# AMS526: Numerical Analysis I <br> (Numerical Linear Algebra for Computational and Data Sciences) <br> Lecture 4: Singular Value Decomposition 

Xiangmin Jiao<br>SUNY Stony Brook

## Outline

(1) Singular Value Decomposition (NLA§4-5)

## Singular Value Decomposition (SVD)

- Given $A \in \mathbb{R}^{m \times n}$, its $S V D$ is

$$
A=U \Sigma V^{T}
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal

- If $A \in \mathbb{C}^{m \times n}$, then its SVD is $A=U \Sigma V^{H}$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal
- Singular values are diagonal entries of $\Sigma$, with entries

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
$$

- Left singular vectors of $A$ are column vectors of $U$
- Right singular vectors of $A$ are column vectors of $V$
- $A v_{j}=\sigma_{j} u_{j}$ for $1 \leq j \leq n$
- SVD plays a prominent role in data analysis and matrix analysis


## Geometric Observation

- Given a unit hypersphere $S$ in $\mathbb{R}^{n}, A S$ denotes shape after transformation, which is a hyperellipsoid in $\mathbb{R}^{m}$
- Column vectors in $V$ are the preimages of the principal semiaxes of the hyperellipsoid $A S$
- Singular values correspond to the principal semiaxes of hyperellipsoid
- Left singular vectors are parallel to principal semiaxes of $A S$
- Right singular vectors are preimages of principal semiaxes of $A S$

Transformed Ellipse AS


## Two Different Types of SVD

- Full SVD: For $A \in \mathbb{R}^{m \times n}$, we have $U \in \mathbb{R}^{m \times m}, \Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ s.t.

$$
A=U \Sigma V^{T}
$$

## Two Different Types of SVD

- Full SVD: For $A \in \mathbb{R}^{m \times n}$, we have $U \in \mathbb{R}^{m \times m}, \Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ s.t.

$$
A=U \Sigma V^{T}
$$

- Thin SVD (Reduced SVD): Assuming $m \geq n$, we have $\hat{U} \in \mathbb{R}^{m \times n}$ and $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ s.t.

$$
A=\hat{U} \hat{\Sigma} V^{T}
$$

## Two Different Types of SVD

- Full SVD: For $A \in \mathbb{R}^{m \times n}$, we have $U \in \mathbb{R}^{m \times m}, \Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ s.t.

$$
A=U \Sigma V^{T}
$$

- Thin SVD (Reduced SVD): Assuming $m \geq n$, we have $\hat{U} \in \mathbb{R}^{m \times n}$ and $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ s.t.

$$
A=\hat{U} \hat{\Sigma} V^{T}
$$

- Furthermore, notice that

$$
A=\sum_{i=1}^{\min \{m, n\}} \sigma_{i} u_{i} v_{i}^{T}
$$

so we can keep only entries of $U$ and $V$ corresponding to nonzero $\sigma_{i}$.

## Existence of SVD

## Theorem

(Existence) Every matrix $A \in \mathbb{R}^{m \times n}$ has an SVD.
Proof: Let $\sigma_{1}=\|A\|_{2}$. There exists $v_{1} \in \mathbb{R}^{n}$ with $\left\|v_{1}\right\|_{2}=1$ and $\left\|A v_{1}\right\|_{2}=\sigma_{1}$. Let $U_{1}$ and $V_{1}$ be orthogonal matrices whose first columns are $u_{1}=A v_{1} / \sigma_{1}$ (or any unit-length vector if $\sigma_{1}=0$ ) and $v_{1}$, respectively. Note that (with block-matrix notation)

$$
U_{1}^{T} A V_{1}=S=\left[\begin{array}{cc}
\sigma_{1} & \omega^{T}  \tag{1}\\
0 & B
\end{array}\right]
$$

(Key remaining questions: What is $\omega$, and how to deal with $B$ ?) Furthermore, $\omega=0$ because $\|S\|_{2}=\sigma_{1}$, and

$$
\left\|\left[\begin{array}{cc}
\sigma_{1} & \omega^{T} \\
0 & B
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\omega
\end{array}\right]\right\|_{2} \geq \sigma_{1}^{2}+\omega^{T} \omega=\sqrt{\sigma_{1}^{2}+\omega^{T} \omega}\left\|\left[\begin{array}{c}
\sigma_{1} \\
\omega
\end{array}\right]\right\|_{2}
$$

implying that $\sigma_{1} \geq \sqrt{\sigma_{1}^{2}+\omega^{T} \omega}$ and $\omega=0$.

## Existence of SVD Cont'd

We then prove by induction using (1) from previous slide. If $m=1$ or $n=1$, then $B$ is empty and we have $A=U_{1} S V_{1}^{T}$. Otherwise, suppose $B=U_{2} \Sigma_{2} V_{2}^{T}$, and then

$$
A=\underbrace{U_{1}\left[\begin{array}{ll}
1 & 0^{T} \\
0 & U_{2}
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
\sigma_{1} & 0^{T} \\
0 & \Sigma_{2}
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
1 & 0^{T} \\
0 & V_{2}^{T}
\end{array}\right] V_{1}^{T}}_{V^{T}},
$$

where $U$ and $V$ are orthogonal.

## Uniqueness of SVD

## Theorem

(Uniqueness) The singular values $\left\{\sigma_{j}\right\}$ are uniquely determined. If $A$ is square and the $\sigma_{j}$ are distinct, the left and right singular vectors are uniquely determined up to signs.

