AMS526: Numerical Analysis I
(Numerical Linear Algebra for
Computational and Data Sciences)
Lecture 13: Stability of Householder Triangularization; Other Methods for Least Squares Problems;

Linear Algebra Software

Xiangmin Jiao

Stony Brook University

## Outline

(1) Stability of Householder Triangularization (NLA§16,19)
(2) Solution of Least Squares Problems
(3) Rank-Deficient Least Squares Problems

4 Software for Linear Algebra

## Solution of Least Squares Problems

- An efficient and robust approach is to use QR factorization $A=\hat{Q} \hat{R}$
- $b$ can be projected onto range $(A)$ by $P=\hat{Q} \hat{Q}^{T}$, and therefore $\hat{Q} \hat{R} x=\hat{Q} \hat{Q}^{T} b$
- Left-multiply by $\hat{Q}^{T}$ and we get $\hat{R} x=\hat{Q}^{T} b$ (note $A^{+}=\hat{R}^{-1} \hat{Q}^{T}$ )

Least squares via QR Factorization
Compute reduced QR factorization $A=\hat{Q} \hat{R}$
Compute vector $c=\hat{Q}^{T} b$ Solve upper-triangular system $\hat{R} x=c$ for $x$

- Computation is dominated by QR factorization $\left(2 m n^{2}-\frac{2}{3} n^{3}\right)$
- What about stability?


## Backward Stability of Householder Triangularization

- For a QR factorization $A=Q R$ computed by Householder triangularization, the factors $\tilde{Q}$ and $\tilde{R}$ satisfy

$$
\tilde{Q} \tilde{R}=A+\delta A, \quad\|\delta A\| /\|A\|=O\left(\epsilon_{\text {machine }}\right)
$$

i.e., exact $Q R$ factorization of a slightly perturbed $A$

- $\tilde{R}$ is $R$ computed by algorithm using floating points
- However, $\tilde{Q}$ is product of exactly orthogonal reflectors

$$
\tilde{Q}=\tilde{Q}_{1} \tilde{Q}_{2} \ldots \tilde{Q}_{n}
$$

where $\tilde{Q}_{k}$ is given by computed $\tilde{v}_{k}$, since $Q$ is not formed explicitly

## Backward Stability of Solving $A x=b$ with QR

Algorithm: Solving $A x=b$ by QR Factorization
Compute $A=Q R$ using Householder, represent $Q$ by reflectors Compute vector $y=Q^{T} b$ implicitly using reflectors Solve upper-triangular system $R_{1: n, 1: n} x=y_{1: n}$ for $x$

- All three steps are backward stable
- Overall, we can show that

$$
(A+\Delta A) \tilde{x}=b, \quad\|\Delta A\| /\|A\|=O\left(\epsilon_{\text {machine }}\right)
$$

as we prove next

Backward Stability of Solving $A x=b$ with Householder
Triangularization
Proof: Step 2 gives

$$
(\tilde{Q}+\delta Q) \tilde{y}=b, \quad\|\delta Q\|=O\left(\epsilon_{\text {machine }}\right)
$$

Step 3 gives

$$
(\tilde{R}+\delta R) \tilde{x}=\tilde{y}, \quad\|\delta R\| /\|\tilde{R}\|=O\left(\epsilon_{\text {machine }}\right)
$$

Therefore,

$$
b=(\tilde{Q}+\delta Q)(\tilde{R}+\delta R) \tilde{x}=[\tilde{Q} \tilde{R}+(\delta Q) \tilde{R}+\tilde{Q}(\delta R)+(\delta Q)(\delta R)] \tilde{x}
$$

Step 1 gives

$$
b=[A+\underbrace{\delta A+(\delta Q) \tilde{R}+\tilde{Q}(\delta R)+(\delta Q)(\delta R)}_{\Delta A}] \tilde{x}
$$

where $\tilde{Q} \tilde{R}=A+\delta A$

## Proof of Backward Stability Cont'd

$\tilde{Q} \tilde{R}=A+\delta A$ where $\|\delta A\| /\|A\|=O\left(\epsilon_{\text {machine }}\right)$, and therefore

$$
\frac{\|\tilde{R}\|}{\|A\|} \leq\left\|\tilde{Q}^{T}\right\| \frac{\|A+\delta A\|}{\|A\|}=O(1)
$$

