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Projectors (Projection Matrices)

A projector (aka projection matrix) P ∈ Rm×m (or P ∈ Cm×m)
satisfies P2 = P . They are also said to be idempotent.

▶ Orthogonal projector
▶ Oblique projector

An orthogonal projector is one that projects onto a subspace S1 along
a space S2, where S1 and S2 are orthogonal.

▶ S1 = range(P)
▶ S2 = null(P)

Example:
[

0 0
α 1

]
▶ is an oblique projector if α ̸= 0,
▶ is orthogonal projector if α = 0.
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Orthogonal Projector

Theorem
A projector P ∈ Rm×m is orthogonal if and only if P = PT .

Note: An alternative definition of orthogonal projection is P2 = P and
P = PT , and it projects onto S = range(P). For complex matrices, we
need to replace P = PT with P = PH .

Proof.
“If” direction: If P = PT , then (Px)T (I − P)y = xT (P − P2)y = 0.
“Only if” direction: Use SVD. Suppose P projects onto S1 along S2 where
S1 ⊥ S2, and S1 has dimension n. Let {q1, . . . , , qn} be orthonormal basis
of S1 and {qn+1, . . . , qm} be a basis for S2. Let Q be orthogonal matrix
whose jth column is qj , and we have PQ = (q1, q2, . . . , qn, 0, . . . , 0), so
QTPQ = diag(1, 1, · · · , 1︸ ︷︷ ︸

n

, 0, · · · ) = Σ, and P = QΣQT .

Discussion: Are orthogonal projectors orthogonal matrices?
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Complementary Projectors

Complementary projectors: P vs. I − P .
What space does I − P project onto?

▶ Answer: null(P).
▶ range(I − P) ⊇ null(P) because Pv = 0 ⇒ (I − P)v = v .
▶ range(I −P) ⊆ null(P) because for any v (I −P)v = v −Pv ∈ null(P).

A projector separates Rm into two complementary subspaces: range
space and null space (i.e., range(P) + null(P) = Rm and
range(P) ∩ null(P) = {0} for projector P ∈ Rm×m)
It projects onto range space along null space

▶ In other words, x = Px + r , where r = (I − P)x ∈ null(P)

Discussion: Are range space and null space of projector orthogonal to
each other?
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Uniqueness of Orthogonal Projectors

Orthogonal projector for a subspace is unique
In other words, for S ⊆ Rm be a subspace, if P1 and P2 are each
orthogonal projector onto S , then P1 = P2

Proof: For any z ∈ Rm,

∥(P1 − P2)z∥2
2 = zT (P1 − P2)(P1 − P2)z

= zTP1(P1 − P2)z − zTP2(P1 − P2)z

= zTP1(I − P2)z + zTP2(I − P1)z

= (P1z)
T (I − P2)z + (P2z)

T (I − P1)z

= 0

Therefore, ∥P1 − P2∥2 = 0, and P1 = P2.
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Projections with Orthonormal Basis

Given unit vector q, Pq = qqT and P⊥q = I − Pq

Given any matrix Q ∈ Rm×n whose columns qj are orthonormal,
P = QQT =

∑
j qjq

T
j is orthogonal projector onto range(Q)

SVD-related projections
▶ Suppose A = UΣV T ∈ Rm×n is SVD of A, and r = rank(A)
▶ Partition U and V to

U =
[
Ur |Ũr

]
r m−r

, V =
[
Vr |Ṽr

]
r n−r

▶ What do UrU
T
r , Ũr Ũ

T
r , VrV

T
r , and Ṽ r Ṽ

T
r project onto, respectively?

⋆ Answer: range(A), null(AT ), range(AT ), null(A)

Xiangmin Jiao Numerical Analysis I 7 / 19



Projections with Orthonormal Basis

Given unit vector q, Pq = qqT and P⊥q = I − Pq

Given any matrix Q ∈ Rm×n whose columns qj are orthonormal,
P = QQT =

∑
j qjq

T
j is orthogonal projector onto range(Q)

SVD-related projections
▶ Suppose A = UΣV T ∈ Rm×n is SVD of A, and r = rank(A)
▶ Partition U and V to

U =
[
Ur |Ũr
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T
r , VrV

T
r , and Ṽ r Ṽ
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Projection with Arbitrary Basis

For arbitrary vector a ∈ Rm, we write Pa =
aaT

aT a
and P⊥a = I − Pa

Given any matrix A ∈ Rm×n that has full rank and m ≥ n. Let
A = UΣV T be its SVD

P = UUT = A(ATA)−1AT

is orthogonal projection onto range(A)
(ATA)−1AT is called the pseudo-inverse of A, denoted as A+

