is

\[y(x) = c_0 \left(1 + \frac{1}{8}x^2 + \frac{3}{128}x^4 + \frac{5}{1024}x^6 + \cdots \right) \\
+ c_1 \left(x + \frac{1}{6}x^3 + \frac{1}{30}x^5 + \frac{1}{140}x^7 + \cdots \right), \]
Solution of Example 2 Cont’d

The desired particular solution is

\[y(t) = 4 \left(1 + \frac{1}{8}(t - 1)^2 + \frac{3}{128}(t - 1)^4 + \frac{5}{1024}(t - 1)^6 + \cdots \right) \]

\[+ 1 \left((t - 1) + \frac{1}{6}(t - 1)^3 + \frac{1}{30}(t - 1)^5 + \frac{1}{140}(t - 1)^7 + \cdots \right) \]

\[= 4 + (t - 1) + \frac{1}{2}(t - 1)^2 + \frac{1}{6}(t - 1)^3 + \frac{3}{32}(t - 1)^4 + \frac{1}{30}(t - 1)^5 + \cdots \]

This series converges if \(-1 < t < 3\). A series such as this can be used to estimate numerical values of the solution. For example,

\[y(0.8) = 4 + (-0.2) + \frac{1}{2}(-0.2)^2 + \frac{1}{6}(-0.2)^3 + \frac{3}{32}(-0.2)^4 + \cdots \]

\[\approx 3.8188 \]
Outline

1. Solution Near an Ordinary Point
2. Translated Series Solutions
3. Types of Recurrence Relations
4. The Legendre Equation
The formula $c_{n+2} = \frac{n+1}{4(n+2)} c_n$ has **two-term** recurrence relations: it expresses each coefficient in terms of one of the preceding coefficients.

A **many-term** recurrence relation expresses each coefficient in the series in terms of two or more preceding coefficients.

Many-term recurrence may be inconvenient or even impossible to find a formula for c_n in terms of n, but three-term recurrence relationship is sometimes manageable.

Example

Find two linearly independent solutions of

$$y'' - xy' - x^2 y = 0.$$
Solution of Example 3

Solution: We make the usual substitution of the power series and obtain the equation

\[
\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=1}^{\infty} nc_n x^n - \sum_{n=0}^{\infty} c_n x^{n+2} = 0.
\]

\[
= 2c_2 + 6c_3 x + \sum_{n=2}^{\infty} (n+2)(n+1)c_{n+2} x^n = c_1 x + \sum_{n=2}^{\infty} nc_n x^n = \sum_{n=2}^{\infty} c_{n-2} x^n
\]

\[
2c_2 + 6c_3 x - c_1 x + \sum_{n=2}^{\infty} [(n+2)(n+1)c_{n+2} - nc_n - c_{n-2}] x^n = 0.
\]

Therefore,

\[
c_2 = 0,
\]

\[
c_3 = \frac{1}{6} c_1
\]

\[
c_{n+2} = \frac{nc_n + c_{n-2}}{(n+2)(n+1)}
\]

for \(n \geq 2 \).
Solution of Example 3 Cont’d

In particular,

\[c_4 = \frac{2c_2 + c_0}{12}, \quad c_5 = \frac{3c_3 + c_1}{20}, \quad c_6 = \frac{4c_4 + c_2}{30}, \]
\[c_7 = \frac{5c_5 + c_3}{42}, \quad c_8 = \frac{6c_6 + c_4}{56}. \]

Since \(c_2 = 0 \) and \(c_3 = \frac{1}{6} c_1 \), all the coefficients are given in terms of arbitrary constants \(c_0 \) and \(c_1 \).

To obtain first solution \(y_1 \), let \(c_0 = 1 \) and \(c_1 = 0 \), so that \(c_2 = c_3 = 0 \). Then

\[c_4 = \frac{1}{12}, \quad c_5 = 0, \quad c_6 = \frac{1}{90}, \quad c_7 = 0, \quad c_8 = \frac{3}{1120} \]

and thus

\[y_1(x) = 1 + \frac{1}{12}x^4 + \frac{1}{90}x^6 + \frac{3}{1120}x^8 + \cdots \]

which contains only even degree terms because \(c_1 = c_3 = 0 \).
To obtain second solution y_2, let $c_0 = 0$ and $c_1 = 1$, so that $c_2 = 0$ and $c_3 = 1/6$. Then,

$$c_4 = 0, \quad c_5 = \frac{3}{40}, \quad c_6 = 0, \quad c_7 = \frac{13}{1008}$$

and thus

$$y_2(x) = x + \frac{1}{6} x^3 + \frac{3}{40} x^5 + \frac{13}{1008} x^7 + \cdots$$

which contains only odd degree terms because $c_0 = c_2 = 0$. The solutions y_1 and y_2 are linearly independent. A general solution is a linear combination of the power series y_1 and y_2. There is no singular point, so the power series converge for all x. ■
Outline

