AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)
 Lecture 2: Algorithmic Consideration; Orthogonality

Xiangmin Jiao

Stony Brook University

Outline

(1) Algorithmic Considerations (MC §1.2)
(2) Orthogonal Vectors and Matrices (NLA §2)

Algorithms for Matrix-Vector Multiplication

- Suppose $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$
- MATLAB-style code for $b=A x$:

Row oriented
for $i=1: m$
$b(i)=0$ for $j=1: n$
$b(i)=b(i)+A(i, j) * x(j)$ end
end

Column oriented
$b(:)=0$
for $j=1: n$
for $i=1: m$
$b(i)=b(i)+A(i, j) * x(j)$
end
end

- Number of operations is $O(\mathrm{mn})$, but big-Oh notation is insufficient
- Number of operations is 2 mn : coefficient of leading-order term is important for comparison

Flop Count

- It is important to assess efficiency of algorithms. But how?
- We could implement different algorithms and do direct comparison, but implementation details can affect true performance
- We could estimate cost of all operations, but it is very tedious
- Relatively simple and effective approach is to estimate amount of floating-point operations, or "flops", and focus on asymptotic analysis as sizes of matrices approach infinity
- Idealization
- Count each operation $+,-, *, /$, and $\sqrt{ }$ as one flop
- This estimation is crude, as it omits data movement in memory, which is non-negligible on modern computer architectures (e.g., different loop orders can affect cache performance)
- Matrix-vector product requires about $2 m n$ flops
- Suppose $m=n$, it takes quadratic time in n, or $O\left(n^{2}\right)$

Algorithms for Saxpy: Scalar a x plus y

- Saxpy computes $a x+y$ and updates y

$$
y=a x+y \Rightarrow y_{i}=a x_{i}+y_{i}
$$

- Suppose $x, y \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$

```
MATLAB-style code
for }i=1:
    y(i)=y(i)+a*x(i)
end
```

- Number of flops is $2 n$
- Pseudo-code cannot run on any computer, but are human readable and straightforward to convert into real codes in any programming language (e.g., C, FORTRAN, MATLAB, etc.)
- We use pseudo-code on slides for conciseness

Gaxpy: Generalized saxpy

- Computes $y=y+A x$, where $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$

Row oriented
for $i=1: m$
for $j=1: n$

$$
y_{i}=y_{i}+a_{i j} x_{j}
$$

Column oriented
for $j=1$: n for $i=1: m$
$y_{i}=y_{i}+a_{i j} x_{j}$

- Inner loop of column-oriented algorithm can be converted to $y=y+x_{j} a_{:, j}$
- Number of flops is $2 m n$

Matrix Multiplication Update

- Computes $C=C+A B$, where $A \in \mathbb{R}^{m \times r}, B \in \mathbb{R}^{r \times n}$, and $C \in \mathbb{R}^{m \times n}$

$$
c_{i j}=c_{i j}+\sum_{k=1}^{r} a_{i k} b_{k j}
$$

$$
\begin{aligned}
& \text { for } i=1: m \\
& \qquad \text { for } j=1: n \\
& \quad \text { for } k=1: r \\
& c_{i j}=c_{i j}+a_{i k} b_{k j}
\end{aligned}
$$

- The operation further generalizes Gaxpy
- Number of flops is 2 mmr
- In BLAS (Basic Linear Algebra Subroutines), functions are grouped into level-1, 2, and 3, depending on whether complexity is linear, quadratic, or cubic

Six Variants of Algorithms

- There are six variants depending on permutation of i, j, and k :

$$
i j k, \quad j i k, \quad i k j, \quad j k i, \quad k i j, \quad k j i
$$

- Inner product version: $c_{i j}=c_{i j}+a_{i,}: b_{j}$

$$
\begin{aligned}
& \text { for } i=1: m \\
& \quad \text { for } j=1: n \\
& \quad c_{i j}=c_{i j}+a_{i,:} b_{j}
\end{aligned}
$$

- Saxpy version: computes as $c_{j}=c_{j}+A b_{j}$

$$
\text { for } \begin{aligned}
j & =1: n \\
c_{j} & =c_{j}+A b_{j}
\end{aligned}
$$

- Outer product version: computes as $C=C+\sum_{k=1}^{r} a_{k} b_{:, k}$

$$
\text { for } \begin{aligned}
k & =1: r \\
C & =C+a_{k} b_{:, k}
\end{aligned}
$$

Outline

(1) Algorithmic Considerations (MC §1.2)

(2) Orthogonal Vectors and Matrices (NLA §2)

Inner Product

- Euclidean length of u is square root of inner product of u with itself, i.e., $\sqrt{u^{T} u}$
- Inner product of two unit vectors u and v is cosine of angle α between u and v, i.e., $\cos \alpha=u^{T} v$
- Inner product is bilinear, in the sense that it is linear in each vertex separately:

$$
\begin{aligned}
\left(u_{1}+u_{2}\right)^{T} v & =u_{1}^{T} v+u_{2}^{T} v \\
u^{T}\left(v_{1}+v_{2}\right) & =u^{T} v_{1}+u^{T} v_{2} \\
(\alpha u)^{T}(\beta v) & =\alpha \beta u^{T} v
\end{aligned}
$$

Orthogonal Vectors

Definition

A pair of vectors are orthogonal if $x^{\top} y=0$.
In other words, angle between them is 90 degrees

Definition

Two sets of vectors X and Y are orthogonal if every $x \in X$ is orthogonal to every $y \in Y$.

