AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)
 Lecture 5: Projector; Conditioning and Condition Number

Xiangmin Jiao
SUNY Stony Brook

Outline

(1) Projectors (NLA§6)

(2) Conditioning and Condition Numbers (NLA§12)

Projectors (Projection Matrices)

- A projector (aka projection matrix) $P \in \mathbb{R}^{m \times m}$ (or $P \in \mathbb{C}^{m \times m}$) satisfies $P^{2}=P$. They are also said to be idempotent.
- Orthogonal projector
- Oblique projector
- An orthogonal projector is one that projects onto a subspace S_{1} along a space S_{2}, where S_{1} and S_{2} are orthogonal.
- $S_{1}=\operatorname{range}(P)$
- $S_{2}=\operatorname{null}(P)$
- Example: $\left[\begin{array}{ll}0 & 0 \\ \alpha & 1\end{array}\right]$
- is an oblique projector if $\alpha \neq 0$,
- is orthogonal projector if $\alpha=0$.

Orthogonal Projector

Theorem

A projector $P \in \mathbb{R}^{m \times m}$ is orthogonal if and only if $P=P^{T}$.
Note: An alternative definition of orthogonal projection is $P^{2}=P$ and $P=P^{T}$, and it projects onto $S=\operatorname{range}(P)$. For complex matrices, we need to replace $P=P^{T}$ with $P=P^{H}$.

Proof.

"If" direction: If $P=P^{T}$, then $(P x)^{T}(I-P) y=x^{T}\left(P-P^{2}\right) y=0$.
"Only if" direction: Use SVD. Suppose P projects onto S_{1} along S_{2} where $S_{1} \perp S_{2}$, and S_{1} has dimension n. Let $\left\{q_{1}, \ldots, q_{n}\right\}$ be orthonormal basis of S_{1} and $\left\{q_{n+1}, \ldots, q_{m}\right\}$ be a basis for S_{2}. Let Q be orthogonal matrix whose j th column is q_{j}, and we have $P Q=\left(q_{1}, q_{2}, \ldots, q_{n}, 0, \ldots, 0\right)$, so $Q^{T} P Q=\operatorname{diag}(\underbrace{1,1, \cdots, 1}, 0, \cdots)=\Sigma$, and $P=Q \Sigma Q^{T}$.

Orthogonal Projector

Theorem

A projector $P \in \mathbb{R}^{m \times m}$ is orthogonal if and only if $P=P^{T}$.
Note: An alternative definition of orthogonal projection is $P^{2}=P$ and $P=P^{T}$, and it projects onto $S=\operatorname{range}(P)$. For complex matrices, we need to replace $P=P^{T}$ with $P=P^{H}$.

Proof.

"If" direction: If $P=P^{\top}$, then $(P x)^{T}(I-P) y=x^{\top}\left(P-P^{2}\right) y=0$.
"Only if" direction: Use SVD. Suppose P projects onto S_{1} along S_{2} where $S_{1} \perp S_{2}$, and S_{1} has dimension n. Let $\left\{q_{1}, \ldots, q_{n}\right\}$ be orthonormal basis of S_{1} and $\left\{q_{n+1}, \ldots, q_{m}\right\}$ be a basis for S_{2}. Let Q be orthogonal matrix whose j th column is q_{j}, and we have $P Q=\left(q_{1}, q_{2}, \ldots, q_{n}, 0, \ldots, 0\right)$, so $Q^{\top} P Q=\operatorname{diag}(\underbrace{1,1, \cdots, 1}, 0, \cdots)=\Sigma$, and $P=Q \Sigma Q^{\top}$.

Discussion: Are orthogonal projectors orthogonal matrices?

Complementary Projectors

- Complementary projectors: P vs. $I-P$.
- What space does $I-P$ project onto?

Complementary Projectors

- Complementary projectors: P vs. $I-P$.
- What space does $I-P$ project onto?
- Answer: null(P).
- range $(I-P) \supseteq \operatorname{null}(P)$ because $P v=0 \Rightarrow(I-P) v=v$.
- range $(I-P) \subseteq$ null (P) because for any $v(I-P) v=v-P v \in \operatorname{null}(P)$.
- A projector separates \mathbb{R}^{m} into two complementary subspaces: range space and null space (i.e., range $(P)+\operatorname{null}(P)=\mathbb{R}^{m}$ and range $(P) \cap \operatorname{null}(P)=\{0\}$ for projector $\left.P \in \mathbb{R}^{m \times m}\right)$
- It projects onto range space along null space
- In other words, $x=P x+r$, where $r=(I-P) x \in \operatorname{null}(P)$
- Discussion: Are range space and null space of projector orthogonal to each other?