1. Solution Near an Ordinary Point
2. Translated Series Solutions
3. Types of Recurrence Relations
4. The Legendre Equation
The Legendre equation of order α is the second-order linear DE

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0,$$

where α is a real number and $\alpha > -1$.

It has applications in numerical integration formulas and in determining the steady-state temperature in a solid spherical ball with temperature at boundary points are known.

The only singular points are $x = \pm 1$, so it has two linearly independent solutions that can be expressed as power series in powers of x with radius of convergence at least 1.
Solution of Legendre Equation

- The substitution \(y = \sum_{m=0}^{\infty} c_m x^m \) leads to

\[
c_{m+2} = -\frac{(\alpha - m)(\alpha + m + 1)}{(m + 1)(m + 2)} c_m
\]

for \(m \geq 0 \). (Here we use \(m \) as the index of summation because \(n \) will play another role.)

- In terms of arbitrary constants \(c_0 \) and \(c_1 \), we have

\[
c_2 = -\frac{\alpha(\alpha + 1)}{2!} c_0
\]

\[
c_3 = -\frac{(\alpha - 1)(\alpha + 2)}{3!} c_1
\]

\[
c_4 = \frac{\alpha(\alpha - 2)(\alpha + 1)(\alpha + 3)}{4!} c_0
\]

\[
c_5 = \frac{(\alpha - 1)(\alpha - 3)(\alpha + 2)(\alpha + 4)}{5!} c_1.
\]
Solution of Legendre Equation Cont’d

By induction, it can be shown that

\[c_{2m} = (-1)^m \frac{\alpha(\alpha - 2)(\alpha - 4) \cdots (\alpha - 2m + 2)(\alpha + 1)(\alpha + 3) \cdots (\alpha + 2m - 1)}{(2m)!} c_0 \]

and

\[c_{2m+1} = (-1)^m \frac{(\alpha - 1)(\alpha - 3) \cdots (\alpha - 2m + 1)(\alpha + 2)(\alpha + 4) \cdots (\alpha + 2m)}{(2m + 1)!} c_0. \]

Therefore, we get two linearly independent power series solutions

\[y_1 = c_0 \sum_{m=0}^{\infty} (-1)^m a_{2m} x^{2m} \quad \text{and} \quad y_2 = c_1 \sum_{m=0}^{\infty} (-1)^m a_{2m+1} x^{2m+1} \]

of Legendre’s equation of order \(\alpha \).
Suppose $\alpha = n$ is a nonnegative integer.

- If $\alpha = n$ is even, then $a_{2m} = 0$ when $2m > n$. So y_1 is a polynomial of degree n, and y_2 is an infinite series.
- If $\alpha = n$ is odd, then $a_{2m+1} = 0$ when $2m + 1 > n$. In this case, y_2 is polynomial of degree n and y_1 is an infinite series.

By properly choosing c_0 (if n is even) and c_1 (if n is odd), we get a sequence of nth degree polynomials called Legendre polynomials

$$P_n(x) = \sum_{k=0}^{[n/2]} \frac{(-1)^k(2n - 2k)!}{2^n k!(n-k)!(n-2k)!} x^{n-2k}.$$
Legendre Polynomials

- First six Legendre polynomials are

\[P_0(x) \equiv 1, \quad P_1(x) = x \]
\[P_2(x) = \frac{1}{2}(3x^2 - 1), \quad P_3(x) = \frac{1}{2}(5x^3 - 3x), \]
\[P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3), \quad P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x). \]

- Legendre polynomials are orthogonal to each other over \([-1, 1]\), in that

\[
\int_{-1}^{1} P_i(x)P_j(x) \, dx = 0
\]

if \(i \neq j \).