AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)
 Lecture 3: Vector Norms; Matrix Norms

Xiangmin Jiao
SUNY Stony Brook

Outline

(1) Vector Norms (NLA §3)
(2) Matrix Norms (NLA §3)

Definition of Norms

- Norm captures "size" of vector or "distance" between vectors
- There are many different measures for "sizes" but a norm must satisfy some requirements:

Definition

A norm is a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that assigns a real-valued length to each vector. It must satisfy the following conditions:

$$
\begin{aligned}
& \text { (1) }\|x\| \geq 0, \text { and }\|x\|=0 \text { only if } x=0, \\
& \text { (2) }\|x+y\| \leq\|x\|+\|y\|, \\
& \text { (3) }\|\alpha x\|=|\alpha|\|x\| .
\end{aligned}
$$

- An example is Euclidean length (i.e, $\|x\|=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$)

p-norms

- Euclidean length is a special case of p-norms, defined as

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for $1 \leq p \leq \infty$

- Euclidean norm is 2-norm $\|x\|_{2}$ (i.e., $p=2$)
- 1-norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- ∞-norm: $\|x\|_{\infty}$. What is its value?

p-norms

- Euclidean length is a special case of p-norms, defined as

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for $1 \leq p \leq \infty$

- Euclidean norm is 2-norm $\|x\|_{2}$ (i.e., $p=2$)
- 1-norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- ∞-norm: $\|x\|_{\infty}$. What is its value?
- Answer: $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
- Why we require $p \geq 1$? What happens if $0 \leq p<1$?

Some Properties of Vector Norms

- Hölder inequality: $\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q}, \quad \frac{1}{p}+\frac{1}{q}=1$
- In particular when $p=q=2:\left|x^{\top} y\right| \leq\|x\|_{2}\|y\|_{2}$ (Cauchy-Schwarz inequality)
- All norms are equivalent, in that there exists c_{1} and c_{2} s.t.

$$
c_{1}\|x\|_{\alpha} \leq\|x\|_{\beta} \leq c_{2}\|x\|_{\alpha}
$$

where c_{1} and c_{2} are constants and may depend on n. e.g.,

$$
\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2}
$$

- 2-norm is preserved under orthogonal transformation $Q x$

$$
\|Q x\|_{2}=\|x\|_{2}
$$

Weighted p-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components.
- It is anisotropic instead of isotropic
- Algebraically, $\|x\|_{W}=\|W x\|$, where W is diagonal matrix with ith diagonal entry $w_{i} \neq 0$ being weight for i th component
- In other words,

$$
\|x\|_{w}=\left(\sum_{i=1}^{n}\left|w_{i} x_{i}\right|^{p}\right)^{1 / p}
$$

- What happens if we allow $w_{i}=0$?

Weighted p-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components.
- It is anisotropic instead of isotropic
- Algebraically, $\|x\|_{W}=\|W x\|$, where W is diagonal matrix with ith diagonal entry $w_{i} \neq 0$ being weight for i th component
- In other words,

$$
\|x\|_{w}=\left(\sum_{i=1}^{n}\left|w_{i} x_{i}\right|^{p}\right)^{1 / p}
$$

- What happens if we allow $w_{i}=0$?
- Can we further generalize it to allow W being arbitrary matrix?
- No. But we can allow W to be arbitrary nonsingular matrix.

A-norm of Vectors

- Given a positive definite matrix $A \in \mathbb{R}^{n \times n}$, the A-norm on \mathbb{R}^{n} is

$$
\|x\|_{A}=\sqrt{x^{\top} A x}
$$

- Note: Weighted 2-norm with W is A-norm with $A=W^{2}$.
- These conventions are somewhat inconsistent, but they are both commonly used in the literature

Outline

(1) Vector Norms (NLA §3)
(2) Matrix Norms (NLA §3)

