AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)
 Lecture 10: Positive Definite Systems; Cholesky Factorization; Review for Midterm \#1

Xiangmin Jiao

Stony Brook University

Outline

(1) Positive-Definite Systems (MC §4.2)

(2) Cholesky Factorization (NL A§23)

(3) Review of Midterm \#1

Symmetric Positive-Definite Matrices

- Symmetric matrix $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite (SPD) if $x^{T} A x>0$ for $x \in \mathbb{R}^{n} \backslash\{0\}$
- Hermitian matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (HPD) if $x^{*} A x>0$ for $x \in \mathbb{C}^{n} \backslash\{0\}$
- SPD matrices have positive real eigenvalues and orthogonal eigenvectors
- Note: A positive-definite matrix does not need to be symmetric or Hermitian! A real matrix A is positive definite iff $A+A^{T}$ is SPD
- If $x^{T} A x \geq 0$ for $x \in \mathbb{R}^{n} \backslash\{0\}$, then A is said to be positive semidefinite

Properties of Symmetric Positive-Definite Matrices

- SPD matrix often arises as Hessian matrix of some convex functional
- E.g., least squares problems; partial differential equations
- If A is SPD, then A is nonsingular
- Let X be any $n \times m$ matrix with full rank and $n \geq m$. Then
- $X^{\top} X$ is symmetric positive definite, and
- $X X^{\top}$ is symmetric positive semidefinite
- If A is $n \times n$ SPD and $X \in \mathbb{R}^{n \times m}$ has full rank and $n \geq m$, then $X^{T} A X$ is SPD
- Any principal submatrix (picking some rows and corresponding columns) of A is SPD and $a_{i i}>0$

Outline

(1) Positive-Definite Systems (MC §4.2)
(2) Cholesky Factorization (NL A§23)
(3) Review of Midterm \#1

Cholesky Factorization

- If A is symmetric positive definite, then there is factorization of A

$$
A=R^{T} R
$$

where R is upper triangular, and all its diagonal entries are positive

- Key idea: take advantage and preserve symmetry and positive-definiteness during factorization
- Eliminate below diagonal and to the right of diagonal, we have

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
a_{11} & b^{T} \\
b & K
\end{array}\right]=\left[\begin{array}{cc}
r_{11} & 0 \\
b / r_{11} & l
\end{array}\right]\left[\begin{array}{cc}
r_{11} & b^{T} / r_{11} \\
0 & K-b b^{T} / a_{11}
\end{array}\right] \\
& =\left[\begin{array}{cc}
r_{11} & 0 \\
b / r_{11} & l
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & K-b b^{T} / a_{11}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & b^{T} / r_{11} \\
0 & l
\end{array}\right]=R_{1}^{T} A_{1} R_{1}
\end{aligned}
$$

where $r_{11}=\sqrt{a_{11}}$, where $a_{11}>0$

- $K-b b^{T} / a_{11}$ is principal submatrix of SPD $A_{1}=R_{1}^{-T} A R_{1}^{-1}$ and therefore is SPD, with positive diagonal entries

Cholesky Factorization

- Apply recursively to obtain

$$
A=\left(R_{1}^{T} R_{2}^{T} \cdots R_{n}^{T}\right)\left(R_{n} \cdots R_{2} R_{1}\right)=R^{T} R, \quad r_{j j}>0
$$

which is known as Cholesky factorization

- How to obtain R from $R_{n}, \ldots, R_{2}, R_{1}$? Recursively:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
r_{11} & 0 \\
s & l
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & A_{1}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & s^{T} \\
0 & l
\end{array}\right] \\
& =\left[\begin{array}{cc}
r_{11} & 0 \\
s & l
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \tilde{R}^{T}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \tilde{R}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & s^{T} \\
0 & l
\end{array}\right] \\
& =\left[\begin{array}{cc}
r_{11} & 0 \\
s & \tilde{R}^{T}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & s^{T} \\
0 & \tilde{R}
\end{array}\right]=R^{T} R
\end{aligned}
$$

- R is "union" of k th rows of R_{k} (R^{T} is "union" of columns of R_{k}^{T})
- Matrix A_{1} is called the Schur complement of a_{11} in A

Existence and Uniqueness

- Every SPD matrix has a unique Cholesky factorization
- It exists because algorithm for Cholesky factorization always works for SPD matrices
- Unique because once $\alpha=\sqrt{a_{11}}$ is determined at each step, entire column w / α is determined
- Question: How to check whether a symmetric matrix is positive definite?
- Answer: Run Cholesky factorization and it succeeds iff the matrix is positive definite.

