AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 12: Givens Rotation; Least Squares Problems; Conditioning of Least Squares Problems

Xiangmin Jiao

Stony Brook University

Outline

Givens Rotations

2 Linear Least Squares Problems (NLA§11)

3 Conditioning of Least Squares Problems (NLA§18)

Xiangmin Jiao Numerical Analysis I 2 / 18

Givens Rotations

- Instead of using reflection, we can rotate x to obtain $||x||e_1$
- A Given rotation $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ rotates $x \in \mathbb{R}^2$ counterclockwise by θ
- Choose θ to be angle between $(x_i, x_j)^T$ and $(1, 0)^T$, and we have

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i \\ x_j \end{bmatrix} = \begin{bmatrix} \sqrt{x_i^2 + x_j^2} \\ 0 \end{bmatrix}$$

where

$$\cos \theta = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \ \sin \theta = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}$$

Givens QR

Introduce zeros in column bottom-up, one zero at a time

- To zero a_{ii} , left-multiply matrix F with $F_{i:i+1,i:i+1}$ being rotation matrix and $F_{kk} = 1$ for $k \neq i, i + 1$
- Flop count of Givens QR is $3mn^2 n^3$, which is about 50% more expensive than Householder triangularization

Adding a Row

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, and A has full rank
- Let $\tilde{A} = \begin{bmatrix} A_1 \\ z^T \\ A_2 \end{bmatrix}$, where $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and z^T is a new row inserted
- Obtain $\tilde{A} = \tilde{Q}\tilde{R}$ from A = QR efficiently using Givens rotation:
 - ► Suppose $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R$.
 - ► Then $\tilde{A} = \begin{bmatrix} A_1 \\ z^T \\ A_2 \end{bmatrix} = \begin{bmatrix} 0 & Q_1 \\ 1 & 0^T \\ 0 & Q_2 \end{bmatrix} \begin{bmatrix} z^T \\ R \end{bmatrix}$
 - ▶ Perform series of Givens rotation $\tilde{R} = U_n^T \dots U_2^T U_1^T \begin{bmatrix} z^T \\ R \end{bmatrix}$, and

then
$$\tilde{Q} = \begin{bmatrix} 0 & Q_1 \\ 1 & 0^T \\ 0 & Q_2 \end{bmatrix} U_1 U_2 \dots U_n$$

• Updating \tilde{R} costs $3n^2$ flops, and updating \tilde{Q} costs 6mn flops

Adding a Column

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, and A has full rank
- ullet Let $ilde{A}=\left[egin{array}{ccc} A_1 & z & A_2 \end{array}
 ight]$, where $A=\left[egin{array}{ccc} A_1 & A_2 \end{array}
 ight]$ and z is new column
- ullet Obtain $ilde{A}= ilde{Q} ilde{R}$ from A=QR efficiently using Givens rotation:
 - ▶ Suppose $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix} = Q \begin{bmatrix} R_1 & R_2 \end{bmatrix}$
 - ▶ Then $\tilde{A} = \begin{bmatrix} A_1 & z & A_2 \end{bmatrix} = Q \begin{bmatrix} R_1 & w & R_2 \end{bmatrix}$, where $w = Q^T z$
 - ▶ Perform series of Givens rotation $\tilde{R} = U_{k+1} \cdots U_n \begin{bmatrix} R_1 & w & R_2 \end{bmatrix}$, where U_n performs on rows n and n-1, U_{n-1} performs on rows n-1 and n-2, etc.
 - $\tilde{Q} = QU_n^T \cdots U_{k+1}^T$
 - ▶ It takes O(mn) time overall

