AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 9: Conditioning of Gaussian Elimination; Backward Stability of Gaussian Elimination

Xiangmin Jiao

Stony Brook University

Outline

- Condition Number of Gaussian Elimination (NLA §22 & MC §3.3)
 - Perturbing Right-Hand Side
 - Perturbing Coefficient Matrix
 - Perturbing Both Sides

Condition Number of Linear System

Theorem

Let A be nonsingular, and let x and $\hat{x} = x + \delta x$ be the solutions of Ax = b and $A\hat{x} = b + \delta b$, respectively. Then

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|},$$

and there exist b and δb for which the equality holds.

- Proof sketch: $\|\delta x\| \le \|A^{-1}\| \|\delta b\|$ and $\|b\| \le \|A\| \|x\|$
- Question: For what b and δb is the equality achieved?

Condition Number of Linear System

Theorem

Let A be nonsingular, and let x and $\hat{x} = x + \delta x$ be the solutions of Ax = b and $A\hat{x} = b + \delta b$, respectively. Then

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|},$$

and there exist b and δb for which the equality holds.

- Proof sketch: $\|\delta x\| \le \|A^{-1}\| \|\delta b\|$ and $\|b\| \le \|A\| \|x\|$
- Question: For what b and δb is the equality achieved? Answer: When b is in direction of *minimum* magnification of A^{-1} , and δb is in direction of *maximum* magnification of A^{-1} . In 2-norm, when b is in direction of *maximum* magnification of A^{T} , and δb is in direction of *minimum* magnification of A^{T} .
- We say a matrix is *nearly singular* if its condition number is very large.

Ill Conditioning Caused by Poor Scaling

• Some matrices are ill conditioned merely because they are out of scale.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be any nonsingular matrix, and let a_k , $1 \le k \le n$ denote the kth column of A. Then for any i and j with $1 \le i, j \le n$, $\kappa_p(A) \ge \|a_i\|_p/\|a_j\|_p$.

- Proof sketch: $||A||_p \ge ||a_i||_p$ and $||A^{-1}||_p \ge 1/||a_i||_p$ for $1 \le i \le n$
- This theorem indicates that poor scaling inevitably leads to ill conditioning
- A necessary condition for a matrix to be well conditioned is that all of its rows and columns are of roughly the same magnitude.

Non-singularity of Perturbed Matrix

Theorem

If A is nonsingular and

$$\|\delta A\|/\|A\|<1/\kappa(A),$$

then $A + \delta A$ is nonsingular.

Non-singularity of Perturbed Matrix

Theorem

If A is nonsingular and

$$\|\delta A\|/\|A\|<1/\kappa(A),$$

then $A + \delta A$ is nonsingular.

Proof.

$$\begin{split} &\|\delta A\|/\|A\|<1/\kappa(A) \text{ is equivalent to } \|\delta A\|\|A^{-1}\|<1. \text{ Suppose } A+\delta A \text{ is singular, then } \exists y\neq 0 \text{ such that } (A+\delta A)y=0, \text{ and } y=-A^{-1}\delta Ay. \\ &\text{Therefore, } \|y\|\leq \|A^{-1}\|\|\delta A\|\|y\|, \text{ or } \|A^{-1}\|\|\delta A\|\geq 1. \end{split}$$

• If $A + \delta A$ is the singular matrix closest to A, in the sense that $\|\delta A\|_2$ is as small as possible, then $\|\delta A\|_2/\|A\|_2 = 1/\kappa_2(A)$

Linear System with Perturbed Matrix

- Suppose Ax = b and $\hat{A}\hat{x} = b$ where $\hat{A} = A + \delta A$. Let $\delta x = \hat{x} x$ and $\hat{x} = x + \delta x$.
- We would like to bound $\|\delta x\|/\|x\|$, but first we bound $\|\delta x\|/\|\hat{x}\|$

Theorem

If A is nonsingular, and let $b \neq 0$. Then

$$\frac{\|\delta x\|}{\|\hat{x}\|} \leq \kappa(A) \frac{\|\delta A\|}{\|A\|}.$$

Proof.

