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Symmetric Positive-Definite Matrices

Symmetric matrix A ∈ Rn×n is symmetric positive definite (SPD) if
xTAx > 0 for x ∈ Rn\{0}
Hermitian matrix A ∈ Cn×n is Hermitian positive definite (HPD) if
x∗Ax > 0 for x ∈ Cn\{0}
SPD matrices have positive real eigenvalues and orthogonal
eigenvectors
Note: A positive-definite matrix does not need to be symmetric or
Hermitian! A real matrix A is positive definite iff A+ AT is SPD
If xTAx ≥ 0 for x ∈ Rn\{0}, then A is said to be positive semidefinite

Xiangmin Jiao Numerical Analysis I 3 / 16



Properties of Symmetric Positive-Definite Matrices

SPD matrix often arises as Hessian matrix of some convex functional
▶ E.g., least squares problems; partial differential equations

If A is SPD, then A is nonsingular
Let X be any n ×m matrix with full rank and n ≥ m. Then

▶ XTX is symmetric positive definite, and
▶ XXT is symmetric positive semidefinite

If A is n × n SPD and X ∈ Rn×m has full rank and n ≥ m, then
XTAX is SPD
Any principal submatrix (picking some rows and corresponding
columns) of A is SPD and aii > 0
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Cholesky Factorization
If A is symmetric positive definite, then there is factorization of A

A = RTR,

where R is upper triangular, and all its diagonal entries are positive
Key idea: take advantage and preserve symmetry and
positive-definiteness during factorization
Eliminate below diagonal and to the right of diagonal, we have

A =

[
a11 bT

b K

]
=

[
r11 0

b/r11 I

] [
r11 bT/r11
0 K − bbT/a11

]
=

[
r11 0

b/r11 I

] [
1 0
0 K − bbT/a11

] [
r11 bT/r11
0 I

]
= RT

1 A1R1,

where r11 =
√
a11, where a11 > 0

K − bbT/a11 is principal submatrix of SPD A1 = R−T
1 AR−1

1 and
therefore is SPD, with positive diagonal entries

Xiangmin Jiao Numerical Analysis I 6 / 16



Cholesky Factorization
Apply recursively to obtain

A =
(
RT

1 RT
2 · · ·RT

n

)
(Rn · · ·R2R1) = RTR, rjj > 0,

which is known as Cholesky factorization
How to obtain R from Rn, . . . , R2, R1? Recursively:

A =

[
r11 0
s I

] [
1 0
0 A1

] [
r11 sT

0 I

]
=

[
r11 0
s I

] [
1 0
0 R̃T

] [
1 0
0 R̃

] [
r11 sT

0 I

]
=

[
r11 0
s R̃T

] [
r11 sT

0 R̃

]
= RTR

R is “union” of kth rows of Rk (RT is “union” of columns of RT
k )

Matrix A1 is called the Schur complement of a11 in A
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Existence and Uniqueness

Every SPD matrix has a unique Cholesky factorization
▶ It exists because algorithm for Cholesky factorization always works for

SPD matrices
▶ Unique because once α =

√
a11 is determined at each step, entire

column w/α is determined

Question: How to check whether a symmetric matrix is positive
definite?
Answer: Run Cholesky factorization and it succeeds iff the matrix is
positive definite.
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Algorithm of Cholesky Factorization

Factorize SPD matrix A ∈ Rn×n into A = RTR

Algorithm: Cholesky factorization
R = A
for k = 1 : n

for j = k + 1 : n
rj ,j :n ← rj ,j :n − (rkj/rkk)rk,j :n

rk,k:n ← rk,k:n/
√
rkk

Note: rj ,j :n denotes subvector of jth row with columns j , j + 1, . . . , n
Operation count

n∑
k=1

n∑
j=k+1

2(n − j) ≈ 2
n∑

k=1

k∑
j=1

j ≈
n∑

k=1

k2 ≈ n3

3

In practice, R overwrites A, and only upper-triangular part is stored.
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Notes on Cholesky Factorization

Stability of Cholesky factorization
▶ Cholesky factorization is backward stable
▶ This is because ∥R∥22 = ∥A∥2, so entries in R are well bounded

Cholesky factorization A = R∗R exists for HPD matrices, where R is
upper-triangular and its diagonal entries are positive real values
Implementations

▶ Different versions of Cholesky factorization can all use block-matrix
operators to achieve better performance, and actual performance
depends on sizes of blocks

▶ Different versions may have different amount of parallelism
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LDLT Factorization

What happens if A is symmetric but not positive definite?
Cholesky factorization is sometimes given by A = LDLT where D is
diagonal matrix and L is unit lower triangular matrix
This avoids computing square roots
Symmetric indefinite systems can be factorized with PAPT = LDLT ,
where

▶ P is a permutation matrix
▶ D is diagonal (if A is complex, D is block diagonal with 1× 1 and

2× 2 blocks)
▶ its cost is similar to Cholesky factorization
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Banded Positive Definite Systems

A matrix A is banded if there is a narrow band around the main
diagonal such that all of the entries of A outside of the band are zero
If A is n × n, and there is an s ≪ n such that aij = 0 whenever
|i − j | > s, then we say A is banded with bandwidth 2s + 1
For symmetric matrices, only half of band is stored. We say that A
has semi-bandwidth s.

Theorem
Let A be a banded, symmetric positive definite matrix with semi-bandwidth
s. Then its Cholesky factor R also has semi-bandwidth s.

It is easy to prove using bordered form of Cholesky factorization
Total flop count of Cholesky factorization is only ∼ ns2

However, A−1 of a banded matrix may be dense, so it is not
economical to compute A−1
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Midterm #1

It will cover material up to Cholesky factorization
It is a closed-book exam
You can bring a single-sided, one-page, letter-size cheat sheet, which
you must prepare by yourself
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Fundamental Concepts

Norms, orthogonality, conditioning, stability
Conditioning of problems
Stability and backward stability of algorithms
Efficiency of algorithms, operation counts
Singular value decomposition, properties, and relationship with
eigenvalue problems
Orthogonal projection matrices, orthogonal matrices
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Algorithms

Matrix multiplication
Triangular systems
Gaussian elimination with/without pivoting
Cholesky factorization and LDLT factorization
Understand when they work, how they work, why they work, and how
well they work
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