Therefore,
P = UUT = AA+

In addition, A+A = I

Note: If m < n, A+ = AT (AAT )−1, and AA+ = I and A+A is
orthogonal projection onto range(AT )
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Distance Between Subspaces

Suppose S1 and S2 are subspaces of Rm, dim(S1) = dim(S2), and Pi

is orthogonal projection onto Si

The distance between S1 and S2 is

dist(S1, S2) = ∥P1 − P2∥2

Suppose W = [W1|W2]
k n−k

,Z = [Z1|Z2]
k n−k

are n × n orthogonal matrices. If

S1 = range(W1) and S2 = range(Z1), then

dist(S1,S2) = ∥W T
1 Z2∥2 = ∥ZT

1 W2∥2

(proof omitted here)
In general, 0 ≤ dist(S1,S2) ≤ 1
Discussion: If S1 and S2 are lines in 2D, what is dist(S1, S2)?
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Overview of Error Analysis

Error analysis is important subject of numerical analysis
Given a problem f and an algorithm f̃ with an input x , the absolute
error is ∥f̃ (x)− f (x)∥ and relative error is ∥f̃ (x)− f (x)∥/∥f (x)∥
What are possible sources of errors?

▶ Round-off error (input, computation) – main concern of NLA
▶ truncation (approximation) error – main concern for AMS 527

We would like the solution to be accurate, i.e., with small errors
Error depends on property (conditioning) of the problem, property
(stability) of the algorithm
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Example Using SVD Analysis

Suppose A ∈ Rn×n is nonsingular, and let A = UΣV T be its SVD
Then

Ax = UΣV T x =
n∑

i=1

σiv
T
i xui

and

x = A−1b =
(
UΣV T

)−1
b =

n∑
i=1

uTi b

σi
vi

Whether matrix multiplication and linear system are sensitive to small
changes in A or b depends on distribution of singular values; nearly
zero σn can amplify errors in b along direction of un
How do we formalize this analysis?
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Absolute Condition Number
Condition number is a measure of sensitivity of a problem
Absolute condition number of a problem f at x is

κ̂ = lim
ε→0

sup
∥δx∥≤ε

∥δf ∥
∥δx∥

where δf = f (x + δx)− f (x)

Less formally, κ̂ = supδx
∥δf ∥
∥δx∥ for infinitesimally small δx

If f is differentiable, then

κ̂ = ∥J(x)∥

where J is the Jacobian of f at x , with Jij = ∂fi/∂xj , and matrix norm
is induced by vector norms on ∂f and ∂x

Discussion: What is absolute condition number of f (x) = αx?
Discussion: Is absolute condition number scale dependent?
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Relative Condition Number
Relative condition number of f at x is

κ = lim
ε→0

sup
∥δx∥≤ε

∥δf ∥/∥f (x)∥
∥δx∥/∥x∥

Less formally, κ = supδx
∥δf ∥/∥δx∥
∥f (x)∥/∥x∥ for infinitesimally small δx

Note: we can use different types of norms to get different condition
numbers
If f is differentiable, then

κ =
∥J(x)∥

∥f (x)∥/∥x∥

Discussion: What is relative condition number of f (x) = αx?
Discussion: Is relative condition number scale dependent?
In numerical analysis, we in general use relative condition number
A problem is well-conditioned if κ is small and is ill-conditioned if κ is
large
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Examples

Example: Function f (x) =
√
x

▶ Absolute condition number of f at x is κ̂ = ∥J∥ = 1/(2
√
x)

⋆ Note: We are talking about the condition number of the problem for a
given x

▶ Relative condition number κ = ∥J∥
∥f (x)∥/∥x∥ = 1/(2

√
x)√

x/x
= 1/2

Example: Function f (x) = x1 − x2, where x = (x1, x2)
T

▶ Absolute condition number of f at x in ∞-norm is
κ̂ = ∥J∥∞ = ∥(1,−1)∥∞ = 2

▶ Relative condition number κ = ∥J∥∞
∥f (x)∥∞/∥x∥∞

= 2
|x1−x2|/max{|x1|,|x2|}

▶ κ is arbitrarily large (f is ill-conditioned) if x1 ≈ x2 (hazard of
cancellation error)

