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Condition Number of Linear System

Theorem
Let A be nonsingular, and let x and x̂ = x + δx be the solutions of Ax = b
and Ax̂ = b + δb, respectively. Then

∥δx∥
∥x∥

≤ κ(A)
∥δb∥
∥b∥

,

and there exist b and δb for which the equality holds.

Proof sketch: ∥δx∥ ≤ ∥A−1∥∥δb∥ and ∥b∥ ≤ ∥A∥∥x∥
Question: For what b and δb is the equality achieved?

Answer: When b is in direction of minimum magnification of A−1, and
δb is in direction of maximum magnification of A−1.
In 2-norm, when b is in direction of maximum magnification of AT ,
and δb is in direction of minimum magnification of AT .
We say a matrix is nearly singular if its condition number is very large.
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Ill Conditioning Caused by Poor Scaling

Some matrices are ill conditioned merely because they are out of scale.

Theorem
Let A ∈ Rn×n be any nonsingular matrix, and let ak , 1 ≤ k ≤ n denote the
kth column of A. Then for any i and j with 1 ≤ i , j ≤ n,
κp(A) ≥ ∥ai∥p/∥aj∥p.

Proof sketch: ∥A∥p ≥ ∥ai∥p and ∥A−1∥p ≥ 1/∥ai∥p for 1 ≤ i ≤ n

This theorem indicates that poor scaling inevitably leads to ill
conditioning
A necessary condition for a matrix to be well conditioned is that all of
its rows and columns are of roughly the same magnitude.

Xiangmin Jiao Numerical Analysis I 4 / 17



Non-singularity of Perturbed Matrix

Theorem
If A is nonsingular and

∥δA∥/∥A∥ < 1/κ(A),

then A+ δA is nonsingular.

Proof.
∥δA∥/∥A∥ < 1/κ(A) is equivalent to ∥δA∥∥A−1∥ < 1. Suppose A+ δA is
singular, then ∃y ̸= 0 such that (A+ δA)y = 0, and y = −A−1δAy .
Therefore, ∥y∥ ≤ ∥A−1∥∥δA∥∥y∥, or ∥A−1∥∥δA∥ ≥ 1.

If A+ δA is the singular matrix closest to A, in the sense that ∥δA∥2
is as small as possible, then ∥δA∥2/∥A∥2 = 1/κ2(A)
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Linear System with Perturbed Matrix
Suppose Ax = b and Âx̂ = b where Â = A+ δA. Let δx = x̂ − x and
x̂ = x + δx .
We would like to bound ∥δx∥/∥x∥, but first we bound ∥δx∥/∥x̂∥

Theorem
If A is nonsingular, and let b ̸= 0. Then

∥δx∥
∥x̂∥

≤ κ(A)
∥δA∥
∥A∥

.

Proof.
Rewrite (A+ δA)x̂ = b as Ax +Aδx + δAx̂ = b, where Ax = b. Therefore,

∥δx∥ ≤ ∥A−1∥∥δA∥∥x̂∥.

Therefore,
∥δx∥
∥x̂∥

≤ ∥A−1∥∥δA∥ = κ(A)
∥δA∥
∥A∥

.
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Linear System with Perturbed Matrix Cont’d
Ax = b and Âx̂ = b, where Â = A+ δA. Let δx = x̂ − x and
x̂ = x + δx .

Theorem
If A is nonsingular and ∥δA∥/∥A∥ < 1/κ(A), and let b ̸= 0. Then

∥δx∥
∥x∥

≤ κ(A)∥δA∥/∥A∥
1 − κ(A)∥δA∥/∥A∥

.

Proof.
∥δx∥ ≤ ∥A−1∥∥δA∥∥x̂∥ ≤ ∥A−1∥∥δA∥(∥x∥+ ∥δx∥). Therefore,(

1 − ∥A−1∥∥δA∥
)
∥δx∥ ≤ ∥A−1∥∥δA∥∥x∥,

where ∥A−1∥∥δA∥ = κ(A)∥δA∥/∥A∥.

We typically expect κ(A)∥δA∥ ≪ ∥A∥, so the denominator is close to 1.
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Perturbed RHS and Matrix
Ax = b and Âx̂ = b̂, where Â = A+ δA, b̂ = b + δb, and x̂ = x + δx .

Theorem (Thm 2.3.8, Fundamentals of Matrix Computations 3rd ed.)

Suppose A is nonsingular, x̂ ̸= 0, and b̂ ̸= 0. Then

∥δx∥
∥x̂∥

≤ κ(A)

(
∥δA∥
∥A∥

+
∥δb∥
∥b̂∥

+
∥δA∥
∥A∥

∥δb∥
∥b̂∥

)
.

Proof.
Aδx = δb − δAx̂ . Hence∥δx∥ ≤ ∥A−1∥(∥δA∥∥x̂∥+ ∥δb∥), and

∥δx∥
∥x̂∥

≤ κ(A)

(
∥δA∥
∥A∥

+
∥δb∥

∥x̂∥∥A∥

)
.