Now show that each term in $\Delta A$ is small

$$
\begin{aligned}
& \frac{\|(\delta Q) \tilde{R}\|}{\|A\|} \leq\|(\delta Q)\| \frac{\|\tilde{R}\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right) \\
& \frac{\|\tilde{Q}(\delta R)\|}{\|A\|} \leq\|\tilde{Q}\| \frac{\|\delta R\|}{\|\tilde{R}\|} \frac{\|\tilde{R}\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right) \\
& \frac{\|(\delta Q)(\delta R)\|}{\|A\|} \leq\|\delta Q\| \frac{\|\delta R\|}{\|A\|}=O\left(\epsilon_{\text {machine }}^{2}\right)
\end{aligned}
$$

Overall,

$$
\frac{\|\Delta A\|}{\|A\|} \leq \frac{\|\delta A\|}{\|A\|}+\frac{\|(\delta Q) \tilde{R}\|}{\|A\|}+\frac{\|\tilde{Q}(\delta R)\|}{\|A\|}+\frac{\|(\delta Q)(\delta R)\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right)
$$

Since the algorithm is backward stable, it is also accurate.

## Backward Stability of Householder Triangularization

## Theorem

Let the full-rank least squares problem be solved using Householder triangularization on a computer satisfying the two axioms of floating point numbers. The algorithm is backward stable in the sense that the computed solution $\tilde{x}$ has the property

$$
\|(A+\delta A) \tilde{x}-b) \|=\min , \quad \frac{\|\delta A\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right)
$$

for some $\delta A \in \mathbb{R}^{m \times n}$.

- Backward stability of the algorithm is true whether $\hat{Q}^{T} b$ is computed via explicit formation of $\hat{Q}$ or computed implicitly
- Backward stability also holds for Householder triangularization with arbitrary column pivoting $A P=\hat{Q} \hat{R}$


## Outline

## (1) Stability of Householder Triangularization (NLA§16,19)

(2) Solution of Least Squares Problems
(3) Rank-Deficient Least Squares Problems

4 Software for Linear Algebra

## Algorithms for Solving Least Squares Problems

- There are many variants of algorithms for solving least squares problems
- Householder QR (with/without pivoting, explicit or implicit $Q$ ): Backward stable
- Classical Gram-Schmidt: Unstable
- Modified Gram-Schmidt with explicit Q: Unstable
- Modified Gram-Schmidt with augmented system of equations with implicit $Q$ : Backward stable
- Normal equations (solve $A^{T} A x=A^{T} b$ ): Unstable
- Singular value decomposition: Stable and most accurate


## Stability of Gram-Schmidt Orthogonalization

- Gram-Schmidt QR is unstable, due to loss of orthogonality
- Gram-Schmidt can be stabilized using augmented system of equations
(1) Compute QR factorization of augmented matrix: $[\mathrm{Q}, \mathrm{R} 1]=\mathrm{mgs}([\mathrm{A}, \mathrm{b}])$
(2) Extract $R$ and $\hat{Q}^{T} b$ from $R 1: R=R 1(1: n, 1: n) ; Q b=R 1(1: n, n+1)$
(3) Back solve: $x=R \backslash Q b$


## Theorem

The solution of the full-rank least squares problem by Gram-Schmidt orthogonality is backward stable in the sense that the computed solution $\tilde{x}$ has the property

$$
\|(A+\delta A) \tilde{x}-b) \|=\min , \quad \frac{\|\delta A\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right)
$$

for some $\delta A \in \mathbb{R}^{m \times n}$, provided that $\hat{Q}^{T} b$ is formed implicitly.

## Other Methods

- The method of normal equation solves $x=\left(A^{T} A\right)^{-1} A^{T} b$, due to squaring of condition number of $A$


## Theorem

The solution of the full-rank least squares problem via normal equation is unstable. Stability can be achieved, however, by restriction to a class of problems in which $\kappa(A)$ is uniformly bounded above.

