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Givens Rotations

Instead of using reflection, we can rotate x to obtain ∥x∥e1

A Given rotation R =

[
cos θ − sin θ
sin θ cos θ

]
rotates x ∈ R2

counterclockwise by θ

Choose θ to be angle between (xi , xj)
T and (1, 0)T , and we have[

cos θ − sin θ
sin θ cos θ

] [
xi
xj

]
=

[ √
x2
i + x2

j

0

]

where
cos θ =

xi√
x2
i + x2

j

, sin θ =
−xj√
x2
i + x2

j
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Givens QR

Introduce zeros in column bottom-up, one zero at a time
× × ×
× × ×
× × ×
× × ×
× × ×

 (4,5)→


× × ×
× × ×
× × ×
x x x
0 x x

 (3,4)→


× × ×
× × ×
x x x
0 x x

× ×

 ...

To zero aij , left-multiply matrix F with Fi :i+1,i :i+1 being rotation
matrix and Fkk = 1 for k ̸= i , i + 1
Flop count of Givens QR is 3mn2 − n3, which is about 50% more
expensive than Householder triangularization
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Adding a Row

Suppose A ∈ Rm×n with m ≥ n, and A has full rank

Let Ã =

 A1
zT

A2

, where A =

[
A1
A2

]
and zT is a new row inserted

Obtain Ã = Q̃R̃ from A = QR efficiently using Givens rotation:

▶ Suppose A =

[
A1
A2

]
=

[
Q1
Q2

]
R.

▶ Then Ã =

 A1
zT

A2

 =

 0 Q1
1 0T

0 Q2

[
zT

R

]
▶ Perform series of Givens rotation R̃ = UT

n . . .UT
2 UT

1

[
zT

R

]
, and

then Q̃ =

 0 Q1
1 0T

0 Q2

U1U2 . . .Un

▶ Updating R̃ costs 3n2 flops, and updating Q̃ costs 6mn flops
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Adding a Column

Suppose A ∈ Rm×n with m ≥ n, and A has full rank
Let Ã =

[
A1 z A2

]
, where A =

[
A1 A2

]
and z is new column

Obtain Ã = Q̃R̃ from A = QR efficiently using Givens rotation:
▶ Suppose A =

[
A1 A2

]
= Q

[
R1 R2

]
▶ Then Ã =

[
A1 z A2

]
= Q

[
R1 w R2

]
, where w = QT z

▶ Perform series of Givens rotation R̃ = Uk+1 · · ·Un

[
R1 w R2

]
,

where Un performs on rows n and n − 1, Un−1 performs on rows
n − 1 and n − 2, etc.

▶ Q̃ = QUT
n · · ·UT

k+1
▶ It takes O(mn) time overall
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Linear Least Squares Problems

Overdetermined system of equations Ax ≈ b, where A has more rows
than columns and has full rank, in general has no solutions
Example application: Polynomial least squares fitting
In general, minimize the residual r = b − Ax

In terms of 2-norm, we obtain linear least squares problem: Given
A ∈ Rm×n, m ≥ n, and b ∈ Rm, find x ∈ Rn such that ∥b − Ax∥2 is
minimized
If A has full rank, the minimizer x is the solution to the normal
equation

ATAx = ATb

or in terms of the pseudoinverse A+,

x = A+b, where A+ = (ATA)−1AT ∈ Rn×m
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Geometric Interpretation

Ax is in range(A), and the point in range(A) closest to b is its
orthogonal projection onto range(A)
Residual r is then orthogonal to range(A), and hence
AT r = AT (b − Ax) = 0
Ax is orthogonal projection of b, where x = A+b, so
P = AA+ = A(ATA)−1AT is orthogonal projection
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Solution of Lease Squares Problems
One approach is to solve normal equation ATAx = ATb directly using
Cholesky factorization

▶ Is unstable, but is very efficient if m ≫ n (mn2 + 1
3n

3)

More robust approach is to use QR factorization A = Q̂R̂
▶ b can be projected onto range(A) by P = Q̂Q̂T , and therefore

Q̂R̂x = Q̂Q̂Tb
▶ Left-multiply by Q̂T and we get R̂x = Q̂Tb (note A+ = R̂−1Q̂T )

Least squares via QR Factorization
Compute reduced QR factorization A = Q̂R̂
Compute vector c = Q̂Tb
Solve upper-triangular system R̂x = c for x

Computation is dominated by QR factorization (2mn2 − 2
3n

3)

Question: If Householder QR is used, how to compute Q̂Tb?