Uniqueness of Orthogonal Projectors

- Orthogonal projector for a subspace is unique
- In other words, for $S \subseteq \mathbb{R}^{m}$ be a subspace, if P_{1} and P_{2} are each orthogonal projector onto S, then $P_{1}=P_{2}$
- Proof: For any $z \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\left\|\left(P_{1}-P_{2}\right) z\right\|_{2}^{2} & =z^{T}\left(P_{1}-P_{2}\right)\left(P_{1}-P_{2}\right) z \\
& =z^{T} P_{1}\left(P_{1}-P_{2}\right) z-z^{T} P_{2}\left(P_{1}-P_{2}\right) z \\
& =z^{T} P_{1}\left(I-P_{2}\right) z+z^{T} P_{2}\left(I-P_{1}\right) z \\
& =\left(P_{1} z\right)^{T}\left(I-P_{2}\right) z+\left(P_{2} z\right)^{T}\left(I-P_{1}\right) z \\
& =0
\end{aligned}
$$

Therefore, $\left\|P_{1}-P_{2}\right\|_{2}=0$, and $P_{1}=P_{2}$.

Projections with Orthonormal Basis

- Given unit vector $q, P_{q}=q q^{T}$ and $P_{\perp q}=I-P_{q}$
- Given any matrix $Q \in \mathbb{R}^{m \times n}$ whose columns q_{j} are orthonormal, $P=Q Q^{T}=\sum_{j} q_{j} q_{j}^{T}$ is orthogonal projector onto range (Q)
- SVD-related projections
- Suppose $A=U \Sigma V^{T} \in \mathbb{R}^{m \times n}$ is SVD of A, and $r=\operatorname{rank}(A)$
- Partition U and V to

$$
U=\underset{r m-r}{\left[\begin{array}{c}
U_{r} \mid \tilde{U}_{r} \\
\hline
\end{array}, \quad V=\underset{r n-r}{V_{r} \mid \tilde{V}_{r}}\right]}
$$

- What do $U_{r} U_{r}^{T}, \tilde{U}_{r} \tilde{U}_{r}^{T}, V_{r} V_{r}^{T}$, and $\tilde{V}_{r} \tilde{V}_{r}^{T}$ project onto, respectively?

Projections with Orthonormal Basis

- Given unit vector $q, P_{q}=q q^{T}$ and $P_{\perp q}=I-P_{q}$
- Given any matrix $Q \in \mathbb{R}^{m \times n}$ whose columns q_{j} are orthonormal, $P=Q Q^{T}=\sum_{j} q_{j} q_{j}^{T}$ is orthogonal projector onto range (Q)
- SVD-related projections
- Suppose $A=U \Sigma V^{T} \in \mathbb{R}^{m \times n}$ is SVD of A, and $r=\operatorname{rank}(A)$
- Partition U and V to
- What do $U_{r} U_{r}^{T}, \tilde{U}_{r} \tilde{U}_{r}^{T}, V_{r} V_{r}^{T}$, and $\tilde{V}_{r} \tilde{V}_{r}^{T}$ project onto, respectively?
* Answer: $\operatorname{range}(A), \operatorname{null}\left(A^{T}\right)$, range $\left(A^{T}\right)$, null (A)

Projection with Arbitrary Basis

- For arbitrary vector $a \in \mathbb{R}^{m}$, we write $P_{a}=\frac{a a^{T}}{a^{T} a}$ and $P_{\perp a}=I-P_{a}$
- Given any matrix $A \in \mathbb{R}^{m \times n}$ that has full rank and $m \geq n$. Let $A=U \Sigma V^{T}$ be its SVD

$$
P=U U^{T}=A\left(A^{T} A\right)^{-1} A^{T}
$$

is orthogonal projection onto range (A)

- $\left(A^{T} A\right)^{-1} A^{T}$ is called the pseudo-inverse of A, denoted as A^{+}
- Therefore,

$$
P=U U^{T}=A A^{+}
$$

- In addition, $A^{+} A=I$
- Note: If $m<n, A^{+}=A^{T}\left(A A^{T}\right)^{-1}$, and $A A^{+}=I$ and $A^{+} A$ is orthogonal projection onto range $\left(A^{T}\right)$

Distance Between Subspaces

- Suppose S_{1} and S_{2} are subspaces of $\mathbb{R}^{m}, \operatorname{dim}\left(S_{1}\right)=\operatorname{dim}\left(S_{2}\right)$, and P_{i} is orthogonal projection onto S_{i}
- The distance between S_{1} and S_{2} is

$$
\operatorname{dist}\left(S_{1}, S_{2}\right)=\left\|P_{1}-P_{2}\right\|_{2}
$$

 $S_{1}=\operatorname{range}\left(W_{1}\right)$ and $S_{2}=\operatorname{range}\left(Z_{1}\right)$, then

$$
\operatorname{dist}\left(S_{1}, S_{2}\right)=\left\|W_{1}^{T} Z_{2}\right\|_{2}=\left\|Z_{1}^{T} W_{2}\right\|_{2}
$$

(proof omitted here)

- In general, $0 \leq \operatorname{dist}\left(S_{1}, S_{2}\right) \leq 1$
- Discussion: If S_{1} and S_{2} are lines in 2D, what is $\operatorname{dist}\left(S_{1}, S_{2}\right)$?