Outline

Givens Rotations

2 Linear Least Squares Problems (NLA§11)

3 Conditioning of Least Squares Problems (NLA§18)

Xiangmin Jiao Numerical Analysis I 7 / 18

Linear Least Squares Problems

- Overdetermined system of equations $Ax \approx b$, where A has more rows than columns and has full rank, in general has no solutions
- Example application: Polynomial least squares fitting
- In general, minimize the residual r = b Ax
- In terms of 2-norm, we obtain linear least squares problem: Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ such that $\|b Ax\|_2$ is minimized
- If A has full rank, the minimizer x is the solution to the normal equation

$$A^T A x = A^T b$$

or in terms of the pseudoinverse A^+ ,

$$x = A^+b$$
, where $A^+ = (A^TA)^{-1}A^T \in \mathbb{R}^{n \times m}$

Geometric Interpretation

- Ax is in range(A), and the point in range(A) closest to b is its orthogonal projection onto range(A)
- Residual r is then orthogonal to range(A), and hence $A^T r = A^T (b Ax) = 0$
- Ax is orthogonal projection of b, where $x = A^+b$, so $P = AA^+ = A(A^TA)^{-1}A^T$ is orthogonal projection

Solution of Lease Squares Problems

- One approach is to solve normal equation $A^TAx = A^Tb$ directly using Cholesky factorization
 - ▶ Is unstable, but is very efficient if $m \gg n \left(mn^2 + \frac{1}{3}n^3\right)$
- ullet More robust approach is to use QR factorization $A=\hat{Q}\hat{R}$
 - ▶ b can be projected onto range(A) by $P = \hat{Q}\hat{Q}^T$, and therefore $\hat{Q}\hat{R}x = \hat{Q}\hat{Q}^Tb$
 - lacktriangle Left-multiply by \hat{Q}^T and we get $\hat{R}x=\hat{Q}^Tb$ (note $A^+=\hat{R}^{-1}\hat{Q}^T$)

Least squares via QR Factorization

Compute reduced QR factorization $A = \hat{Q}\hat{R}$

Compute vector $c = \hat{Q}^T b$

Solve upper-triangular system $\hat{R}x = c$ for x

- Computation is dominated by QR factorization $(2mn^2 \frac{2}{3}n^3)$
- Question: If Householder QR is used, how to compute $\hat{Q}^T b$?

Solution of Lease Squares Problems

- One approach is to solve normal equation $A^TAx = A^Tb$ directly using Cholesky factorization
 - ▶ Is unstable, but is very efficient if $m \gg n \left(mn^2 + \frac{1}{3}n^3\right)$
- ullet More robust approach is to use QR factorization $A=\hat{Q}\hat{R}$
 - ▶ b can be projected onto range(A) by $P = \hat{Q}\hat{Q}^T$, and therefore $\hat{Q}\hat{R}x = \hat{Q}\hat{Q}^Tb$
 - Left-multiply by \hat{Q}^T and we get $\hat{R}x = \hat{Q}^Tb$ (note $A^+ = \hat{R}^{-1}\hat{Q}^T$)

Least squares via QR Factorization

Compute reduced QR factorization $A = \hat{Q}\hat{R}$

Compute vector $c = \hat{Q}^T b$

Solve upper-triangular system $\hat{R}x = c$ for x

- Computation is dominated by QR factorization $(2mn^2 \frac{2}{3}n^3)$
- Question: If Householder QR is used, how to compute $\hat{Q}^T b$?
- Answer: Compute Q^Tb (where Q is from full QR factorization) and then take first n entries of resulting Q^Tb

Outline

Givens Rotations

2 Linear Least Squares Problems (NLA§11)

3 Conditioning of Least Squares Problems (NLA§18)

Xiangmin Jiao Numerical Analysis I 11 / 18

Four Conditioning Problems

• Least squares problem: Given $A \in \mathbb{R}^{m \times n}$ with full rank and $b \in \mathbb{R}^m$,

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|$$

• Its solution is $x = A^+b$. Another quantity is y = Ax = Pb, where $P = AA^+$

 Consider A and b as input data, and x and y as output. We then have four conditioning problems:

Input \ Output	У	X
Ь	$\kappa_{b o y}$	$\kappa_{b \to x}$
A	$\kappa_{A o y}$	$\kappa_{A \to x}$

These conditioning problems are important and subtle.