- Subspace S^{\perp} is orthogonal complement of S if they are orthogonal and complementary subspaces
- For $A \in \mathbb{R}^{m \times n}$, null (A) is orthogonal complement of range $\left(A^{T}\right)$

Definition

A set of nonzero vectors S is orthogonal if they are pairwise orthogonal. They are orthonormal if it is orthogonal and in addition each vector has unit Euclidean length.

Orthogonal Vectors

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof.

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself.

Question: If the column vectors of an $m \times n$ matrix A are orthogonal, what is the rank of A ?

Orthogonal Vectors

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof.

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself.

Question: If the column vectors of an $m \times n$ matrix A are orthogonal, what is the rank of A ?
Answer: $n=\min \{m, n\}$. In other words, A has full rank.

Components of Vector

- Given an orthonormal set $\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$ forming a basis of \mathbb{R}^{m}, vector v can be decomposed into orthogonal components as $v=\sum_{i=1}^{m}\left(q_{i}^{T} v\right) q_{i}$
- Another way to express the decomposition is $v=\sum_{i=1}^{m}\left(q_{i} q_{i}^{T}\right) v$
- $q_{i} q_{i}^{T}$ is an orthogonal projection matrix
- More generally, given an orthonormal set $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ with $n \leq m$, we have

$$
v=r+\sum_{i=1}^{n}\left(q_{i}^{T} v\right) q_{i}=r+\sum_{i=1}^{n}\left(q_{i} q_{i}^{T}\right) v \text { and } r^{T} q_{i}=0,1 \leq i \leq n
$$

- Let Q be composed of column vectors $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$. $Q Q^{T}=\sum_{i=1}^{n}\left(q_{i} q_{i}^{T}\right)$ is an orthogonal projection matrix (more in Lecture 4)
- Question: What is $\boldsymbol{Q}^{T} \boldsymbol{Q}$ equal to?

Components of Vector

- Given an orthonormal set $\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$ forming a basis of \mathbb{R}^{m}, vector v can be decomposed into orthogonal components as $v=\sum_{i=1}^{m}\left(q_{i}^{T} v\right) q_{i}$
- Another way to express the decomposition is $v=\sum_{i=1}^{m}\left(q_{i} q_{i}^{T}\right) v$
- $q_{i} q_{i}^{T}$ is an orthogonal projection matrix
- More generally, given an orthonormal set $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ with $n \leq m$, we have

$$
v=r+\sum_{i=1}^{n}\left(q_{i}^{T} v\right) q_{i}=r+\sum_{i=1}^{n}\left(q_{i} q_{i}^{T}\right) v \text { and } r^{T} q_{i}=0,1 \leq i \leq n
$$

- Let Q be composed of column vectors $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$. $Q Q^{T}=\sum_{i=1}^{n}\left(q_{i} q_{i}^{T}\right)$ is an orthogonal projection matrix (more in Lecture 4)
- Question: What is $\boldsymbol{Q}^{T} \boldsymbol{Q}$ equal to?
- Answer: $\boldsymbol{Q}^{\boldsymbol{T}} \boldsymbol{Q}=\boldsymbol{I}$.

Orthogonal Matrices

Definition

A matrix is orthogonal if $Q^{\top}=Q^{-1}$, i.e., if $Q^{\top} Q=Q Q^{\top}=l$.

- Its column vectors are orthonormal. In other words, $q_{i}^{T} q_{j}=\delta_{i j}$, the Kronecker delta.
- For complex matrices, we say the matrix is unitary if $Q^{H}=Q^{-1}$.

Question: What is the geometric meaning of multiplication by an orthogonal matrix?

Orthogonal Matrices

Definition

A matrix is orthogonal if $Q^{T}=Q^{-1}$, i.e., if $Q^{T} Q=Q Q^{T}=I$.

- Its column vectors are orthonormal. In other words, $q_{i}^{T} q_{j}=\delta_{i j}$, the Kronecker delta.
- For complex matrices, we say the matrix is unitary if $Q^{H}=Q^{-1}$.

Question: What is the geometric meaning of multiplication by an orthogonal matrix?
Answer: It preserves angles and Euclidean length. In the real case, multiplication by an orthogonal matrix Q is a rotation (if $\operatorname{det}(Q)=1)$ or reflection (if $\operatorname{det}(Q)=-1)$.

