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Outline

@ Condition Number of Gaussian Elimination (NLA §22 & MC §3.3)
@ Perturbing Right-Hand Side
@ Perturbing Coefficient Matrix
@ Perturbing Both Sides
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Condition Number of Linear System
Theorem

Let A be nonsingular, and let x and X = x + dx be the solutions of Ax = b
and AX = b+ db, respectively. Then

x| b
[ 'S S K _—
= A

and there exist b and §b for which the equality holds.

o Proof sketch: [|dx]|| < [|A=*|[[|0b]| and ||b]| < [IA]|]|x]|
@ Question: For what b and b is the equality achieved?
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Condition Number of Linear System

Theorem
Let A be nonsingular, and let x and X = x + dx be the solutions of Ax = b
and AX = b+ db, respectively. Then

x| b
HOXIl — eay o2l
= A

and there exist b and §b for which the equality holds.

o Proof sketch: ||6x|| < [[A7Y||||6b]| and ||b]| < ||A]l|lx]|

@ Question: For what b and 6b is the equality achieved?
Answer: When b is in direction of minimum magnification of A1 and
8b is in direction of maximum magnification of A~1.
In 2-norm, when b is in direction of maximum magnification of AT,
and &b is in direction of minimum magnification of AT.

o We say a matrix is nearly singular if its condition number is very large.
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lll Conditioning Caused by Poor Scaling

@ Some matrices are ill conditioned merely because they are out of scale.

Theorem

Let A € R™" be any nonsingular matrix, and let ay, 1 < k < n denote the
kth column of A. Then for any i and j with 1 < i,j < n,

rp(A) = laillp/llajllp-

o Proof sketch: ||All, > ||aill, and [[A7Y]|, > 1/|aillp for L<i<n

@ This theorem indicates that poor scaling inevitably leads to ill
conditioning

@ A necessary condition for a matrix to be well conditioned is that all of
its rows and columns are of roughly the same magnitude.
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Non-singularity of Perturbed Matrix

Theorem

If A is nonsingular and

[6All/IIAll < 1/r(A),
then A+ §A is nonsingular.
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Non-singularity of Perturbed Matrix

Theorem
If A is nonsingular and

[SA[I/IAIF < 1/%(A),

then A+ §A is nonsingular.

Proof.

ISA|l/I|A|l < 1/K(A) is equivalent to ||0A||[|[A~Y]| < 1. Suppose A + JA is
singular, then Jy # 0 such that (A + JA)y =0, and y = —A"16Ay.
Therefore, [|y|| < [[AY[[|5A][ly[l, or [[A~*{||6A] > 1. O

V.

o If A+ 0A is the singular matrix closest to A, in the sense that ||JA||2
is as small as possible, then ||dA]|2/|All2 = 1/k2(A)
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Linear System with Perturbed Matrix

o Suppose Ax = b and AR = b where A= A + §A. Let 6x = X — x and
X =x+40x.

e We would like to bound ||6x||/||x||, but first we bound [|dx||/||X]]
Theorem
If A is nonsingular, and let b # 0. Then
1ox]| _

1%~

15A]
< ~A

Proof.
Rewrite (A+ 0A)X = b as Ax + Adx + 0AX = b, where Ax = b. Therefore,

lox[| < [IA=*[[[l6A] [1%]-

Therefore,
[[ox| [0A]]

X1 1Al
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Linear System with Perturbed Matrix Cont'd
@ Ax = b and A% = b, where A = A + §A. Let 6x = X — x and

X =x+0x.

Theorem
If A 'is nonsingular and ||0A||/||All < 1/k(A), and let b # 0. Then

[ox]| . s(A)SAI/IIA
Xl = 1= s(A)[I6A]l/IIAII

Proof.
[6x]] < JATH[IIBA[IL]] < JATHIISAN(lIx]] + l|6x]]). Therefore,

(L= IATHHISAN) llax] < [1A=HHIoAN [IxI,

where [|A[[[|0A]| = x(A)[[6A]l /|| Al O

We typically expect x(A)[|0A|| < ||A]|, so the denominator is close to 1.
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Perturbed RHS and Matrix
e Ax = b and AL = b, where A= A+ 5A, b= b+ b, and £ = x + x.