Answer: Compute QTb (where Q is from full QR factorization) and
then take first n entries of resulting QTb
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Four Conditioning Problems

Least squares problem: Given
A ∈ Rm×n with full rank and b ∈ Rm,

min
x∈Rn

∥b − Ax∥

Its solution is x = A+b. Another
quantity is y = Ax = Pb, where
P = AA+

Consider A and b as input data, and x and y as output. We then have
four conditioning problems:

Input \ Output y x

b κb→y κb→x

A κA→y κA→x

These conditioning problems are important and subtle.
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Some Prerequisites

We focus on the second column, namely κb→x and κA→x

However, understanding κb→y and κA→y is prerequisite

Three quantities: (All in 2-norms)
▶ Condition number of A:

κ(A) = ∥A∥∥A+∥ = σ1/σn

▶ Angle between b and y :
θ = arccos ∥y∥

∥b∥ . (0 ≤ θ ≤ π/2)
▶ Orientation of y with range(A):

η = ∥A∥∥x∥
∥y∥ . (1 ≤ η ≤ κ(A))
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Sensitivity of y to Perturbations in b

Intuition: The larger θ is, the more sensitive y is in terms of relative
error
Analysis: y = Pb, so

κb→y =
∥P∥

∥y∥/∥b∥
=

∥b∥
∥y∥

=
1

cos θ
,

where ∥P∥ = 1

Input \ Output y x

b 1
cos θ

A

Question: When is the maximum attained for perturbation δb?

Answer: When is δb in range(A)
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Sensitivity of x to Perturbations in b

Intuition: It depends on how sensitive y is to b, and how y lies within
range(A)
Analysis: x = A+b, so

κb→x =
∥A+∥

∥x∥/∥b∥
= ∥A+∥∥b∥

∥y∥
∥y∥
∥x∥

= ∥A+∥ 1
cos θ

∥A∥
η

=
κ(A)

η cos θ
,

where η = ∥A∥∥x∥/∥y∥

Input \ Output y x

b 1
cos θ

κ(A)
η cos θ

A
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Sensitivity of x to Perturbations in b

Assume cos θ = O(1), κb→x = κ(A)
η cos θ can lie anywhere between 1 and

O(κ(A))!
Question: When is the maximum attained for perturbation δb?

Answer: When δb is in subspace spanned by left singular vectors
corresponding to smallest singular values

Question: What if A is a nonsingular matrix?

Answer: κb→x can lie anywhere between 1 and κ(A)!
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Sensitivity of y and x to Perturbations in A

The relationship are nonlinear, because range(A) changes due to δA

Intuitions:
▶ The larger θ is, the more sensitive y is in terms of relative error.
▶ Tilting of range(A) depends on κ(A).
▶ For x , it depends where y lies within range(A)

Input \ Output y x

b 1
cos θ

κ(A)
η cos θ

A ≤ κ(A)
cos θ ≤ κ(A) + κ(A)2 tan θ

η

For second row, bounds are not necessarily tight
Assume cos θ = O(1), κA→x can lie anywhere between κ(A) and
O(κ(A)2)
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Condition Numbers of Linear Systems

Linear system Ax = b for nonsingular A ∈ Rm×m is a special case of
least squares problems, where y = b

If m = n, then θ = 0, so cos θ = 1 and tan θ = 0.

Input \ Output y x

b 1 κ(A)/η

A - ≤ κ(A)
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