AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 3: Vector Norms; Matrix Norms

Xiangmin Jiao

SUNY Stony Brook

Outline

1 Vector Norms (NLA §3)

Matrix Norms (NLA §3)

Xiangmin Jiao Numerical Analysis | 2 / 16

Definition of Norms

- Norm captures "size" of vector or "distance" between vectors
- There are many different measures for "sizes" but a norm must satisfy some requirements:

Definition

A *norm* is a function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ that assigns a real-valued length to each vector. It must satisfy the following conditions:

$$(1)||x|| \ge 0$$
, and $||x|| = 0$ only if $x = 0$,

$$(2)||x+y|| \le ||x|| + ||y||,$$

(3)
$$\|\alpha x\| = |\alpha| \|x\|$$
.

• An example is Euclidean length (i.e, $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$)

p-norms

ullet Euclidean length is a special case of p-norms, defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for $1 \le p \le \infty$

- Euclidean norm is 2-norm $||x||_2$ (i.e., p=2)
- 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- ullet ∞ -norm: $\|x\|_{\infty}$. What is its value?

p-norms

ullet Euclidean length is a special case of p-norms, defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for $1 \le p \le \infty$

- Euclidean norm is 2-norm $||x||_2$ (i.e., p=2)
- 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm: $||x||_{\infty}$. What is its value?
 - Answer: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
- Why we require $p \ge 1$? What happens if $0 \le p < 1$?

Some Properties of Vector Norms

- Hölder inequality: $|x^Ty| \le ||x||_p ||y||_q$, $\frac{1}{p} + \frac{1}{q} = 1$
- In particular when p=q=2: $|x^Ty| \le ||x||_2 ||y||_2$ (Cauchy-Schwarz inequality)
- All norms are equivalent, in that there exists c_1 and c_2 s.t.

$$c_1||x||_{\alpha} \leq ||x||_{\beta} \leq c_2||x||_{\alpha}$$

where c_1 and c_2 are constants and may depend on n. e.g.,

$$||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$$

ullet 2-norm is preserved under orthogonal transformation Qx

$$||Qx||_2 = ||x||_2$$

Weighted *p*-norms

- A generalization of *p*-norm is *weighted p-norm*, which assigns different weights (priorities) to different components.
 - ▶ It is anisotropic instead of isotropic
- Algebraically, $||x||_W = ||Wx||$, where W is diagonal matrix with ith diagonal entry $w_i \neq 0$ being weight for ith component
- In other words,

$$||x||_{W} = \left(\sum_{i=1}^{n} |w_{i}x_{i}|^{p}\right)^{1/p}$$

• What happens if we allow $w_i = 0$?

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components.
 - It is anisotropic instead of isotropic
- Algebraically, $||x||_W = ||Wx||$, where W is diagonal matrix with ith diagonal entry $w_i \neq 0$ being weight for ith component
- In other words.

$$||x||_{W} = \left(\sum_{i=1}^{n} |w_{i}x_{i}|^{p}\right)^{1/p}$$

- What happens if we allow $w_i = 0$?
- Can we further generalize it to allow W being arbitrary matrix?
 - \triangleright No. But we can allow W to be arbitrary nonsingular matrix.

A-norm of Vectors

ullet Given a positive definite matrix $A\in\mathbb{R}^{n imes n}$, the A-norm on \mathbb{R}^n is

$$||x||_A = \sqrt{x^T A x}$$

- Note: Weighted 2-norm with W is A-norm with $A = W^2$.
- These conventions are somewhat inconsistent, but they are both commonly used in the literature

Outline

1 Vector Norms (NLA §3)

Matrix Norms (NLA §3)