Frobenius Norm

- One can define a norm by viewing $m \times n$ matrix as vectors in $\mathbb{R}^{m n}$
- One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|^{2}}=\sqrt{\sum_{j=1}^{n}\left\|a_{j}\right\|_{2}^{2}}
$$

i.e., 2-norm of ($m n$)-vector

- Furthermore,

$$
\|A\|_{F}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}
$$

where $\operatorname{tr}(B)$ denotes trace of B, the sum of its diagonal entries

- Note that for $A \in \mathbb{R}^{n \times \ell}$ and $B \in \mathbb{R}^{\ell \times m}$,

$$
\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}
$$

because

$$
\|A B\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i}^{T} b_{j}\right|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left(\left\|a_{i}^{T}\right\|_{2}\left\|b_{j}\right\|_{2}\right)^{2}=\|A\|_{F}^{2}\|B\|_{F}^{2}
$$

General Definition of Matrix Norms

- However, viewing $m \times n$ matrix as vectors in $\mathbb{R}^{m n}$ is not always useful, because matrix operations do not behave this way
- Similar to vector norms, general matrix norms has the following properties (for $A, B \in \mathbb{R}^{m \times n}$)

$$
\begin{aligned}
& \text { (1) }\|A\| \geq 0 \text {, and }\|A\|=0 \text { only if } A=0 \text {, } \\
& \text { (2) }\|A+B\| \leq\|A\|+\|B\| \text {, } \\
& \text { (3) }\|\alpha A\|=|\alpha|\|A\| .
\end{aligned}
$$

- In addition, a matrix norm for $A, B \in \mathbb{R}^{n \times n}$ typically satisfies

$$
\|A B\| \leq\|A\|\|B\|, \quad \text { (submultiplicativity) }
$$

which is a generalization of Cauchy-Schwarz inequality

Norms Induced by Vector Norms

- Matrix norms can be induced from vector norms, which can better capture behaviors of matrix-vector multiplications

Definition

Given vector norms $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ on domain and range of $A \in \mathbb{R}^{m \times n}$, respectively, the induced matrix norm $\|A\|_{(m, n)}$ is the smallest number $C \in \mathbb{R}$ for which the following inequality holds for all $x \in \mathbb{R}^{n}$:

$$
\|A x\|_{(m)} \leq C\|x\|_{(n)}
$$

- In other words, it is supremum of $\|A x\|_{(m)} /\|x\|_{(n)}$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$
- Maximum factor by which A can "stretch" $x \in \mathbb{R}^{n}$

$$
\|A\|_{(m, n)}=\sup _{x \in \mathbb{R}^{n}, x \neq 0}\|A x\|_{(m)} /\|x\|_{(n)}=\sup _{x \in \mathbb{R}^{n},\|x\|_{(n)}=1}\|A x\|_{(m)} .
$$

- Is vector norm consistent with matrix norm of $m \times 1$-matrix?

1-norm

- By definition

$$
\|A\|_{1}=\sup _{x \in \mathbb{R}^{n},\|x\|_{1}=1}\|A x\|_{1}
$$

- What is it equal to?

1-norm

- By definition

$$
\|A\|_{1}=\sup _{x \in \mathbb{R}^{n},\|x\|_{1}=1}\|A x\|_{1}
$$

- What is it equal to?
- Maximum of 1-norm of column vectors of A
- Or maximum of column sum of absolute values of A, "column-sum norm"
- To show it, note that for $x \in \mathbb{R}^{n}$ and $\|x\|_{1}=1$

$$
\|A x\|_{1}=\left\|\sum_{j=1}^{n} x_{j} a_{j}\right\|_{1} \leq \sum_{j=1}^{n}\left|x_{j}\right|\left\|a_{j}\right\|_{1} \leq \max _{1 \leq j \leq n}\left\|a_{j}\right\|_{1}\|x\|_{1}
$$

- Let $k=\arg \max _{1 \leq j \leq n}\left\|a_{j}\right\|_{1}$, then $\left\|A e_{k}\right\|_{1}=\left\|a_{k}\right\|_{1}$, so $\max _{1 \leq j \leq n}\left\|a_{j}\right\|_{1}$ is tight upper bound

∞-norm

- By definition

$$
\|A\|_{\infty}=\sup _{x \in \mathbb{R}^{n},\|x\|_{\infty}=1}\|A x\|_{\infty}
$$

- What is $\|A\|_{\infty}$ equal to?
- By definition

$$
\|A\|_{\infty}=\sup _{x \in \mathbb{R}^{n},\|x\|_{\infty}=1}\|A x\|_{\infty}
$$