Outline

(1) Projectors (NLA§6)
(2) Conditioning and Condition Numbers (NLA§12)

Overview of Error Analysis

- Error analysis is important subject of numerical analysis
- Given a problem f and an algorithm \tilde{f} with an input x, the absolute error is $\|\tilde{f}(x)-f(x)\|$ and relative error is $\|\tilde{f}(x)-f(x)\| /\|f(x)\|$
- What are possible sources of errors?

Overview of Error Analysis

- Error analysis is important subject of numerical analysis
- Given a problem f and an algorithm \tilde{f} with an input x, the absolute error is $\|\tilde{f}(x)-f(x)\|$ and relative error is $\|\tilde{f}(x)-f(x)\| /\|f(x)\|$
- What are possible sources of errors?
- Round-off error (input, computation) - main concern of NLA
- truncation (approximation) error - main concern for AMS 527
- We would like the solution to be accurate, i.e., with small errors
- Error depends on property (conditioning) of the problem, property (stability) of the algorithm

Example Using SVD Analysis

- Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular, and let $A=U \Sigma V^{T}$ be its SVD
- Then

$$
A x=U \Sigma V^{T} x=\sum_{i=1}^{n} \sigma_{i} v_{i}^{T} x u_{i}
$$

and

$$
x=A^{-1} b=\left(U \Sigma V^{T}\right)^{-1} b=\sum_{i=1}^{n} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

- Whether matrix multiplication and linear system are sensitive to small changes in A or b depends on distribution of singular values; nearly zero σ_{n} can amplify errors in b along direction of u_{n}
- How do we formalize this analysis?

Absolute Condition Number

- Condition number is a measure of sensitivity of a problem
- Absolute condition number of a problem f at x is

$$
\hat{\kappa}=\lim _{\varepsilon \rightarrow 0} \sup _{\|\delta x\| \leq \varepsilon} \frac{\|\delta f\|}{\|\delta x\|}
$$

where $\delta f=f(x+\delta x)-f(x)$

- Less formally, $\hat{\kappa}=\sup _{\delta x} \frac{\|\delta f\|}{\|\delta x\|}$ for infinitesimally small δx
- If f is differentiable, then

$$
\hat{\kappa}=\|J(x)\|
$$

where J is the Jacobian of f at x, with $J_{i j}=\partial f_{i} / \partial x_{j}$, and matrix norm is induced by vector norms on ∂f and ∂x

- Discussion: What is absolute condition number of $f(x)=\alpha x$?
- Discussion: Is absolute condition number scale dependent?

Relative Condition Number

- Relative condition number of f at x is

$$
\kappa=\lim _{\varepsilon \rightarrow 0} \sup _{\|\delta x\| \leq \varepsilon} \frac{\|\delta f\| /\|f(x)\|}{\|\delta x\| /\|x\|}
$$

- Less formally, $\kappa=\sup _{\delta x} \frac{\|\delta f\| / /\|\delta x\|}{\|f(x)\| /\|x\|}$ for infinitesimally small δx
- Note: we can use different types of norms to get different condition numbers
- If f is differentiable, then

$$
\kappa=\frac{\|J(x)\|}{\|f(x)\| /\|x\|}
$$

- Discussion: What is relative condition number of $f(x)=\alpha x$?
- Discussion: Is relative condition number scale dependent?
- In numerical analysis, we in general use relative condition number
- A problem is well-conditioned if κ is small and is ill-conditioned if κ is large

Examples

- Example: Function $f(x)=\sqrt{x}$

Examples

- Example: Function $f(x)=\sqrt{x}$
- Absolute condition number of f at x is $\hat{\kappa}=\|J\|=1 /(2 \sqrt{x})$
* Note: We are talking about the condition number of the problem for a given x
- Relative condition number $\kappa=\frac{\|J\|}{\|f(x)\| /\|x\|}=\frac{1 /(2 \sqrt{x})}{\sqrt{x} / x}=1 / 2$
- Example: Function $f(x)=x_{1}-x_{2}$, where $x=\left(x_{1}, x_{2}\right)^{T}$

