AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 4: Singular Value Decomposition

Xiangmin Jiao

SUNY Stony Brook

Outline

1 Singular Value Decomposition (NLA§4-5)

Singular Value Decomposition (SVD)

• Given $A \in \mathbb{R}^{m \times n}$, its *SVD* is

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal

- If $A \in \mathbb{C}^{m \times n}$, then its SVD is $A = U \Sigma V^H$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal
- Singular values are diagonal entries of Σ , with entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$
- Left singular vectors of A are column vectors of U
- Right singular vectors of A are column vectors of V
- $Av_i = \sigma_i u_i$ for $1 \le j \le n$
- SVD plays a prominent role in data analysis and matrix analysis

Geometric Observation

- Given a unit hypersphere S in \mathbb{R}^n , AS denotes shape after transformation, which is a *hyperellipsoid* in \mathbb{R}^m
- Column vectors in V are the preimages of the principal semiaxes of the hyperellipsoid AS
- Singular values correspond to the principal semiaxes of hyperellipsoid
- Left singular vectors are parallel to principal semiaxes of AS
- Right singular vectors are preimages of principal semiaxes of AS

Two Different Types of SVD

• Full SVD: For $A \in \mathbb{R}^{m \times n}$, we have $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ s.t.

$$A = U\Sigma V^T$$

Two Different Types of SVD

• Full SVD: For $A \in \mathbb{R}^{m \times n}$, we have $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ s.t.

$$A = U\Sigma V^T$$

• Thin SVD (Reduced SVD): Assuming $m \ge n$, we have $\hat{U} \in \mathbb{R}^{m \times n}$ and $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ s.t.

$$A = \hat{U}\hat{\Sigma}V^T$$

Two Different Types of SVD

• Full SVD: For $A \in \mathbb{R}^{m \times n}$, we have $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ s.t.

$$A = U\Sigma V^T$$

• Thin SVD (Reduced SVD): Assuming $m \ge n$, we have $\hat{U} \in \mathbb{R}^{m \times n}$ and $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ s.t.

$$A = \hat{U}\hat{\Sigma}V^T$$

• Furthermore, notice that

$$A = \sum_{i=1}^{\min\{m,n\}} \sigma_i u_i v_i^T,$$

so we can keep only entries of U and V corresponding to nonzero σ_i .

Existence of SVD

Theorem

(Existence) Every matrix $A \in \mathbb{R}^{m \times n}$ has an SVD.

Proof: Let $\sigma_1=\|A\|_2$. There exists $v_1\in\mathbb{R}^n$ with $\|v_1\|_2=1$ and $\|Av_1\|_2=\sigma_1$. Let U_1 and V_1 be orthogonal matrices whose first columns are $u_1=Av_1/\sigma_1$ (or any unit-length vector if $\sigma_1=0$) and v_1 , respectively. Note that (with block-matrix notation)

$$U_1^T A V_1 = S = \begin{bmatrix} \sigma_1 & \omega^T \\ 0 & B \end{bmatrix}. \tag{1}$$

(Key remaining questions: What is ω , and how to deal with B?) Furthermore, $\omega = 0$ because $||S||_2 = \sigma_1$, and

$$\left\| \left[\begin{array}{cc} \sigma_1 & \boldsymbol{\omega}^T \\ 0 & B \end{array} \right] \left[\begin{array}{c} \sigma_1 \\ \boldsymbol{\omega} \end{array} \right] \right\|_2 \geq \sigma_1^2 + \boldsymbol{\omega}^T \boldsymbol{\omega} = \sqrt{\sigma_1^2 + \boldsymbol{\omega}^T \boldsymbol{\omega}} \left\| \left[\begin{array}{c} \sigma_1 \\ \boldsymbol{\omega} \end{array} \right] \right\|_2,$$

implying that $\sigma_1 \geq \sqrt{\sigma_1^2 + \omega^T \omega}$ and $\omega = 0$.

Existence of SVD Cont'd

We then prove by induction using (1) from previous slide. If m=1 or n=1, then B is empty and we have $A=U_1SV_1^T$. Otherwise, suppose $B=U_2\Sigma_2V_2^T$, and then

$$A = \underbrace{U_1 \begin{bmatrix} 1 & 0^T \\ 0 & U_2 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} \sigma_1 & 0^T \\ 0 & \Sigma_2 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} 1 & 0^T \\ 0 & V_2^T \end{bmatrix}}_{V^T} V_1^T,$$

where U and V are orthogonal.

