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Singular Value Decomposition (SVD)

Given A ∈ Rm×n, its SVD is

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is
diagonal
If A ∈ Cm×n, then its SVD is A = UΣVH , where U ∈ Cm×m and
V ∈ Cn×n are unitary, and Σ ∈ Rm×n is diagonal
Singular values are diagonal entries of Σ, with entries
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
Left singular vectors of A are column vectors of U
Right singular vectors of A are column vectors of V
Avj = σjuj for 1 ≤ j ≤ n

SVD plays a prominent role in data analysis and matrix analysis
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Geometric Observation
Given a unit hypersphere S in Rn, AS denotes shape after
transformation, which is a hyperellipsoid in Rm

Column vectors inV are the preimages of the principal semiaxes of the
hyperellipsoid AS

Singular values correspond to the principal semiaxes of hyperellipsoid
Left singular vectors are parallel to principal semiaxes of AS
Right singular vectors are preimages of principal semiaxes of AS

Unit Circle S

Transformed Ellipse AS

v1
σ1u1

v2

σ2u2

A
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Two Different Types of SVD

Full SVD: For A ∈ Rm×n, we haveU ∈ Rm×m, Σ ∈ Rm×n, and
V ∈ Rn×n s.t.

A = UΣV T

Thin SVD (Reduced SVD): Assuming m ≥ n, we have Û ∈ Rm×n

and Σ̂ ∈ Rn×n s.t.
A = ÛΣ̂V T

Furthermore, notice that

A =

min{m,n}∑
i=1

σiuiv
T
i ,

so we can keep only entries of U and V corresponding to nonzero σi .
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and Σ̂ ∈ Rn×n s.t.
A = ÛΣ̂V T
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Existence of SVD
Theorem
(Existence) Every matrix A ∈ Rm×n has an SVD.

Proof: Let σ1 = ∥A∥2. There exists v1 ∈ Rn with ∥v1∥2 = 1 and
∥Av1∥2 = σ1. Let U1 and V1 be orthogonal matrices whose first columns
are u1 = Av1/σ1 (or any unit-length vector if σ1 = 0) and v1, respectively.
Note that (with block-matrix notation)

UT
1 AV1 = S =

[
σ1 ωT

0 B

]
. (1)

(Key remaining questions: What is ω, and how to deal with B?)
Furthermore, ω = 0 because ∥S∥2 = σ1, and∥∥∥∥[ σ1 ωT

0 B

] [
σ1
ω

]∥∥∥∥
2
≥ σ2

1 + ωTω =
√

σ2
1 + ωTω

∥∥∥∥[ σ1
ω

]∥∥∥∥
2
,

implying that σ1 ≥
√
σ2

1 + ωTω and ω = 0.
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Existence of SVD Cont’d

We then prove by induction using (1) from previous slide. If m = 1 or
n = 1, then B is empty and we have A = U1SV

T
1 . Otherwise, suppose

B = U2Σ2V
T
2 , and then

A = U1

[
1 0T

0 U2

]
︸ ︷︷ ︸

U

[
σ1 0T

0 Σ2

]
︸ ︷︷ ︸

Σ

[
1 0T

0 V T
2

]
V T

1︸ ︷︷ ︸
VT

,

where U and V are orthogonal.
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Uniqueness of SVD
Theorem
(Uniqueness) The singular values {σj} are uniquely determined. If A is
square and the σj are distinct, the left and right singular vectors are
uniquely determined up to signs.

Geometric argument: If the lengths of semiaxes of a hyperellipsoid are
distinct, then the orientations of semiaxes are determined up to signs.

Unit Circle S

Transformed Ellipse AS

v1
σ1u1

v2

σ2u2
−v2

−σ2u2

A

Question: What are the signs of singular vectors if A is complex?
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Uniqueness of SVD Cont’d

Algebraic argument: The proof can be done by induction. Consider the
case where the σj are distinct. The 2-norm is unique, so σ1 is unique. If v1
is not unique up to sign, then the orthonormal bases of these vectors are
right singular vectors of A, implying that σ1 is not a simple singular value.

Once the first triplet σ1, u1, and v1 are determined, the remainder of SVD
follows from the subspace orthogonal to v1. Because v1 is unique up to
sign, the orthogonal subspace is uniquely defined. The rest of the SVD can
then be uniquely determined by induction.

Discussion: What if we change the sign of a singular vector?

Discussion: What if σi is not distinct?
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SVD vs. Eigenvalue Decomposition
Eigenvalue decomposition of nondefective matrix A is A = XΛX−1

Differences between SVD and eigenvalue decomposition
▶ Not every matrix has eigenvalue decomposition, but every matrix has

singular value decomposition
▶ Eigenvalues may not always be real numbers, but singular values are

always non-negative real numbers
▶ Eigenvectors are not always orthogonal to each other (orthogonal for

symmetric matrices), but left (or right) singular vectors are orthogonal
to each other

Similarities
▶ Singular values of A are square roots of eigenvalues of AAT and ATA,

and their eigenvectors are left and right singular vectors, respectively
▶ Singular values of Hermitian matrices are absolute values of

eigenvalues, and there exist an SVD such that the eigenvectors are the
singular vectors

▶ This relationship can be used to compute singular values by hand

Discussion: Are the eigenvalues and eigenvectors of AAT unique?
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Matrix Properties via SVD

Let r be number of nonzero singular values σi of A ∈ Rm×n

▶ rank(A) is r
▶ range(A) = span{u1, u2, . . . , ur}
▶ null(A) = span{vr+1, vr+2, . . . , vn}

2-norm and Frobenius norm
▶ ∥A∥2 = σ1 and ∥A∥F =

√∑
i σ

2
i

Determinant of matrix
▶ For A ∈ Rm×m, | det(A)| =

∏m
i=1 σi

However, SVD may not be the most efficient way in solving problems
Algorithms for SVD are similar to those for eigenvalue decomposition
and we will discuss them later
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