AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 5: Projector; Conditioning and Condition Number

Xiangmin Jiao

SUNY Stony Brook

Outline

Projectors (NLA§6)

2 Conditioning and Condition Numbers (NLA§12)

Xiangmin Jiao Numerical Analysis I 2 / 19

Projectors (Projection Matrices)

- A projector (aka projection matrix) $P \in \mathbb{R}^{m \times m}$ (or $P \in \mathbb{C}^{m \times m}$) satisfies $P^2 = P$. They are also said to be idempotent.
 - Orthogonal projector
 - ► Oblique projector
- An orthogonal projector is one that projects onto a subspace S_1 along a space S_2 , where S_1 and S_2 are orthogonal.
 - $S_1 = \operatorname{range}(P)$
 - $ightharpoonup S_2 = \operatorname{null}(P)$
- Example: $\begin{bmatrix} 0 & 0 \\ \alpha & 1 \end{bmatrix}$
 - is an oblique projector if $\alpha \neq 0$,
 - is orthogonal projector if $\alpha = 0$.

Orthogonal Projector

Theorem

A projector $P \in \mathbb{R}^{m \times m}$ is orthogonal if and only if $P = P^T$.

Note: An alternative definition of *orthogonal projection* is $P^2 = P$ and $P = P^T$, and it projects onto S = range(P). For complex matrices, we need to replace $P = P^T$ with $P = P^H$.

Proof.

"If" direction: If $P=P^T$, then $(Px)^T(I-P)y=x^T(P-P^2)y=0$. "Only if" direction: Use SVD. Suppose P projects onto S_1 along S_2 where $S_1 \perp S_2$, and S_1 has dimension n. Let $\{q_1,\ldots,q_n\}$ be orthonormal basis of S_1 and $\{q_{n+1},\ldots,q_m\}$ be a basis for S_2 . Let Q be orthogonal matrix whose fth column is f0, and we have f1 and f2 and f3 and f4 and f5 and f6 and f7 and f8 and f9 an

n

Orthogonal Projector

Theorem

A projector $P \in \mathbb{R}^{m \times m}$ is orthogonal if and only if $P = P^T$.

Note: An alternative definition of *orthogonal projection* is $P^2 = P$ and $P = P^T$, and it projects onto S = range(P). For complex matrices, we need to replace $P = P^T$ with $P = P^H$.

Proof.

"If" direction: If $P=P^T$, then $(Px)^T(I-P)y=x^T(P-P^2)y=0$. "Only if" direction: Use SVD. Suppose P projects onto S_1 along S_2 where $S_1 \perp S_2$, and S_1 has dimension n. Let $\{q_1,\ldots,q_n\}$ be orthonormal basis of S_1 and $\{q_{n+1},\ldots,q_m\}$ be a basis for S_2 . Let Q be orthogonal matrix whose jth column is q_j , and we have $PQ=(q_1,q_2,\ldots,q_n,0,\ldots,0)$, so $Q^TPQ=\mathrm{diag}(\underbrace{1,1,\cdots,1}_{},0,\cdots)=\Sigma$, and $P=Q\Sigma Q^T$.

Discussion: Are orthogonal projectors orthogonal matrices?

n

4 / 19

Complementary Projectors

- Complementary projectors: P vs. I P.
- What space does I P project onto?

Complementary Projectors

- Complementary projectors: P vs. I P.
- What space does I P project onto?
 - Answer: null(P).
 - ▶ range(I P) \supseteq null(P) because $Pv = 0 \Rightarrow (I P)v = v$.
 - ▶ range(I P) ⊆ null(P) because for any v $(I P)v = v Pv \in \text{null}(P)$.
- A projector separates \mathbb{R}^m into two complementary subspaces: range space and null space (i.e., range(P) + null(P) = \mathbb{R}^m and range(P) \cap null(P) = $\{0\}$ for projector $P \in \mathbb{R}^{m \times m}$)
- It projects onto range space along null space
 - ▶ In other words, x = Px + r, where $r = (I P)x \in null(P)$
- Discussion: Are range space and null space of projector orthogonal to each other?

