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© Givens Rotations
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Givens Rotations

@ Instead of using reflection, we can rotate x to obtain ||x||e;

cos —sinf

@ A Given rotation R = [ inf  cosd

} rotates x € R?

counterclockwise by 6

o Choose 0 to be angle between (x;, ;)T and (1,0)7, and we have

cos —sinf xi | x,-2—i-xj2
sinf  cosf x| 0

where

cosf = sinf =

X —XJ‘
—_—_ I

2 2 2 2
V)X + X \/ X X
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Givens QR

@ Introduce zeros in column bottom-up, one zero at a time

(3.4)

X X X X X
X X X X X
X X X X X
o X X X X
X X X X X
X X X X X

o X X X
X X X X X
X X X X X

e To zero ajj, left-multiply matrix F with Fi.;1 1 ;.;41 being rotation
matrix and Fy, =1 for k #i,i+1

o Flop count of Givens QR is 3mn? — n3, which is about 50% more
expensive than Householder triangularization
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Adding a Row

@ Suppose A € R™" with m > n, and A has full rank

A1
oLet A= | zT |, where A= [ 21 ] and z' is a new row inserted
Ay 2

@ Obtain A= QR from A = QR efficiently using Givens rotation:
» Suppose A = [ A1 } = [ G ]R.

i Az Q2
B A1 0 @ ST
» ThenA=| z" | =] 1 0T [R]
| A2 0 @
» Perform series of Givens rotation R = ur...ujuf [ ZR } , and
I e
then Q: 1 OT U1U2...U,,
0 @

» Updating R costs 3n? flops, and updating Q costs 6mn flops
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Adding a Column

@ Suppose A € R™*" with m > n, and A has full rank
o Let A= [ A1 z A ] where A = [ A1 A ] and z is new column

e Obtain A= QR from A = QR efficiently using Givens rotation:
» Suppose A=[ A1 A |=Q[ R R: |
> ThenA=[A z A ]=Q[R w R ], wherew=0Q"z
» Perform series of Givens rotation R = Uy Uy [ R w R ],

where U, performs on rows n and n— 1, U,_; performs on rows
n—1and n— 2, etc.

» Q= QU - UL,
> It takes O(mn) time overall
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@ Linear Least Squares Problems (NLA§11)
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Linear Least Squares Problems

@ Overdetermined system of equations Ax = b, where A has more rows
than columns and has full rank, in general has no solutions

@ Example application: Polynomial least squares fitting
@ In general, minimize the residual r = b — Ax

@ In terms of 2-norm, we obtain linear least squares problem: Given
A R™M m>n,and b € R™, find x € R" such that ||b — Ax||2 is
minimized
o If A has full rank, the minimizer x is the solution to the normal
equation
ATAx =ATb

or in terms of the pseudoinverse A™,

x = Atbh, where At = (ATA)TAT e R™™
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Geometric Interpretation

e Ax is in range(A), and the point in range(A) closest to b is its
orthogonal projection onto range(A)

@ Residual r is then orthogonal to range(A), and hence
ATr=AT(b— Ax) =0

@ Ax is orthogonal projection of b, where x = AT b, so
P = AAT = A(ATA)~LAT is orthogonal projection
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Solution of Lease Squares Problems

@ One approach is to solve normal equation AT Ax = AT b directly using
Cholesky factorization
> Is unstable, but is very efficient if m>> n (mn? + %n®)

o More robust approach is to use QR factorization A = QR
» b can be projected onto range(A) by P = QQT, and therefore
QRx=QQ7b
» Left-multiply by Q7 and we get Rx = QT b (note AT = I%’IQT)

Least squares via QR Factorization
Compute reduced QR factorization A = CA),‘i>
Compute vector ¢ = Qb
Solve upper-triangular system Rx = ¢ for x

o Computation is dominated by QR factorization (2mn? — 2n3)

o Question: If Householder QR is used, how to compute Q7 b?
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Solution of Lease Squares Problems

@ One approach is to solve normal equation AT Ax = AT b directly using
Cholesky factorization
> Is unstable, but is very efficient if m>> n (mn? + %n®)

o More robust approach is to use QR factorization A = QR
» b can be projected onto range(A) by P = QQT, and therefore
QRx=QQ7b
» Left-multiply by Q7 and we get Rx = QT b (note AT = li”léT)