Theorem (Thm 2.3.8, Fundamentals of Matrix Computations 3rd ed.)
Suppose A is nonsingular, X # 0, and b # 0. Then

Jox| 1AL . lI56] . [l5Al 5]
— < k(A + —+ - .
wE < A e T AL )

Proof.
Adx = b — §AR. Hencel|dx|| < [|A~Y[(I6AIlIR] + [155]), and

[|ox|| (||5A|| l6b]| )
— < k(A) + — .
[IX]] Al [IX[]Al
Furth 1 HAL  IAIISAL _ 1, l16A] -
Urtermore, werral = Tamar = “JANE 151 TANIAN
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Perturbed RHS and Matrix

We can simply the previous theorem to be

NI
— S k(A + —
EISANIIET

and then obtain the following result:

Theorem
If A is nonsingular and ||0A||/||A|l < 1/k(A), and let b # 0, then

18x]| o =(A)UIIAI/IIAN + ll9b]l/1161)
X[~ 1= w(A)ISAl/[IAll

Roughly speaking, x(A) determines extra loss of digits of accuracy in x in
additional to input errors in A and b
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Outline

© Backward Stability of LU Factorization (NLA §22 & MC §3.3)
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Stability of LU without Pivoting
@ For A= LU computed without pivoting (Theorem 22.1 of NLA)

- [0A]]
LU=A+ (5A, = O(Emachine)
LUl
(Theorem 3.3.1 of Matrix Computations, 4th ed., Golub & Van Loan)

@ This is close to backward stability, except that we have ||L||||U]]
instead of ||Al| in the denominator

@ Instability of Gaussian elimination can happen only if one or both of
the factors L and U is large relative to size of A

e Unfortunately, ||L|| and ||U|| can be arbitrarily large (even for
well-conditioned A), e.g.,

A 1000 1] [ 1 0][1072 1
o 1 an | | 1090 1 0 ax — 1020

o If fi(ax — 10%%) = 10%°, we obtain same L and U regardless of a»
@ L and U are not exact for a nearby A, so algorithm is unstable
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Stability of LU with Partial Pivoting

With pivoting, all entries of L are in [—1,1], so ||L|| = O(1)
@ To measure growth in U, we introduce the growth factor
— maxij|uil o4 hence U]l = O(pllAll)

P = maxi [a5]"

We then have PA = LU

16A] _

LU = PA+ A, =
Al

O(pemachine)

If |¢;;] <1 for each i > j (i.e., there is no tie for the pivoting), then
P = P for sufficiently small €pachine

If p = O(1), then the algorithm is backward stable

In fact, p < 2", so by definition p is a constant but can be very large
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The Growth Factor

@ p can indeed be as large as 271, Consider matrix

1 1 1 0 1 1
-1 1 1 -1 1 0 1 2
-1 -1 1 1|=| -1 -1 1 0 1 4
-1 -1 -1 1 1 -1 -1 -1 1 0 1 8
-1 -1 -1 -1 1 -1 -1 -1 -1 1 16

where growth factor p = 16 = 27!
e p=2""1is as large as p can get. It can be catastrophic in practice

@ Theoretically, Gaussian elimination with partial pivoting is backward
stable according to formal definition

@ However, in the worst case, Gaussian elimination with partial pivoting
may be unstable for practical values of n
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The Growth Factor in Practice

@ Good news: Large p occurs only for very skewed matrices.
Experimentally, one rarely see very large p

o Probability of large p decreases exponentially in p

@ “If you pick a billion matrices at random, you will almost certainly not
find one for which Gaussian elimination is unstable”
e In practice, p is no larger than O(y/n). However, this behavior is not
fully understood yet
@ In conclusion,
» Gaussian elimination with partial pivoting is backward stable

> In theory, its error may grow exponentially in n
» |In practice, it is stable for matrices of practical interests
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Outline

© Putting It All Together
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Accuracy of Linear Solver

@ Solving Ax = b using LU factorization with partial pivoting is also
backward stable

Q PA=LU
Q Ly=~PFPb
Q Ux=y

@ Each step is backward stable (we omit detailed proof)

@ Overall growth factor of error is bounded by product of growth factors
of individual steps
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A Posteriori Error Analysis Using Residual

Suppose X is a computed solution of Ax = b, and residual 7 = b — AX.
o Let A be nonsingular and b # 0. Then ol < O(/@(A))%.

Il

o If the residual is tiny and A is well conditioned, then X is an accurate
approximation to x.

For a posteriori error bound, one needs to estimate ||7|| and k(A)

Typically one estimates x1(A) = ||Al|1]]A~}||1 without computing
A~L but allow LU factorization of A
» For any vector w € R" and ||w||; = 1, we have lower bound
#1(A) = Al11A~ 1wl
» If w has a significant component in direction near maximum
magnification by A=1, then k1(A) ~ [|Al|1||A~ w]|1
» Good estimators conduct systematic searches for w that approximately
maximizes ||A~1w||;
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