AMS526: Numerical Analysis I (Numerical Linear Algebra for
Computational and Data Sciences)
Lecture 12: Givens Rotation; Least Squares Problems;
Conditioning of Least Squares Problems

Xiangmin Jiao

Stony Brook University

Outline

(1) Givens Rotations

2) Linear Least Squares Problems (NLA§11)

(3) Conditioning of Least Squares Problems (NLA§18)

Givens Rotations

- Instead of using reflection, we can rotate x to obtain $\|x\| e_{1}$
- A Given rotation $R=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ rotates $x \in \mathbb{R}^{2}$ counterclockwise by θ
- Choose θ to be angle between $\left(x_{i}, x_{j}\right)^{T}$ and $(1,0)^{T}$, and we have

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{j}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{x_{i}^{2}+x_{j}^{2}} \\
0
\end{array}\right]
$$

where

$$
\cos \theta=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{j}^{2}}}, \sin \theta=\frac{-x_{j}}{\sqrt{x_{i}^{2}+x_{j}^{2}}}
$$

Givens QR

- Introduce zeros in column bottom-up, one zero at a time

$$
\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times
\end{array}\right] \xrightarrow{(4,5)}\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & x & x \\
0 & x & x
\end{array}\right] \xrightarrow{(3,4)}\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & x & x \\
0 & x & x \\
& \times & \times
\end{array}\right] \cdots
$$

- To zero $a_{i j}$, left-multiply matrix F with $F_{i: i+1, i: i+1}$ being rotation matrix and $F_{k k}=1$ for $k \neq i, i+1$
- Flop count of Givens QR is $3 m n^{2}-n^{3}$, which is about 50% more expensive than Householder triangularization

Adding a Row

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, and A has full rank
- Let $\tilde{A}=\left[\begin{array}{c}A_{1} \\ z^{T} \\ A_{2}\end{array}\right]$, where $A=\left[\begin{array}{c}A_{1} \\ A_{2}\end{array}\right]$ and z^{T} is a new row inserted
- Obtain $\tilde{A}=\tilde{Q} \tilde{R}$ from $A=Q R$ efficiently using Givens rotation:
- Suppose $A=\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right]=\left[\begin{array}{l}Q_{1} \\ Q_{2}\end{array}\right] R$.
- Then $\tilde{A}=\left[\begin{array}{c}A_{1} \\ z^{T} \\ A_{2}\end{array}\right]=\left[\begin{array}{ll}0 & Q_{1} \\ 1 & 0^{T} \\ 0 & Q_{2}\end{array}\right]\left[\begin{array}{c}z^{T} \\ R\end{array}\right]$
- Perform series of Givens rotation $\tilde{R}=U_{n}^{T} \ldots U_{2}^{T} U_{1}^{T}\left[\begin{array}{c}z^{T} \\ R\end{array}\right]$, and then $\tilde{Q}=\left[\begin{array}{cc}0 & Q_{1} \\ 1 & 0^{T} \\ 0 & Q_{2}\end{array}\right] U_{1} U_{2} \ldots U_{n}$
- Updating \tilde{R} costs $3 n^{2}$ flops, and updating \tilde{Q} costs $6 m n$ flops

Adding a Column

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, and A has full rank
- Let $\tilde{A}=\left[\begin{array}{lll}A_{1} & z & A_{2}\end{array}\right]$, where $A=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right]$ and z is new column
- Obtain $\tilde{A}=\tilde{Q} \tilde{R}$ from $A=Q R$ efficiently using Givens rotation:
- Suppose $A=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right]=Q\left[\begin{array}{ll}R_{1} & R_{2}\end{array}\right]$
- Then $\tilde{A}=\left[\begin{array}{lll}A_{1} & z & A_{2}\end{array}\right]=Q\left[\begin{array}{lll}R_{1} & w & R_{2}\end{array}\right]$, where $w=Q^{\top} z$
- Perform series of Givens rotation $\tilde{R}=U_{k+1} \cdots U_{n}\left[\begin{array}{lll}R_{1} & w & R_{2}\end{array}\right]$, where U_{n} performs on rows n and $n-1, U_{n-1}$ performs on rows $n-1$ and $n-2$, etc.
- $\tilde{Q}=Q U_{n}^{T} \cdots U_{k+1}^{T}$
- It takes $O(m n)$ time overall

Outline

(1) Givens Rotations
(2) Linear Least Squares Problems (NLA§11)

(3) Conditioning of Least Squares Problems (NLA§18)