- What is $\|A\|_{\infty}$ equal to?
- Maximum of 1-norm of column vectors of A^{T}
- Or maximum of row sum of absolute values of A, "row-sum norm"
- To show it, note that for $x \in \mathbb{R}^{n}$ and $\|x\|_{\infty}=1$

$$
\|A x\|_{\infty}=\max _{1 \leq i \leq m}\left|a_{i,:} x\right| \leq \max _{1 \leq i \leq m}\left\|a_{i,:}^{T}\right\|_{1}\|x\|_{\infty}
$$

where $a_{i,:}$ denotes i th row vector of A and $\left\|a_{i,:}^{T}\right\|_{1}=\sum_{j=1}^{n}\left|a_{i j}\right|$

- Furthermore, $\left\|a_{i,:}^{T}\right\|_{1}$ is a tight bound.
- Which vector can we choose for x for equality to hold?

2-norm

- What is 2 -norm of a matrix?

2-norm

- What is 2 -norm of a matrix?

Answer: Its largest singular value, which we will explain in later lectures

- What is 2-norm of a diagonal matrix D ?

2-norm

- What is 2 -norm of a matrix?

Answer: Its largest singular value, which we will explain in later lectures

- What is 2-norm of a diagonal matrix D ?

Answer: $\|D\|_{2}=\max _{i=1}^{n}\left\{\left|d_{i i}\right|\right\}$

- What is 2-norm of rank-one matrix $u v^{\top}$? Hint: Use Cauchy-Schwarz inequality.

2-norm

- What is 2 -norm of a matrix?

Answer: Its largest singular value, which we will explain in later lectures

- What is 2-norm of a diagonal matrix D ?

Answer: $\|D\|_{2}=\max _{i=1}^{n}\left\{\left|d_{i i}\right|\right\}$

- What is 2-norm of rank-one matrix $u v^{\top}$? Hint: Use Cauchy-Schwarz inequality.
Answer: $\left\|u v^{\top}\right\|_{2}=\|u\|_{2}\|v\|_{2}$.

Bounding Matrix-Matrix Multiplication

- Let A be an $I \times m$ matrix and B an $m \times n$ matrix, then

$$
\|A B\|_{(I, n)} \leq\|A\|_{(I, m)}\|B\|_{(m, n)}
$$

- To show it, note for $x \in \mathbb{R}^{n}$

$$
\|A B x\|_{(I)} \leq\|A\|_{(I, m)}\|B x\|_{(m)} \leq\|A\|_{(I, m)}\|B\|_{(m, n)}\|x\|_{(n)}
$$

- In general, this inequality is not an equality
- In particular, $\left\|A^{p}\right\| \leq\|A\|^{p}$ but $\left\|A^{p}\right\| \neq\|A\|^{p}$ in general for $p \geq 2$

Invariance under Orthogonal Transformation

- Given matrix $Q \in \mathbb{R}^{\ell \times m}$ with $\ell \geq m$. If $Q^{T} Q=I$, then $Q x$ for $x \in \mathbb{R}^{m}$ corresponds to orthogonal transformation to coordinate system in \mathbb{R}^{ℓ}
- If $Q \in \mathbb{R}^{m \times m}$, then Q is said to be an orthogonal matrix

Theorem

For any $A \in \mathbb{R}^{m \times n}$ and $Q \in \mathbb{R}^{\ell \times m}$ with $Q^{T} Q=I$ and $\ell \geq m$, we have

$$
\|Q A\|_{2}=\|A\|_{2} \text { and }\|Q A\|_{F}=\|A\|_{F}
$$

In other words, 2-norm and Frobenius norms are invariant under orthogonal transformation.
Proof for 2-norm: $\|Q y\|_{2}=\|y\|_{2}$ for $y \in \mathbb{R}^{m}$ and therefore $\|Q A x\|_{2}=\|A x\|_{2}$ for $x \in \mathbb{R}^{n}$. It then follows from definition of 2-norm.
Proof for Frobenius norm:

$$
\|Q A\|_{F}^{2}=\operatorname{tr}\left((Q A)^{T} Q A\right)=\operatorname{tr}\left(A^{T} Q^{T} Q A\right)=\operatorname{tr}\left(A^{T} A\right)=\|A\|_{F}^{2}
$$

- so we can keep only entries of U and V corresponding to nonzero σ_{i}.