Some Prerequisites

- We focus on the second column, namely $\kappa_{b\to x}$ and $\kappa_{A\to x}$
- However, understanding $\kappa_{b \to y}$ and $\kappa_{A \to y}$ is prerequisite
- Three quantities: (All in 2-norms)
 - ► Condition number of *A*: $\kappa(A) = ||A|| ||A^+|| = \sigma_1/\sigma_n$
 - Angle between b and y: $\theta = \arccos \frac{\|y\|}{\|b\|}. \ (0 \le \theta \le \pi/2)$
 - Orientation of y with range(A): $\eta = \frac{\|A\| \|x\|}{\|y\|}$. $(1 \le \eta \le \kappa(A))$

- Intuition: The larger θ is, the more sensitive y is in terms of relative error
- Analysis: y = Pb, so

$$\kappa_{b \to y} = \frac{\|P\|}{\|y\|/\|b\|} = \frac{\|b\|}{\|y\|} = \frac{1}{\cos \theta},$$

where $\|P\|=1$

Input \ Output	у	X
Ь	$\frac{1}{\cos \theta}$	
A		

• Question: When is the maximum attained for perturbation δb ?

- Intuition: The larger θ is, the more sensitive y is in terms of relative error
- Analysis: y = Pb, so

$$\kappa_{b \to y} = \frac{\|P\|}{\|y\|/\|b\|} = \frac{\|b\|}{\|y\|} = \frac{1}{\cos \theta},$$

where $\|P\|=1$

Input \ Output	у	X
b	$\frac{1}{\cos \theta}$	
Α		

- Question: When is the maximum attained for perturbation δb ?
- Answer: When is δb in range(A)

- Intuition: It depends on how sensitive y is to b, and how y lies within range(A)
- Analysis: $x = A^+b$, so

$$\kappa_{b\to x} = \frac{\|A^+\|}{\|x\|/\|b\|} = \|A^+\| \frac{\|b\|}{\|y\|} \frac{\|y\|}{\|x\|} = \|A^+\| \frac{1}{\cos\theta} \frac{\|A\|}{\eta} = \frac{\kappa(A)}{\eta\cos\theta},$$

where $\eta = ||A|| ||x|| / ||y||$

Input \ Output	у	X
Ь	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta\cos\theta}$
A		

- Assume $\cos \theta = O(1)$, $\kappa_{b \to x} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))!$
- Question: When is the maximum attained for perturbation δb ?

- Assume $\cos \theta = O(1)$, $\kappa_{b \to x} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))!$
- Question: When is the maximum attained for perturbation δb ?
- ullet Answer: When δb is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?

- Assume $\cos \theta = O(1)$, $\kappa_{b \to x} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))!$
- Question: When is the maximum attained for perturbation δb ?
- Answer: When δb is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?
- Answer: $\kappa_{b\to x}$ can lie anywhere between 1 and $\kappa(A)!$

- The relationship are nonlinear, because range(A) changes due to δA
- Intuitions:
 - ▶ The larger θ is, the more sensitive y is in terms of relative error.
 - ▶ Tilting of range(A) depends on $\kappa(A)$.
 - For x, it depends where y lies within range(A)

Input \ Output	у	X
Ь	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta\cos\theta}$
Α	$\leq \frac{\kappa(A)}{\cos \theta}$	$\leq \kappa(A) + rac{\kappa(A)^2 an heta}{\eta}$

- For second row, bounds are not necessarily tight
- Assume $\cos \theta = O(1)$, $\kappa_{A \to x}$ can lie anywhere between $\kappa(A)$ and $O(\kappa(A)^2)$

Condition Numbers of Linear Systems

- Linear system Ax = b for nonsingular $A \in \mathbb{R}^{m \times m}$ is a special case of least squares problems, where y = b
- If m=n, then $\theta=0$, so $\cos\theta=1$ and $\tan\theta=0$.

Input \ Output	у	X
b	1	$\kappa(A)/\eta$
Α	-	$\leq \kappa(A)$