Linear Least Squares Problems

- Overdetermined system of equations $A x \approx b$, where A has more rows than columns and has full rank, in general has no solutions
- Example application: Polynomial least squares fitting
- In general, minimize the residual $r=b-A x$
- In terms of 2-norm, we obtain linear least squares problem: Given $A \in \mathbb{R}^{m \times n}, m \geq n$, and $b \in \mathbb{R}^{m}$, find $x \in \mathbb{R}^{n}$ such that $\|b-A x\|_{2}$ is minimized
- If A has full rank, the minimizer x is the solution to the normal equation

$$
A^{T} A x=A^{T} b
$$

or in terms of the pseudoinverse A^{+},

$$
x=A^{+} b, \text { where } A^{+}=\left(A^{T} A\right)^{-1} A^{T} \in \mathbb{R}^{n \times m}
$$

Geometric Interpretation

- $A x$ is in range (A), and the point in range (A) closest to b is its orthogonal projection onto range (A)
- Residual r is then orthogonal to range (A), and hence $A^{T} r=A^{T}(b-A x)=0$
- $A x$ is orthogonal projection of b, where $x=A^{+} b$, so $P=A A^{+}=A\left(A^{T} A\right)^{-1} A^{T}$ is orthogonal projection

Solution of Lease Squares Problems

- One approach is to solve normal equation $A^{T} A x=A^{T} b$ directly using Cholesky factorization
- Is unstable, but is very efficient if $m \gg n\left(m n^{2}+\frac{1}{3} n^{3}\right)$
- More robust approach is to use QR factorization $A=\hat{Q} \hat{R}$
- b can be projected onto range (A) by $P=\hat{Q} \hat{Q}^{T}$, and therefore $\hat{Q} \hat{R} x=\hat{Q} \hat{Q}^{T} b$
- Left-multiply by \hat{Q}^{T} and we get $\hat{R} x=\hat{Q}^{T} b$ (note $A^{+}=\hat{R}^{-1} \hat{Q}^{T}$)

> Least squares via QR Factorization
> Compute reduced QR factorization $A=\hat{Q} \hat{R}$
> Compute vector $c=\hat{Q}^{T} b$ Solve upper-triangular system $\hat{R} x=c$ for x

- Computation is dominated by QR factorization $\left(2 m n^{2}-\frac{2}{3} n^{3}\right)$
- Question: If Householder QR is used, how to compute $\hat{Q}^{T} b$?

Solution of Lease Squares Problems

- One approach is to solve normal equation $A^{T} A x=A^{T} b$ directly using Cholesky factorization
- Is unstable, but is very efficient if $m \gg n\left(m n^{2}+\frac{1}{3} n^{3}\right)$
- More robust approach is to use QR factorization $A=\hat{Q} \hat{R}$
- b can be projected onto range (A) by $P=\hat{Q} \hat{Q}^{T}$, and therefore $\hat{Q} \hat{R} x=\hat{Q} \hat{Q}^{T} b$
- Left-multiply by \hat{Q}^{T} and we get $\hat{R} x=\hat{Q}^{T} b$ (note $A^{+}=\hat{R}^{-1} \hat{Q}^{T}$)

> Least squares via $Q R$ Factorization
> Compute reduced $Q R$ factorization $A=\hat{Q} \hat{R}$
> Compute vector $c=\hat{Q}^{T} b$
> Solve upper-triangular system $\hat{R} x=c$ for x

- Computation is dominated by QR factorization $\left(2 m n^{2}-\frac{2}{3} n^{3}\right)$
- Question: If Householder $Q R$ is used, how to compute $\hat{Q}^{T} b$?
- Answer: Compute $Q^{T} b$ (where Q is from full QR factorization) and then take first n entries of resulting $Q^{T} b$

Outline

(1) Givens Rotations

(2) Linear Least Squares Problems (NLA§11)

(3) Conditioning of Least Squares Problems (NLA§18)

Four Conditioning Problems

- Least squares problem: Given $A \in \mathbb{R}^{m \times n}$ with full rank and $b \in \mathbb{R}^{m}$,

$$
\min _{x \in \mathbb{R}^{n}}\|b-A x\|
$$

- Its solution is $x=A^{+} b$. Another quantity is $y=A x=P b$, where

- Consider A and b as input data, and x and y as output. We then have four conditioning problems:

Input \backslash Output	y	x
b	$\kappa_{b \rightarrow y}$	$\kappa_{b \rightarrow x}$
A	$\kappa_{A \rightarrow y}$	$\kappa_{A \rightarrow x}$

- These conditioning problems are important and subtle.