Furthermore, 1
∥x̂∥∥A∥ ≤ ∥Â∥

∥A∥∥b̂∥
≤ ∥A∥+∥δA∥

∥A∥∥b̂∥
= 1

∥b̂∥
+ ∥δA∥

∥A∥∥b̂∥
.
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Perturbed RHS and Matrix

We can simply the previous theorem to be

∥δx∥
∥x̂∥

≲ κ(A)

(
∥δA∥
∥A∥

+
∥δb∥
∥b̂∥

)

and then obtain the following result:

Theorem
If A is nonsingular and ∥δA∥/∥A∥ < 1/κ(A), and let b ̸= 0, then

∥δx∥
∥x∥

≲
κ(A)(∥δA∥/∥A∥+ ∥δb∥/∥b∥)

1 − κ(A)∥δA∥/∥A∥
.

Roughly speaking, κ(A) determines extra loss of digits of accuracy in x in
additional to input errors in A and b
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Stability of LU without Pivoting
For A = LU computed without pivoting (Theorem 22.1 of NLA)

L̃Ũ = A+ δA,
∥δA∥

∥L∥∥U∥
= O(ϵmachine)

(Theorem 3.3.1 of Matrix Computations, 4th ed., Golub & Van Loan)
This is close to backward stability, except that we have ∥L∥∥U∥
instead of ∥A∥ in the denominator
Instability of Gaussian elimination can happen only if one or both of
the factors L and U is large relative to size of A
Unfortunately, ∥L∥ and ∥U∥ can be arbitrarily large (even for
well-conditioned A), e.g.,

A =

[
10−20 1

1 a22

]
=

[
1 0

1020 1

] [
10−20 1

0 a22 − 1020

]
If fl(a22 − 1020) = 1020, we obtain same L and U regardless of a22

L and U are not exact for a nearby A, so algorithm is unstable
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Stability of LU with Partial Pivoting

With pivoting, all entries of L are in [−1, 1], so ∥L∥ = O(1)
To measure growth in U, we introduce the growth factor
ρ =

maxi,j |uij |
maxi,j |aij | , and hence ∥U∥ = O(ρ∥A∥)

We then have PA = LU

L̃Ũ = P̃A+ δA,
∥δA∥
∥A∥

= O(ρϵmachine)

If |ℓij | < 1 for each i > j (i.e., there is no tie for the pivoting), then
P̃ = P for sufficiently small ϵmachine

If ρ = O(1), then the algorithm is backward stable
In fact, ρ ≤ 2n−1, so by definition ρ is a constant but can be very large
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The Growth Factor

ρ can indeed be as large as 2n−1. Consider matrix
1 1
−1 1 1
−1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

 =


1 0
−1 1 0
−1 −1 1 0
−1 −1 −1 1 0
−1 −1 −1 −1 1




1 1
1 2

1 4
1 8

16


where growth factor ρ = 16 = 2n−1

ρ = 2n−1 is as large as ρ can get. It can be catastrophic in practice
Theoretically, Gaussian elimination with partial pivoting is backward
stable according to formal definition
However, in the worst case, Gaussian elimination with partial pivoting
may be unstable for practical values of n
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The Growth Factor in Practice

Good news: Large ρ occurs only for very skewed matrices.
Experimentally, one rarely see very large ρ

Probability of large ρ decreases exponentially in ρ

“If you pick a billion matrices at random, you will almost certainly not
find one for which Gaussian elimination is unstable”
In practice, ρ is no larger than O(

√
n). However, this behavior is not

fully understood yet
In conclusion,

▶ Gaussian elimination with partial pivoting is backward stable
▶ In theory, its error may grow exponentially in n
▶ In practice, it is stable for matrices of practical interests
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Accuracy of Linear Solver

Solving Ax = b using LU factorization with partial pivoting is also
backward stable

1 PA = LU
2 Ly = Pb
3 Ux = y

Each step is backward stable (we omit detailed proof)
Overall growth factor of error is bounded by product of growth factors
of individual steps
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A Posteriori Error Analysis Using Residual

Suppose x̂ is a computed solution of Ax = b, and residual r̂ = b−Ax̂ .
Let A be nonsingular and b ̸= 0. Then ∥δx∥

∥x∥ ≤ O(κ(A)) ∥r̂∥∥b∥ .

If the residual is tiny and A is well conditioned, then x̂ is an accurate
approximation to x .
For a posteriori error bound, one needs to estimate ∥r̂∥ and κ(A)

Typically one estimates κ1(A) = ∥A∥1∥A−1∥1 without computing
A−1, but allow LU factorization of A

▶ For any vector w ∈ Rn and ∥w∥1 = 1, we have lower bound
κ1(A) ≥ ∥A∥1∥A−1w∥1

▶ If w has a significant component in direction near maximum
magnification by A−1, then κ1(A) ≈ ∥A∥1∥A−1w∥1

▶ Good estimators conduct systematic searches for w that approximately
maximizes ∥A−1w∥1
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