Uniqueness of Orthogonal Projectors

- Orthogonal projector for a subspace is unique
- In other words, for $S \subseteq \mathbb{R}^m$ be a subspace, if P_1 and P_2 are each orthogonal projector onto S, then $P_1 = P_2$
- Proof: For any $z \in \mathbb{R}^m$,

$$||(P_1 - P_2)z||_2^2 = z^T (P_1 - P_2)(P_1 - P_2)z$$

$$= z^T P_1(P_1 - P_2)z - z^T P_2(P_1 - P_2)z$$

$$= z^T P_1(I - P_2)z + z^T P_2(I - P_1)z$$

$$= (P_1 z)^T (I - P_2)z + (P_2 z)^T (I - P_1)z$$

$$= 0$$

Therefore, $||P_1 - P_2||_2 = 0$, and $P_1 = P_2$.

Projections with Orthonormal Basis

- ullet Given unit vector q, $P_q = qq^T$ and $P_{\perp q} = I P_q$
- Given any matrix $Q \in \mathbb{R}^{m \times n}$ whose columns q_j are orthonormal, $P = QQ^T = \sum_i q_j q_i^T$ is orthogonal projector onto range(Q)
- SVD-related projections
 - ▶ Suppose $A = U\Sigma V^T \in \mathbb{R}^{m \times n}$ is SVD of A, and r = rank(A)
 - ▶ Partition *U* and *V* to

$$U = \begin{bmatrix} U_r | \tilde{U}_r \end{bmatrix}, \quad V = \begin{bmatrix} V_r | \tilde{V}_r \end{bmatrix}$$

▶ What do $U_rU_r^T$, $\tilde{U}_r\tilde{U}_r^T$, $V_rV_r^T$, and $\tilde{V}_r\tilde{V}_r^T$ project onto, respectively?

Projections with Orthonormal Basis

- ullet Given unit vector q, $P_q = qq^T$ and $P_{\perp q} = I P_q$
- Given any matrix $Q \in \mathbb{R}^{m \times n}$ whose columns q_j are orthonormal, $P = QQ^T = \sum_i q_j q_i^T$ is orthogonal projector onto range(Q)
- SVD-related projections
 - ▶ Suppose $A = U\Sigma V^T \in \mathbb{R}^{m \times n}$ is SVD of A, and r = rank(A)
 - ▶ Partition *U* and *V* to

$$U = \begin{bmatrix} U_r | \tilde{U}_r \end{bmatrix}, \quad V = \begin{bmatrix} V_r | \tilde{V}_r \end{bmatrix}$$

- ▶ What do $U_rU_r^T$, $\tilde{U}_r\tilde{U}_r^T$, $V_rV_r^T$, and $\tilde{V}_r\tilde{V}_r^T$ project onto, respectively?
 - * Answer: range(A), $null(A^T)$, $range(A^T)$, null(A)

Projection with Arbitrary Basis

- For arbitrary vector $a \in \mathbb{R}^m$, we write $P_a = \frac{aa^T}{a^Ta}$ and $P_{\perp a} = I P_a$
- Given any matrix $A \in \mathbb{R}^{m \times n}$ that has full rank and $m \ge n$. Let $A = U \Sigma V^T$ be its SVD

$$P = UU^T = A(A^TA)^{-1}A^T$$

is orthogonal projection onto range(A)

- $(A^TA)^{-1}A^T$ is called the *pseudo-inverse* of A, denoted as A^+
- Therefore,

$$P = UU^T = AA^+$$

- In addition, $A^+A = I$
- Note: If m < n, $A^+ = A^T (AA^T)^{-1}$, and $AA^+ = I$ and A^+A is orthogonal projection onto range(A^T)

Distance Between Subspaces

- Suppose S_1 and S_2 are subspaces of \mathbb{R}^m , $\dim(S_1) = \dim(S_2)$, and P_i is orthogonal projection onto S_i
- The distance between S_1 and S_2 is

$$\mathsf{dist}(S_1, S_2) = \|P_1 - P_2\|_2$$

• Suppose $W = [W_1|W_2], Z = [Z_1|Z_2]$ are $n \times n$ orthogonal matrices. If $S_1 = \text{range}(W_1)$ and $S_2 = \text{range}(Z_1)$, then

$$\mathsf{dist}(S_1, S_2) = \|W_1^T Z_2\|_2 = \|Z_1^T W_2\|_2$$

(proof omitted here)

- In general, $0 \leq \operatorname{dist}(S_1, S_2) \leq 1$
- Discussion: If S_1 and S_2 are lines in 2D, what is $dist(S_1, S_2)$?