Some Prerequisites

- We focus on the second column, namely $\kappa_{b \rightarrow x}$ and $\kappa_{A \rightarrow x}$
- However, understanding $\kappa_{b \rightarrow y}$ and $\kappa_{A \rightarrow y}$ is prerequisite
- Three quantities: (All in 2-norms)
- Condition number of A :

$$
\kappa(A)=\|A\|\left\|A^{+}\right\|=\sigma_{1} / \sigma_{n}
$$

- Angle between b and y : $\theta=\arccos \frac{\|y\| \|}{\| \| \|} \cdot(0 \leq \theta \leq \pi / 2)$

Sensitivity of y to Perturbations in b

- Intuition: The larger θ is, the more sensitive y is in terms of relative error
- Analysis: $y=P b$, so

$$
\kappa_{b \rightarrow y}=\frac{\|P\|}{\|y\| /\|b\|}=\frac{\|b\|}{\|y\|}=\frac{1}{\cos \theta}
$$

where $\|P\|=1$

Input \Output	y	x
b	$\frac{1}{\cos \theta}$	
A		

- Question: When is the maximum attained for perturbation δb ?

Sensitivity of y to Perturbations in b

- Intuition: The larger θ is, the more sensitive y is in terms of relative error
- Analysis: $y=P b$, so

$$
\kappa_{b \rightarrow y}=\frac{\|P\|}{\|y\| /\|b\|}=\frac{\|b\|}{\|y\|}=\frac{1}{\cos \theta}
$$

where $\|P\|=1$

Input \Output	y	x
b	$\frac{1}{\cos \theta}$	
A		

- Question: When is the maximum attained for perturbation δb ?
- Answer: When is δb in range (A)

Sensitivity of x to Perturbations in b

- Intuition: It depends on how sensitive y is to b, and how y lies within range (A)
- Analysis: $x=A^{+} b$, so

$$
\kappa_{b \rightarrow x}=\frac{\left\|A^{+}\right\|}{\|x\| /\|b\|}=\left\|A^{+}\right\| \frac{\|b\|}{\|y\|} \frac{\|y\|}{\|x\|}=\left\|A^{+}\right\| \frac{1}{\cos \theta} \frac{\|A\|}{\eta}=\frac{\kappa(A)}{\eta \cos \theta},
$$

where $\eta=\|A\|\|x\| /\|y\|$

Input \Output	y	x
b	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta \cos \theta}$
A		

Sensitivity of x to Perturbations in b

- Assume $\cos \theta=O(1), \kappa_{b \rightarrow x}=\frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))!$
- Question: When is the maximum attained for perturbation δb ?

Sensitivity of x to Perturbations in b

- Assume $\cos \theta=O(1), \kappa_{b \rightarrow x}=\frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))$!
- Question: When is the maximum attained for perturbation δb ?
- Answer: When δb is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?

Sensitivity of x to Perturbations in b

- Assume $\cos \theta=O(1), \kappa_{b \rightarrow x}=\frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))$!
- Question: When is the maximum attained for perturbation δb ?
- Answer: When δb is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?
- Answer: $\kappa_{b \rightarrow x}$ can lie anywhere between 1 and $\kappa(A)$!

Sensitivity of y and x to Perturbations in A

- The relationship are nonlinear, because range (A) changes due to δA
- Intuitions:
- The larger θ is, the more sensitive y is in terms of relative error.
- Tilting of range (A) depends on $\kappa(A)$.
- For x, it depends where y lies within range (A)

Input \Output	y	x
b	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta \cos \theta}$
A	$\leq \frac{\kappa(A)}{\cos \theta}$	$\leq \kappa(A)+\frac{\kappa(A)^{2} \tan \theta}{\eta}$

- For second row, bounds are not necessarily tight
- Assume $\cos \theta=O(1), \kappa_{A \rightarrow x}$ can lie anywhere between $\kappa(A)$ and $O\left(\kappa(A)^{2}\right)$

Condition Numbers of Linear Systems

- Linear system $A x=b$ for nonsingular $A \in \mathbb{R}^{m \times m}$ is a special case of least squares problems, where $y=b$
- If $m=n$, then $\theta=0$, so $\cos \theta=1$ and $\tan \theta=0$.

Input \Output	y	x
b	1	$\kappa(A) / \eta$
A	-	$\leq \kappa(A)$