Rewrite $(A + \delta A)\hat{x} = b$ as $Ax + A\delta x + \delta A\hat{x} = b$, where Ax = b. Therefore,

$$\|\delta x\| \le \|A^{-1}\| \|\delta A\| \|\hat{x}\|.$$

Therefore.

$$\frac{\|\delta x\|}{\|\hat{x}\|} \leq \|A^{-1}\| \|\delta A\| = \kappa(A) \frac{\|\delta A\|}{\|A\|}.$$

Linear System with Perturbed Matrix Cont'd

• Ax = b and $\hat{A}\hat{x} = b$, where $\hat{A} = A + \delta A$. Let $\delta x = \hat{x} - x$ and $\hat{x} = x + \delta x$.

Theorem

If A is nonsingular and $\|\delta A\|/\|A\| < 1/\kappa(A)$, and let $b \neq 0$. Then

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)\|\delta A\|/\|A\|}{1 - \kappa(A)\|\delta A\|/\|A\|}.$$

Proof.

$$\|\delta x\| \le \|A^{-1}\| \|\delta A\| \|\hat{x}\| \le \|A^{-1}\| \|\delta A\| (\|x\| + \|\delta x\|)$$
. Therefore,

$$(1 - ||A^{-1}|| ||\delta A||) ||\delta x|| \le ||A^{-1}|| ||\delta A|| ||x||,$$

where
$$||A^{-1}|| ||\delta A|| = \kappa(A) ||\delta A|| / ||A||$$
.

We typically expect $\kappa(A) \|\delta A\| \ll \|A\|$, so the denominator is close to 1.

Perturbed RHS and Matrix

• Ax = b and $\hat{A}\hat{x} = \hat{b}$, where $\hat{A} = A + \delta A$, $\hat{b} = b + \delta b$, and $\hat{x} = x + \delta x$.

Theorem (Thm 2.3.8, Fundamentals of Matrix Computations 3rd ed.)

Suppose A is nonsingular, $\hat{x} \neq 0$, and $\hat{b} \neq 0$. Then

$$\frac{\|\delta x\|}{\|\hat{x}\|} \leq \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|\hat{b}\|} + \frac{\|\delta A\|}{\|A\|} \frac{\|\delta b\|}{\|\hat{b}\|} \right).$$

Proof.

$$A\delta x = \delta b - \delta A\hat{x}$$
. Hence $\|\delta x\| \le \|A^{-1}\| (\|\delta A\| \|\hat{x}\| + \|\delta b\|)$, and

$$\frac{\|\delta x\|}{\|\hat{x}\|} \le \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|\hat{x}\| \|A\|} \right).$$

Furthermore,
$$\frac{1}{\|\hat{x}\|\|A\|} \le \frac{\|\hat{A}\|}{\|A\|\|\hat{b}\|} \le \frac{\|A\| + \|\delta A\|}{\|A\|\|\hat{b}\|} = \frac{1}{\|\hat{b}\|} + \frac{\|\delta A\|}{\|A\|\|\hat{b}\|}.$$

Perturbed RHS and Matrix

We can simply the previous theorem to be

$$\frac{\|\delta x\|}{\|\hat{x}\|} \lesssim \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|\hat{b}\|} \right)$$

and then obtain the following result:

Theorem

If A is nonsingular and $\|\delta A\|/\|A\| < 1/\kappa(A)$, and let $b \neq 0$, then

$$\frac{\|\delta x\|}{\|x\|} \lesssim \frac{\kappa(A)(\|\delta A\|/\|A\| + \|\delta b\|/\|b\|)}{1 - \kappa(A)\|\delta A\|/\|A\|}.$$

Roughly speaking, $\kappa(A)$ determines extra loss of digits of accuracy in x in additional to input errors in A and b

9 / 17

Outline

- Condition Number of Gaussian Elimination (NLA §22 & MC §3.3)
 - Perturbing Right-Hand Side
 - Perturbing Coefficient Matrix
 - Perturbing Both Sides
- Backward Stability of LU Factorization (NLA §22 & MC §3.3)
- 3 Putting It All Together

Stability of LU without Pivoting

• For A = LU computed without pivoting (Theorem 22.1 of NLA)

$$ilde{L} ilde{U} = A + \delta A, \qquad rac{\|\delta A\|}{\|L\|\|U\|} = O(\epsilon_{
m machine})$$

(Theorem 3.3.1 of Matrix Computations, 4th ed., Golub & Van Loan)