Outline

1 Projectors (NLA§6)

2 Conditioning and Condition Numbers (NLA§12)

Xiangmin Jiao Numerical Analysis I 10 / 19

Overview of Error Analysis

- Error analysis is important subject of numerical analysis
- Given a problem f and an algorithm \tilde{f} with an input x, the absolute error is $\|\tilde{f}(x) f(x)\|$ and relative error is $\|\tilde{f}(x) f(x)\|/\|f(x)\|$
- What are possible sources of errors?

Overview of Error Analysis

- Error analysis is important subject of numerical analysis
- Given a problem f and an algorithm \tilde{f} with an input x, the absolute error is $\|\tilde{f}(x) f(x)\|$ and relative error is $\|\tilde{f}(x) f(x)\|/\|f(x)\|$
- What are possible sources of errors?
 - ► Round-off error (input, computation) main concern of NLA
 - truncation (approximation) error main concern for AMS 527
- We would like the solution to be accurate, i.e., with small errors
- Error depends on property (conditioning) of the problem, property (stability) of the algorithm

Example Using SVD Analysis

- Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular, and let $A = U \Sigma V^T$ be its SVD
- Then

$$Ax = U\Sigma V^T x = \sum_{i=1}^n \sigma_i v_i^T x u_i$$

and

$$x = A^{-1}b = \left(U\Sigma V^{T}\right)^{-1}b = \sum_{i=1}^{n} \frac{u_{i}^{T}b}{\sigma_{i}}v_{i}$$

- Whether matrix multiplication and linear system are sensitive to small changes in A or b depends on distribution of singular values; nearly zero σ_n can amplify errors in b along direction of u_n
- How do we formalize this analysis?

Absolute Condition Number

- Condition number is a measure of sensitivity of a problem
- Absolute condition number of a problem f at x is

$$\hat{\kappa} = \lim_{\varepsilon \to 0} \sup_{\|\delta x\| \le \varepsilon} \frac{\|\delta f\|}{\|\delta x\|}$$

where
$$\delta f = f(x + \delta x) - f(x)$$

- Less formally, $\hat{\kappa} = \sup_{\delta x} \frac{\|\delta f\|}{\|\delta x\|}$ for infinitesimally small δx
- If f is differentiable, then

$$\hat{\kappa} = \|J(x)\|$$

where J is the Jacobian of f at x, with $J_{ij} = \partial f_i / \partial x_j$, and matrix norm is induced by vector norms on ∂f and ∂x

- Discussion: What is absolute condition number of $f(x) = \alpha x$?
- Discussion: Is absolute condition number scale dependent?

Xiangmin Jiao Numerical Analysis I 13 / 19

Relative Condition Number

• Relative condition number of f at x is

$$\kappa = \lim_{\varepsilon \to 0} \sup_{\|\delta x\| \le \varepsilon} \frac{\|\delta f\|/\|f(x)\|}{\|\delta x\|/\|x\|}$$

- Less formally, $\kappa = \sup_{\delta x} \frac{\|\delta f\|/\|\delta x\|}{\|f(x)\|/\|x\|}$ for infinitesimally small δx
- Note: we can use different types of norms to get different condition numbers
- If f is differentiable, then

$$\kappa = \frac{\|J(x)\|}{\|f(x)\|/\|x\|}$$

- Discussion: What is relative condition number of $f(x) = \alpha x$?
- Discussion: Is relative condition number scale dependent?
- In numerical analysis, we in general use relative condition number
- \bullet A problem is well-conditioned if κ is small and is ill-conditioned if κ is large

Examples

• Example: Function $f(x) = \sqrt{x}$

Examples

- Example: Function $f(x) = \sqrt{x}$
 - ▶ Absolute condition number of f at x is $\hat{\kappa} = ||J|| = 1/(2\sqrt{x})$
 - Note: We are talking about the condition number of the problem for a given x
 - ▶ Relative condition number $\kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{1/(2\sqrt{x})}{\sqrt{x}/x} = 1/2$
- Example: Function $f(x) = x_1 x_2$, where $x = (x_1, x_2)^T$