Least squares via QR Factorization
Compute reduced QR factorization A = @Ii’
Compute vector ¢ = Qb
Solve upper-triangular system Rx = ¢ for x

o Computation is dominated by QR factorization (2mn? — 2n3)

o Question: If Householder QR is used, how to compute Q7 b?

o Answer: Compute Qb (where Q is from full QR factorization) and
then take first n entries of resulting Q7 b
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© Conditioning of Least Squares Problems (NLA§18)
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Four Conditioning Problems

@ Least squares problem: Given

A € R™*M with full rank and b € R™,

min ||b — Ax]|

xERM

@ lts solution is x = ATh. Another
quantity is y = Ax = Pb, where
P = AAT

@ Consider A and b as input data, and x and y as output. We then have

four conditioning problems:

] Input \ Output \ y \ X ‘
b Rb—y | RKb—x
A RA—y | RA—x

@ These conditioning problems are important and subtle.
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Some Prerequisites

@ We focus on the second column, namely xp_,x and Ka_x

e However, understanding s, and k4, is prerequisite

@ Three quantities: (All in 2-norms)
» Condition number of A: ‘ﬂ‘_‘,v,,.~v~y";v;4a;=Pb
K(A) = [|AINAT] = o1/0n [
» Angle between b and y:
6 = arccos H. (0<0<m/2)
» Orientation of y with range(A):
p= UL (1< < u()

""'i;é;;;e(A)
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Sensitivity of y to Perturbations in b

@ Intuition: The larger 6 is, the more sensitive y is in terms of relative
error

@ Analysis: y = Pb, so

Y AlylIZIel Tyl cos®’
where ||P| =1
| Input \ Output | y | x|
b T
cosf
A

@ Question: When is the maximum attained for perturbation §b?
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Sensitivity of y to Perturbations in b

@ Intuition: The larger 6 is, the more sensitive y is in terms of relative
error

@ Analysis: y = Pb, so

Y AlylIZIel Tyl cos®’
where ||P| =1
| Input \ Output | y | x|
b T
cosf
A

@ Question: When is the maximum attained for perturbation §b?

@ Answer: When is b in range(A)
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Sensitivity of x to Perturbations in b

@ Intuition: It depends on how sensitive y is to b, and how y lies within
range(A)
@ Analysis: x = ATh, so

AT e BB ey L AL s(A)
K/b X: A = R
== el = e T A s = eosd

where 7 = [[A/[Ix[|/ly]]

‘Input\Output\ y ‘ % ‘

cos 6 n cos 6
A
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Sensitivity of x to Perturbations in b

r(A)

ncos 6

@ Assume cosf = O(1), kKpsx = can lie anywhere between 1 and

O(k(A))!

@ Question: When is the maximum attained for perturbation b7
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Sensitivity of x to Perturbations in b

@ Assume cosf = O(1), kKpsx = % can lie anywhere between 1 and
O(k(A))!

@ Question: When is the maximum attained for perturbation b7

@ Answer: When b is in subspace spanned by left singular vectors
corresponding to smallest singular values

@ Question: What if A is a nonsingular matrix?
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Sensitivity of x to Perturbations in b

@ Assume cosf = O(1), kKpsx = % can lie anywhere between 1 and
O(k(A))!

@ Question: When is the maximum attained for perturbation §b7

@ Answer: When b is in subspace spanned by left singular vectors
corresponding to smallest singular values

@ Question: What if A is a nonsingular matrix?

@ Answer: Kp_x can lie anywhere between 1 and k(A)!
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Sensitivity of y and x to Perturbations in A

@ The relationship are nonlinear, because range(A) changes due to JA

@ Intuitions:
» The larger 6 is, the more sensitive y is in terms of relative error.
» Tilting of range(A) depends on k(A).
» For x, it depends where y lies within range(A)

] Input \ Output \ y \ X ‘
k(A
b ﬁ 77(:(05)0 5
k(A Kk(A)* tan 6
S ccgs6)’ S ’%(A) + %

@ For second row, bounds are not necessarily tight

@ Assume cosf = O(1), ka_x can lie anywhere between k(A) and

O(1(A)?)
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Condition Numbers of Linear Systems

@ Linear system Ax = b for nonsingular A € R™*™ is a special case of
least squares problems, where y = b

o If m=n, then 0 =0, so cos@ =1 and tan§ = 0.

| Input \ Output [ y | x|
b 1| &(A)/n
A - | < k(A)
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