Xiangmin Jiao Numerical Analysis | 8 / 16

Frobenius Norm

- One can define a norm by viewing $m \times n$ matrix as vectors in \mathbb{R}^{mn}
- One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2} = \sqrt{\sum_{j=1}^n ||a_j||_2^2}$$

i.e., 2-norm of (mn)-vector

• Furthermore,

$$||A||_F = \sqrt{\operatorname{tr}(A^T A)}$$

where tr(B) denotes trace of B, the sum of its diagonal entries

• Note that for $A \in \mathbb{R}^{n \times \ell}$ and $B \in \mathbb{R}^{\ell \times m}$

$$||AB||_F \le ||A||_F ||B||_F$$

because

$$||AB||_F^2 = \sum_{i=1}^n \sum_{j=1}^m |a_i^T b_j|^2 \le \sum_{i=1}^n \sum_{j=1}^m \left(||a_i^T||_2 ||b_j||_2 \right)^2 = ||A||_F^2 ||B||_F^2$$

General Definition of Matrix Norms

- However, viewing $m \times n$ matrix as vectors in \mathbb{R}^{mn} is not always useful, because matrix operations do not behave this way
- Similar to vector norms, general matrix norms has the following properties (for $A, B \in \mathbb{R}^{m \times n}$)

(1)
$$||A|| \ge 0$$
, and $||A|| = 0$ only if $A = 0$,
(2) $||A + B|| \le ||A|| + ||B||$,
(3) $||\alpha A|| = |\alpha| ||A||$.

• In addition, a matrix norm for $A, B \in \mathbb{R}^{n \times n}$ typically satisfies

$$||AB|| \le ||A|| ||B||$$
, (submultiplicativity)

which is a generalization of Cauchy-Schwarz inequality

Norms Induced by Vector Norms

 Matrix norms can be induced from vector norms, which can better capture behaviors of matrix-vector multiplications

Definition

Given vector norms $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ on domain and range of $A\in\mathbb{R}^{m\times n}$, respectively, the induced matrix norm $\|A\|_{(m,n)}$ is the smallest number $C\in\mathbb{R}$ for which the following inequality holds for all $x\in\mathbb{R}^n$:

$$||Ax||_{(m)} \leq C||x||_{(n)}.$$

- In other words, it is supremum of $\|Ax\|_{(m)}/\|x\|_{(n)}$ for all $x \in \mathbb{R}^n \setminus \{0\}$
- Maximum factor by which A can "stretch" $x \in \mathbb{R}^n$

$$||A||_{(m,n)} = \sup_{x \in \mathbb{R}^n, x \neq 0} ||Ax||_{(m)} / ||x||_{(n)} = \sup_{x \in \mathbb{R}^n, ||x||_{(n)} = 1} ||Ax||_{(m)}.$$

• Is vector norm consistent with matrix norm of $m \times 1$ -matrix?

• By definition

$$||A||_1 = \sup_{x \in \mathbb{R}^n, ||x||_1 = 1} ||Ax||_1$$

• What is it equal to?

By definition

$$||A||_1 = \sup_{x \in \mathbb{R}^n, ||x||_1 = 1} ||Ax||_1$$

- What is it equal to?
 - Maximum of 1-norm of column vectors of A
 - Or maximum of column sum of absolute values of A, "column-sum norm"
- ullet To show it, note that for $x\in\mathbb{R}^n$ and $\|x\|_1=1$

$$||Ax||_1 = \left\|\sum_{j=1}^n x_j a_j\right\|_1 \le \sum_{j=1}^n |x_j| ||a_j||_1 \le \max_{1 \le j \le n} ||a_j||_1 ||x||_1$$

• Let $k = \arg\max_{1 \le j \le n} \|a_j\|_1$, then $\|Ae_k\|_1 = \|a_k\|_1$, so $\max_{1 \le j \le n} \|a_j\|_1$ is tight upper bound

• By definition

$$||A||_{\infty} = \sup_{x \in \mathbb{R}^n, ||x||_{\infty} = 1} ||Ax||_{\infty}$$

• What is $||A||_{\infty}$ equal to?