Uniqueness of SVD

Theorem

(Uniqueness) The singular values $\{\sigma_j\}$ are uniquely determined. If A is square and the σ_j are distinct, the left and right singular vectors are uniquely determined **up to signs**.

Geometric argument: If the lengths of semiaxes of a hyperellipsoid are distinct, then the orientations of semiaxes are determined up to signs.

Question: What are the signs of singular vectors if A is complex?

Uniqueness of SVD Cont'd

Algebraic argument: The proof can be done by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so σ_1 is unique. If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once the first triplet σ_1 , u_1 , and v_1 are determined, the remainder of SVD follows from the subspace orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. The rest of the SVD can then be uniquely determined by induction.

Uniqueness of SVD Cont'd

Algebraic argument: The proof can be done by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so σ_1 is unique. If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once the first triplet σ_1 , u_1 , and v_1 are determined, the remainder of SVD follows from the subspace orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. The rest of the SVD can then be uniquely determined by induction.

• Discussion: What if we change the sign of a singular vector?

Uniqueness of SVD Cont'd

Algebraic argument: The proof can be done by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so σ_1 is unique. If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once the first triplet σ_1 , u_1 , and v_1 are determined, the remainder of SVD follows from the subspace orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. The rest of the SVD can then be uniquely determined by induction.

- Discussion: What if we change the sign of a singular vector?
- Discussion: What if σ_i is not distinct?

• Eigenvalue decomposition of nondefective matrix A is $A = X \Lambda X^{-1}$

- Eigenvalue decomposition of nondefective matrix A is $A = X\Lambda X^{-1}$
- Differences between SVD and eigenvalue decomposition
 - ► Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - ► Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - ► Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

- Eigenvalue decomposition of nondefective matrix A is $A = X \Lambda X^{-1}$
- Differences between SVD and eigenvalue decomposition
 - ► Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - ► Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - ▶ Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

Similarities

- Singular values of A are square roots of eigenvalues of AA^T and A^TA , and their eigenvectors are left and right singular vectors, respectively
- Singular values of Hermitian matrices are absolute values of eigenvalues, and there exist an SVD such that the eigenvectors are the singular vectors
- ▶ This relationship can be used to compute singular values by hand

- Eigenvalue decomposition of nondefective matrix A is $A = X\Lambda X^{-1}$
- Differences between SVD and eigenvalue decomposition
 - ► Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - ► Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - ▶ Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

Similarities

- Singular values of A are square roots of eigenvalues of AA^T and A^TA , and their eigenvectors are left and right singular vectors, respectively
- Singular values of Hermitian matrices are absolute values of eigenvalues, and there exist an SVD such that the eigenvectors are the singular vectors
- ▶ This relationship can be used to compute singular values by hand
- ullet Discussion: Are the eigenvalues and eigenvectors of AA^T unique?

Xiangmin Jiao Numerical Analysis I 10 / 11

Matrix Properties via SVD

- Let r be number of nonzero singular values σ_i of $A \in \mathbb{R}^{m \times n}$
 - rank(A) is r
 - $range(A) = span\{u_1, u_2, \dots, u_r\}$
 - $null(A) = span\{v_{r+1}, v_{r+2}, \dots, v_n\}$
- 2-norm and Frobenius norm
 - $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sum_i \sigma_i^2}$
- Determinant of matrix
 - ▶ For $A \in \mathbb{R}^{m \times m}$, $|\det(A)| = \prod_{i=1}^m \sigma_i$

Matrix Properties via SVD

- Let r be number of nonzero singular values σ_i of $A \in \mathbb{R}^{m \times n}$
 - rank(A) is r
 - $ightharpoonup range(A) = span\{u_1, u_2, \dots, u_r\}$
 - $null(A) = span\{v_{r+1}, v_{r+2}, \dots, v_n\}$
- 2-norm and Frobenius norm

•
$$||A||_2 = \sigma_1$$
 and $||A||_F = \sqrt{\sum_i \sigma_i^2}$

- Determinant of matrix
 - ▶ For $A \in \mathbb{R}^{m \times m}$, $|\det(A)| = \prod_{i=1}^{m} \sigma_i$
- However, SVD may not be the most efficient way in solving problems
- Algorithms for SVD are similar to those for eigenvalue decomposition and we will discuss them later

Xiangmin Jiao Nu