Geometric argument: If the lengths of semiaxes of a hyperellipsoid are distinct, then the orientations of semiaxes are determined up to signs.

Transformed Ellipse $A S$


Question: What are the signs of singular vectors if $A$ is complex?

## Uniqueness of SVD Cont'd

Algebraic argument: The proof can be done by induction. Consider the case where the $\sigma_{j}$ are distinct. The 2-norm is unique, so $\sigma_{1}$ is unique. If $v_{1}$ is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of $A$, implying that $\sigma_{1}$ is not a simple singular value.

Once the first triplet $\sigma_{1}, u_{1}$, and $v_{1}$ are determined, the remainder of SVD follows from the subspace orthogonal to $v_{1}$. Because $v_{1}$ is unique up to sign, the orthogonal subspace is uniquely defined. The rest of the SVD can then be uniquely determined by induction.

## Uniqueness of SVD Cont'd

Algebraic argument: The proof can be done by induction. Consider the case where the $\sigma_{j}$ are distinct. The 2-norm is unique, so $\sigma_{1}$ is unique. If $v_{1}$ is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of $A$, implying that $\sigma_{1}$ is not a simple singular value.

Once the first triplet $\sigma_{1}, u_{1}$, and $v_{1}$ are determined, the remainder of SVD follows from the subspace orthogonal to $v_{1}$. Because $v_{1}$ is unique up to sign, the orthogonal subspace is uniquely defined. The rest of the SVD can then be uniquely determined by induction.

- Discussion: What if we change the sign of a singular vector?


## Uniqueness of SVD Cont'd

Algebraic argument: The proof can be done by induction. Consider the case where the $\sigma_{j}$ are distinct. The 2-norm is unique, so $\sigma_{1}$ is unique. If $v_{1}$ is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of $A$, implying that $\sigma_{1}$ is not a simple singular value.

Once the first triplet $\sigma_{1}, u_{1}$, and $v_{1}$ are determined, the remainder of SVD follows from the subspace orthogonal to $v_{1}$. Because $v_{1}$ is unique up to sign, the orthogonal subspace is uniquely defined. The rest of the SVD can then be uniquely determined by induction.

- Discussion: What if we change the sign of a singular vector?
- Discussion: What if $\sigma_{i}$ is not distinct?


## SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix $A$ is $A=X \wedge X^{-1}$


## SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix $A$ is $A=X \wedge X^{-1}$
- Differences between SVD and eigenvalue decomposition
- Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
- Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
- Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other


## SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix $A$ is $A=X \wedge X^{-1}$
- Differences between SVD and eigenvalue decomposition
- Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
- Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
- Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other
- Similarities
- Singular values of $A$ are square roots of eigenvalues of $A A^{T}$ and $A^{T} A$, and their eigenvectors are left and right singular vectors, respectively
- Singular values of Hermitian matrices are absolute values of eigenvalues, and there exist an SVD such that the eigenvectors are the singular vectors
- This relationship can be used to compute singular values by hand


## SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix $A$ is $A=X \wedge X^{-1}$
- Differences between SVD and eigenvalue decomposition
- Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
- Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
- Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other
- Similarities
- Singular values of $A$ are square roots of eigenvalues of $A A^{T}$ and $A^{T} A$, and their eigenvectors are left and right singular vectors, respectively
- Singular values of Hermitian matrices are absolute values of eigenvalues, and there exist an SVD such that the eigenvectors are the singular vectors
- This relationship can be used to compute singular values by hand
- Discussion: Are the eigenvalues and eigenvectors of $A A^{T}$ unique?


## Matrix Properties via SVD

- Let $r$ be number of nonzero singular values $\sigma_{i}$ of $A \in \mathbb{R}^{m \times n}$
- $\operatorname{rank}(A)$ is $r$
- $\operatorname{range}(A)=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$
- $\operatorname{null}(A)=\operatorname{span}\left\{v_{r+1}, v_{r+2}, \ldots, v_{n}\right\}$
- 2-norm and Frobenius norm
- $\|A\|_{2}=\sigma_{1}$ and $\|A\|_{F}=\sqrt{\sum_{i} \sigma_{i}^{2}}$
- Determinant of matrix
- For $A \in \mathbb{R}^{m \times m},|\operatorname{det}(A)|=\prod_{i=1}^{m} \sigma_{i}$


## Matrix Properties via SVD

- Let $r$ be number of nonzero singular values $\sigma_{i}$ of $A \in \mathbb{R}^{m \times n}$
- $\operatorname{rank}(A)$ is $r$
- $\operatorname{range}(A)=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$
- $\operatorname{null}(A)=\operatorname{span}\left\{v_{r+1}, v_{r+2}, \ldots, v_{n}\right\}$
- 2-norm and Frobenius norm
- $\|A\|_{2}=\sigma_{1}$ and $\|A\|_{F}=\sqrt{\sum_{i} \sigma_{i}^{2}}$
- Determinant of matrix
- For $A \in \mathbb{R}^{m \times m},|\operatorname{det}(A)|=\prod_{i=1}^{m} \sigma_{i}$
- However, SVD may not be the most efficient way in solving problems
- Algorithms for SVD are similar to those for eigenvalue decomposition and we will discuss them later