- This is close to backward stability, except that we have ||L|||U|| instead of ||A|| in the denominator
- Instability of Gaussian elimination can happen only if one or both of the factors L and U is large relative to size of A
- Unfortunately, ||L|| and ||U|| can be arbitrarily large (even for well-conditioned A), e.g.,

$$A = \begin{bmatrix} 10^{-20} & 1 \\ 1 & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix} \begin{bmatrix} 10^{-20} & 1 \\ 0 & a_{22} - 10^{20} \end{bmatrix}$$

- If $f(a_{22}-10^{20})=10^{20}$, we obtain same L and U regardless of a_{22}
- L and U are not exact for a nearby A, so algorithm is *unstable*

Stability of LU with Partial Pivoting

- With pivoting, all entries of L are in [-1,1], so ||L|| = O(1)
- To measure growth in U, we introduce the growth factor $\rho = \frac{\max_{i,j} |u_{ij}|}{\max_{i,j} |a_{ij}|}$, and hence $\|U\| = O(\rho \|A\|)$
- We then have PA = LU

$$ilde{L} ilde{U} = ilde{P}A + \delta A, \qquad rac{\|\delta A\|}{\|A\|} = O(
ho \epsilon_{
m machine})$$

- If $|\ell_{ij}| < 1$ for each i > j (i.e., there is no tie for the pivoting), then $\tilde{P} = P$ for sufficiently small $\epsilon_{\mathrm{machine}}$
- If $\rho = O(1)$, then the algorithm is backward stable
- In fact, $\rho \leq 2^{n-1}$, so by definition ρ is a constant but can be very large

The Growth Factor

• ρ can indeed be as large as 2^{n-1} . Consider matrix

where growth factor $\rho = 16 = 2^{n-1}$

- $\rho=2^{n-1}$ is as large as ρ can get. It can be catastrophic in practice
- Theoretically, Gaussian elimination with partial pivoting is backward stable according to formal definition
- ullet However, in the worst case, Gaussian elimination with partial pivoting may be unstable for practical values of n

The Growth Factor in Practice

- Good news: Large ρ occurs only for very skewed matrices. Experimentally, one rarely see very large ρ
- ullet Probability of large ho decreases exponentially in ho
- "If you pick a billion matrices at random, you will almost certainly not find one for which Gaussian elimination is unstable"
- In practice, ρ is no larger than $O(\sqrt{n})$. However, this behavior is not fully understood yet
- In conclusion,
 - Gaussian elimination with partial pivoting is backward stable
 - ▶ In theory, its error may grow exponentially in *n*
 - ▶ In practice, it is stable for matrices of practical interests

Outline

- - Perturbing Right-Hand Side
 - Perturbing Coefficient Matrix
 - Perturbing Both Sides
- Putting It All Together

Accuracy of Linear Solver

- Solving Ax = b using LU factorization with partial pivoting is also backward stable
 - \bigcirc PA = LU
 - 2 Ly = Pb
- Each step is backward stable (we omit detailed proof)
- Overall growth factor of error is bounded by product of growth factors of individual steps

A Posteriori Error Analysis Using Residual

- Suppose \hat{x} is a computed solution of Ax = b, and residual $\hat{r} = b A\hat{x}$.
- Let A be nonsingular and $b \neq 0$. Then $\frac{\|\delta x\|}{\|x\|} \leq O(\kappa(A)) \frac{\|\hat{r}\|}{\|b\|}$.
- If the residual is tiny and A is well conditioned, then \hat{x} is an accurate approximation to x.
- For a posteriori error bound, one needs to estimate $\|\hat{r}\|$ and $\kappa(A)$
- Typically one estimates $\kappa_1(A) = ||A||_1 ||A^{-1}||_1$ without computing A^{-1} , but allow LU factorization of A
 - ▶ For any vector $w \in \mathbb{R}^n$ and $||w||_1 = 1$, we have lower bound $\kappa_1(A) > ||A||_1 ||A^{-1}w||_1$
 - \triangleright If w has a significant component in direction near maximum magnification by A^{-1} , then $\kappa_1(A) \approx ||A||_1 ||A^{-1}w||_1$
 - ► Good estimators conduct systematic searches for w that approximately maximizes $||A^{-1}w||_1$