Note: From now on, we will talk about only relative condition number

Xiangmin Jiao Numerical Analysis I 15 / 19



Examples

Example: Function f (x) =
√
x

▶ Absolute condition number of f at x is κ̂ = ∥J∥ = 1/(2
√
x)

⋆ Note: We are talking about the condition number of the problem for a
given x

▶ Relative condition number κ = ∥J∥
∥f (x)∥/∥x∥ = 1/(2

√
x)√

x/x
= 1/2

Example: Function f (x) = x1 − x2, where x = (x1, x2)
T

▶ Absolute condition number of f at x in ∞-norm is
κ̂ = ∥J∥∞ = ∥(1,−1)∥∞ = 2

▶ Relative condition number κ = ∥J∥∞
∥f (x)∥∞/∥x∥∞

= 2
|x1−x2|/max{|x1|,|x2|}

▶ κ is arbitrarily large (f is ill-conditioned) if x1 ≈ x2 (hazard of
cancellation error)

Note: From now on, we will talk about only relative condition number

Xiangmin Jiao Numerical Analysis I 15 / 19



Examples

Example: Function f (x) =
√
x

▶ Absolute condition number of f at x is κ̂ = ∥J∥ = 1/(2
√
x)

⋆ Note: We are talking about the condition number of the problem for a
given x

▶ Relative condition number κ = ∥J∥
∥f (x)∥/∥x∥ = 1/(2

√
x)√

x/x
= 1/2

Example: Function f (x) = x1 − x2, where x = (x1, x2)
T

▶ Absolute condition number of f at x in ∞-norm is
κ̂ = ∥J∥∞ = ∥(1,−1)∥∞ = 2

▶ Relative condition number κ = ∥J∥∞
∥f (x)∥∞/∥x∥∞

= 2
|x1−x2|/max{|x1|,|x2|}

▶ κ is arbitrarily large (f is ill-conditioned) if x1 ≈ x2 (hazard of
cancellation error)

Note: From now on, we will talk about only relative condition number

Xiangmin Jiao Numerical Analysis I 15 / 19



Condition Number of Matrix
Consider f (x) = Ax , with A ∈ Rm×n

κ =
∥J∥

∥f (x)∥/∥x∥
=

∥A∥∥x∥
∥Ax∥

If A is square and nonsingular, since ∥x∥/∥Ax∥ ≤ ∥A−1∥

κ ≤ ∥A∥∥A−1∥

Note that for f (b) = A−1b, its condition number κ ≤ ∥A∥∥A−1∥
We define condition number of matrix A as

κ(A) = ∥A∥∥A−1∥

It is the upper bound of the condition number of f (x) = Ax for any x

For any induced matrix norm, κ(I ) = 1 and κ(A) ≥ 1
Note about the distinction between the condition number of a problem
(the map f (x)) and the condition number of a problem instance (the
evaluation of f (x) for specific x)
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Geometric Interpretation of Condition Number
Another way to interpret at κ(A) is

κ(A) = sup
δx ,x

∥δf ∥/∥δx∥
∥f (x)∥/∥x∥

=
supδx ∥Aδx∥/∥δx∥
infx ∥Ax∥/∥x∥

Question: For what x and δx is the equality achieved?

▶ Answer: When x is in direction of minimum magnification, and δx is in
direction of maximum magnification

Define maximum magnification of A as

maxmag(A) = max
∥x∥=1

∥Ax∥

and minimum magnification of A as

minmag(A) = min
∥x∥=1

∥Ax∥

Then condition number of matrix is κ(A) = maxmag(A)/minmag(A)
For 2-norm, κ(A) = σ1/σn, ratio of largest and smallest singular values
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Example of Ill-Conditioned Matrix

Example

Let A =

[
1000 999
999 998

]
. It is easy to verify that

A−1 =

[
−998 999
999 −1000

]
. So

κ∞(A) = κ1(A) = 19992 = 3.996 × 106.
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Example of Ill-Conditioned Matrix

Example
A famous example of ill-conditioning is Hilbert matrix, defined by
hij = 1/(i + j − 1), 1 ≤ i , j ≤ n. For example, for n = 4, we have

H4 =


1 1/2 1/3 1/4

1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

 .

This sequence of matrices are ill-conditioned even for quite small n. In
particular, κ2(H4) ≈ 1.6 × 104, κ2(H8) ≈ 1.5 × 1010, and
κ2(H10) ≈ 1.6 × 1013. The condition number grows exponentially in n.

Note that this example is an extreme case. Most matrices arising from
practical applications are not nearly as bad.
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