Examples

- Example: Function $f(x) = \sqrt{x}$
 - ▶ Absolute condition number of f at x is $\hat{\kappa} = ||J|| = 1/(2\sqrt{x})$
 - Note: We are talking about the condition number of the problem for a given x
 - ▶ Relative condition number $\kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{1/(2\sqrt{x})}{\sqrt{x}/x} = 1/2$
- Example: Function $f(x) = x_1 x_2$, where $x = (x_1, x_2)^T$
 - Absolute condition number of f at x in ∞ -norm is $\hat{\kappa} = \|J\|_{\infty} = \|(1, -1)\|_{\infty} = 2$
 - ▶ Relative condition number $\kappa = \frac{\|J\|_{\infty}}{\|f(\mathbf{x})\|_{\infty}/\|\mathbf{x}\|_{\infty}} = \frac{2}{|\mathbf{x_1} \mathbf{x_2}|/\max\{|\mathbf{x_1}|, |\mathbf{x_2}|\}}$
 - ho is arbitrarily large (f is ill-conditioned) if $x_1 \approx x_2$ (hazard of cancellation error)
- Note: From now on, we will talk about only relative condition number

Xiangmin Jiao

Condition Number of Matrix

• Consider f(x) = Ax, with $A \in \mathbb{R}^{m \times n}$

$$\kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{\|A\|\|x\|}{\|Ax\|}$$

• If A is square and nonsingular, since $||x||/||Ax|| \le ||A^{-1}||$

$$\kappa \le \|A\| \|A^{-1}\|$$

- Note that for $f(b) = A^{-1}b$, its condition number $\kappa \le ||A|| ||A^{-1}||$
- We define condition number of matrix A as

$$\kappa(A) = ||A|| ||A^{-1}||$$

- It is the upper bound of the condition number of f(x) = Ax for any x
- For any induced matrix norm, $\kappa(I) = 1$ and $\kappa(A) \ge 1$
- Note about the distinction between the condition number of a *problem* (the map f(x)) and the condition number of a *problem instance* (the evaluation of f(x) for specific x)

Geometric Interpretation of Condition Number

• Another way to interpret at $\kappa(A)$ is

$$\kappa(A) = \sup_{\delta x, x} \frac{\|\delta f\| / \|\delta x\|}{\|f(x)\| / \|x\|} = \frac{\sup_{\delta x} \|A \delta x\| / \|\delta x\|}{\inf_{x} \|A x\| / \|x\|}$$

• Question: For what x and δx is the equality achieved?

Geometric Interpretation of Condition Number

• Another way to interpret at $\kappa(A)$ is

$$\kappa(A) = \sup_{\delta x, x} \frac{\|\delta f\| / \|\delta x\|}{\|f(x)\| / \|x\|} = \frac{\sup_{\delta x} \|A \delta x\| / \|\delta x\|}{\inf_{x} \|A x\| / \|x\|}$$

- Question: For what x and δx is the equality achieved?
 - ▶ Answer: When x is in direction of minimum magnification, and δx is in direction of maximum magnification
- Define maximum magnification of A as

$$\mathsf{maxmag}(A) = \max_{\|x\|=1} \|Ax\|$$

and minimum magnification of A as

$$\mathsf{minmag}(A) = \min_{\|x\|=1} \|Ax\|$$

- Then condition number of matrix is $\kappa(A) = \max(A)/\min(A)$
- For 2-norm, $\kappa(A) = \sigma_1/\sigma_n$, ratio of largest and smallest singular values

Xiangmin Jiao Numerical Analysis I 17 / 19

Example of III-Conditioned Matrix

Example

Let
$$A = \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. It is easy to verify that $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$. So $\kappa_{\infty}(A) = \kappa_1(A) = 1999^2 = 3.996 \times 10^6$.

Example of III-Conditioned Matrix

Example

A famous example of ill-conditioning is Hilbert matrix, defined by $h_{ij}=1/(i+j-1)$, $1 \le i,j \le n$. For example, for n=4, we have

$$H_4 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix}.$$

This sequence of matrices are ill-conditioned even for quite small n. In particular, $\kappa_2(H_4)\approx 1.6\times 10^4$, $\kappa_2(H_8)\approx 1.5\times 10^{10}$, and $\kappa_2(H_{10})\approx 1.6\times 10^{13}$. The condition number grows exponentially in n.

Note that this example is an extreme case. Most matrices arising from practical applications are not nearly as bad.

19 / 19