By definition

$$||A||_{\infty} = \sup_{x \in \mathbb{R}^n, ||x||_{\infty} = 1} ||Ax||_{\infty}$$

- What is $||A||_{\infty}$ equal to?
 - Maximum of 1-norm of column vectors of A^T
 - ▶ Or maximum of row sum of absolute values of A, "row-sum norm"
- ullet To show it, note that for $x\in\mathbb{R}^n$ and $\|x\|_\infty=1$

$$||Ax||_{\infty} = \max_{1 \le i \le m} |a_{i,:}x| \le \max_{1 \le i \le m} ||a_{i,:}^T||_1 ||x||_{\infty}$$

where $a_{i,:}$ denotes ith row vector of A and $||a_{i,:}^T||_1 = \sum_{j=1}^n |a_{ij}|$

- Furthermore, $||a_{i:}^T||_1$ is a tight bound.
- Which vector can we choose for x for equality to hold?

• What is 2-norm of a matrix?

- What is 2-norm of a matrix?
 Answer: Its largest singular value, which we will explain in later lectures
- What is 2-norm of a diagonal matrix D?

- What is 2-norm of a matrix?
 Answer: Its largest singular value, which we will explain in later lectures
- What is 2-norm of a diagonal matrix D? Answer: $||D||_2 = \max_{i=1}^n \{|d_{ii}|\}$
- What is 2-norm of rank-one matrix uv^T? Hint: Use Cauchy-Schwarz inequality.

- What is 2-norm of a matrix?
 - Answer: Its largest singular value, which we will explain in later lectures
- What is 2-norm of a diagonal matrix D?
 - Answer: $||D||_2 = \max_{i=1}^n \{|d_{ii}|\}$
- What is 2-norm of rank-one matrix uv^T? Hint: Use Cauchy-Schwarz inequality.
 - Answer: $||uv^T||_2 = ||u||_2 ||v||_2$.

Bounding Matrix-Matrix Multiplication

• Let A be an $I \times m$ matrix and B an $m \times n$ matrix, then

$$||AB||_{(I,n)} \leq ||A||_{(I,m)} ||B||_{(m,n)}$$

• To show it, note for $x \in \mathbb{R}^n$

$$||ABx||_{(I)} \le ||A||_{(I,m)} ||Bx||_{(m)} \le ||A||_{(I,m)} ||B||_{(m,n)} ||x||_{(n)},$$

- In general, this inequality is not an equality
- ullet In particular, $\|A^p\|\leq \|A\|^p$ but $\|A^p\|
 eq \|A\|^p$ in general for $p\geq 2$

Invariance under Orthogonal Transformation

- Given matrix $Q \in \mathbb{R}^{\ell \times m}$ with $\ell \geq m$. If $Q^TQ = I$, then Qx for $x \in \mathbb{R}^m$ corresponds to orthogonal transformation to coordinate system in \mathbb{R}^ℓ
- If $Q \in \mathbb{R}^{m \times m}$, then Q is said to be an *orthogonal* matrix

Theorem

For any $A \in \mathbb{R}^{m imes n}$ and $Q \in \mathbb{R}^{\ell imes m}$ with $Q^TQ = I$ and $\ell \geq m$, we have

$$||QA||_2 = ||A||_2$$
 and $||QA||_F = ||A||_F$.

In other words, 2-norm and Frobenius norms are invariant under orthogonal transformation.

Proof for 2-norm: $\|Qy\|_2 = \|y\|_2$ for $y \in \mathbb{R}^m$ and therefore $\|QAx\|_2 = \|Ax\|_2$ for $x \in \mathbb{R}^n$. It then follows from definition of 2-norm.

Proof for Frobenius norm:

$$\|QA\|_F^2 = \operatorname{tr}((QA)^T QA) = \operatorname{tr}(A^T Q^T QA) = \operatorname{tr}(A^T A) = \|A\|_F^2.$$

ullet so we can keep only entries of U and V corresponding to nonzero σ_i .