Examples

- Example: Function $f(x)=\sqrt{x}$
- Absolute condition number of f at x is $\hat{\kappa}=\|J\|=1 /(2 \sqrt{x})$
* Note: We are talking about the condition number of the problem for a given x
- Relative condition number $\kappa=\frac{\|J\|}{\|f(x)\| /\|x\|}=\frac{1 /(2 \sqrt{x})}{\sqrt{x} / x}=1 / 2$
- Example: Function $f(x)=x_{1}-x_{2}$, where $x=\left(x_{1}, x_{2}\right)^{T}$
- Absolute condition number of f at x in ∞-norm is $\hat{\kappa}=\|J\|_{\infty}=\|(1,-1)\|_{\infty}=2$
- Relative condition number $\kappa=\frac{\|J\|_{\infty}}{\|f(x)\|_{\infty} /\|x\|_{\infty}}=\frac{2}{\left|x_{1}-x_{2}\right| / \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}}$
- κ is arbitrarily large (f is ill-conditioned) if $x_{1} \approx x_{2}$ (hazard of cancellation error)
- Note: From now on, we will talk about only relative condition number

Condition Number of Matrix

- Consider $f(x)=A x$, with $A \in \mathbb{R}^{m \times n}$

$$
\kappa=\frac{\|J\|}{\|f(x)\| /\|x\|}=\frac{\|A\|\|x\|}{\|A x\|}
$$

- If A is square and nonsingular, since $\|x\| /\|A x\| \leq\left\|A^{-1}\right\|$

$$
\kappa \leq\|A\|\left\|A^{-1}\right\|
$$

- Note that for $f(b)=A^{-1} b$, its condition number $\kappa \leq\|A\|\left\|A^{-1}\right\|$
- We define condition number of matrix A as

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

- It is the upper bound of the condition number of $f(x)=A x$ for any x
- For any induced matrix norm, $\kappa(I)=1$ and $\kappa(A) \geq 1$
- Note about the distinction between the condition number of a problem (the map $f(x)$) and the condition number of a problem instance (the evaluation of $f(x)$ for specific x)

Geometric Interpretation of Condition Number

- Another way to interpret at $\kappa(A)$ is

$$
\kappa(A)=\sup _{\delta x, x} \frac{\|\delta f\| /\|\delta x\|}{\|f(x)\| /\|x\|}=\frac{\sup _{\delta x}\|A \delta x\| /\|\delta x\|}{\inf _{x}\|A x\| /\|x\|}
$$

- Question: For what x and δx is the equality achieved?

Geometric Interpretation of Condition Number

- Another way to interpret at $\kappa(A)$ is

$$
\kappa(A)=\sup _{\delta x, x} \frac{\|\delta f\| /\|\delta x\|}{\|f(x)\| /\|x\|}=\frac{\sup _{\delta x}\|A \delta x\| /\|\delta x\|}{\inf _{x}\|A x\| /\|x\|}
$$

- Question: For what x and δx is the equality achieved?
- Answer: When x is in direction of minimum magnification, and δx is in direction of maximum magnification
- Define maximum magnification of A as

$$
\operatorname{maxmag}(A)=\max _{\|x\|=1}\|A x\|
$$

and minimum magnification of A as

$$
\operatorname{minmag}(A)=\min _{\|x\|=1}\|A x\|
$$

- Then condition number of matrix is $\kappa(A)=\operatorname{maxmag}(A) / \operatorname{minmag}(A)$
- For 2-norm, $\kappa(A)=\sigma_{1} / \sigma_{n}$, ratio of largest and smallest singular values

Example of III-Conditioned Matrix

Example

Let $A=\left[\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right]$. It is easy to verify that
$A^{-1}=\left[\begin{array}{cc}-998 & 999 \\ 999 & -1000\end{array}\right]$. So

$$
\kappa_{\infty}(A)=\kappa_{1}(A)=1999^{2}=3.996 \times 10^{6} .
$$

Example of III-Conditioned Matrix

Example

A famous example of ill-conditioning is Hilbert matrix, defined by $h_{i j}=1 /(i+j-1), 1 \leq i, j \leq n$. For example, for $n=4$, we have

$$
H_{4}=\left[\begin{array}{cccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 \\
1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\
1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\
1 / 4 & 1 / 5 & 1 / 6 & 1 / 7
\end{array}\right]
$$

This sequence of matrices are ill-conditioned even for quite small n. In particular, $\kappa_{2}\left(H_{4}\right) \approx 1.6 \times 10^{4}, \kappa_{2}\left(H_{8}\right) \approx 1.5 \times 10^{10}$, and $\kappa_{2}\left(H_{10}\right) \approx 1.6 \times 10^{13}$. The condition number grows exponentially in n.

Note that this example is an extreme case. Most matrices arising from practical applications are not nearly as bad.