Algorithm of Cholesky Factorization

- Factorize SPD matrix $A \in \mathbb{R}^{n \times n}$ into $A=R^{T} R$

Algorithm: Cholesky factorization

$$
R=A
$$

$$
\text { for } k=1: n
$$

$$
\text { for } j=k+1: n
$$

$$
\begin{aligned}
& \quad r_{j, j: n} \leftarrow r_{j, j: n}-\left(r_{k j} / r_{k k}\right) r_{k, j: n} \\
& r_{k, k: n} \leftarrow r_{k, k: n} / \sqrt{r_{k k}}
\end{aligned}
$$

- Note: $r_{j, j: n}$ denotes subvector of j th row with columns $j, j+1, \ldots, n$
- Operation count

$$
\sum_{k=1}^{n} \sum_{j=k+1}^{n} 2(n-j) \approx 2 \sum_{k=1}^{n} \sum_{j=1}^{k} j \approx \sum_{k=1}^{n} k^{2} \approx \frac{n^{3}}{3}
$$

- In practice, R overwrites A, and only upper-triangular part is stored.

Notes on Cholesky Factorization

- Stability of Cholesky factorization
- Cholesky factorization is backward stable
- This is because $\|R\|_{2}^{2}=\|A\|_{2}$, so entries in R are well bounded
- Cholesky factorization $A=R^{*} R$ exists for HPD matrices, where R is upper-triangular and its diagonal entries are positive real values
- Implementations
- Different versions of Cholesky factorization can all use block-matrix operators to achieve better performance, and actual performance depends on sizes of blocks
- Different versions may have different amount of parallelism

$L D L^{\top}$ Factorization

- What happens if A is symmetric but not positive definite?
- Cholesky factorization is sometimes given by $A=L D L^{T}$ where D is diagonal matrix and L is unit lower triangular matrix
- This avoids computing square roots
- Symmetric indefinite systems can be factorized with $P A P^{T}=L D L^{T}$, where
- P is a permutation matrix
- D is diagonal (if A is complex, D is block diagonal with 1×1 and 2×2 blocks)
- its cost is similar to Cholesky factorization

Banded Positive Definite Systems

- A matrix A is banded if there is a narrow band around the main diagonal such that all of the entries of A outside of the band are zero
- If A is $n \times n$, and there is an $s \ll n$ such that $a_{i j}=0$ whenever $|i-j|>s$, then we say A is banded with bandwidth $2 s+1$
- For symmetric matrices, only half of band is stored. We say that A has semi-bandwidth s.

Theorem

Let A be a banded, symmetric positive definite matrix with semi-bandwidth s. Then its Cholesky factor R also has semi-bandwidth s.

- It is easy to prove using bordered form of Cholesky factorization
- Total flop count of Cholesky factorization is only $\sim n s^{2}$
- However, A^{-1} of a banded matrix may be dense, so it is not economical to compute A^{-1}

Outline

(1) Positive-Definite Systems (MC §4.2)
(2) Cholesky Factorization (NL A§23)
(3) Review of Midterm \#1

Midterm \#1

- It will cover material up to Cholesky factorization
- It is a closed-book exam
- You can bring a single-sided, one-page, letter-size cheat sheet, which you must prepare by yourself

Fundamental Concepts

- Norms, orthogonality, conditioning, stability
- Conditioning of problems
- Stability and backward stability of algorithms
- Efficiency of algorithms, operation counts
- Singular value decomposition, properties, and relationship with eigenvalue problems
- Orthogonal projection matrices, orthogonal matrices

Algorithms

- Matrix multiplication
- Triangular systems
- Gaussian elimination with/without pivoting
- Cholesky factorization and $L D L^{T}$ factorization
- Understand when they work, how they work, why they work, and how well they work