- Another method is to SVD


## Solution by SVD

- Using $A=\hat{U} \hat{\Sigma} V^{T}$, $b$ can be projected onto range $(A)$ by $P=\hat{U} \hat{U}^{T}$, and therefore $\hat{U} \hat{\Sigma} V^{T} x=\hat{U} \hat{U}^{T} b$
- Left-multiply by $\hat{U}^{T}$ and we get $\hat{\Sigma} V^{T} x=\hat{U}^{T} b$

Least squares via SVD
Compute reduced SVD factorization $A=\hat{U} \hat{\Sigma} V^{T}$ Compute vector $c=\hat{U}^{T} b$ Solve diagonal system $\hat{\Sigma} w=c$ for $w$ Set $x=V w$

- Work is dominated by SVD, which is $\sim 2 m n^{2}+11 n^{3}$ flops, very expensive if $m \approx n$
- Question: If $A$ is rank deficient, how to solve $A x \approx b$ ?


## Outline

## (1) Stability of Householder Triangularization (NLA§16,19)

(2) Solution of Least Squares Problems
(3) Rank-Deficient Least Squares Problems
4. Software for Linear Algebra

## Rank-Deficient Least Squares Problems

- Least squares problems $A x \approx b$ is the most challenging if $A$ is (nearly) rank deficient
- If $A$ is rank deficient, there are an infinite number of $x$ that minimizes $\|b-A x\|$. This is because if $y \in \operatorname{null}(A)$, for any $x$ that minimizes $\|b-A x\|, x+y$ also minimizes $\|b-A x\|$
- "Uniqueness" is recovered by requiring $x \perp$ null $(A)$. Or equivalently, minimize $\|x\|$ subject to $(b-A x) \perp$ range $(A)$
- In practice, however, we often have near rank deficiency instead of exact rank deficiency
- For rank deficiency, (left or right) null space is the space span by (left or right) singular vectors corresponding to zero singular values
- For nearly rank deficient least squares problem, define "numerical null space" to be singular vectors corresponding to smallest singular values


## Solving Rank-Deficient Least Squares Problems by SVD

- If $A$ is full rank, $A=\hat{U} \hat{\Sigma} V^{T}=\sum_{j=1}^{\min \{m, n\}} \sigma_{j} u_{j} v_{j}^{T}$, and

$$
A^{+}=\sum_{j=1}^{\min \{m, n\}} \frac{1}{\sigma_{j}} v_{j} u_{j}^{T}
$$

- If $A$ is rank deficient, $A^{+}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} v_{j} u_{j}^{T}$, where $r$ is rank of $A$
- If $A$ is nearly rank deficient, $\tilde{A}^{+}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} v_{j} u_{j}^{T}$, where $r$ is numerical rank of $A$, i.e., largest $j$ such that $\sigma_{j} \geq \epsilon \sigma_{1}$ for some small $\epsilon$. This is called truncated SVD
- $\tilde{A}=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}$ is a low-rank approximation to $A$

Rank-deficient least squares via truncated SVD
Compute reduced SVD factorization $A=\hat{U} \hat{\Sigma} V^{T}$ and estimate $r$ Compute vector $c=\left(\hat{U}_{:, 1: r}\right)^{T} b$
Solve diagonal system $\hat{\Sigma}_{1: r, 1: r} w=c$ for $w$
Set $x=V_{1: m, 1: r} w$

## A Note on Pseudoinverse

- If $A \in \mathbb{R}^{m \times n}$ is rank deficient, the pseudoinverse of $A$ is defined as

$$
A^{+}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} v_{j} u_{j}^{T},
$$

where $r$ is rank of $A$

- It is unique minimum Frobenius norm solution to

$$
\min _{x \in \mathbb{R}^{n \times m}}\left\|A X-I_{m}\right\|_{F}
$$

- It is also unique matrix $X \in \mathbb{R}^{n \times m}$ that satisfies four Moore-Penrose conditions:
(1) $A X A=A$
(2) $X A X=X$
(3) $(A X)^{T}=A X$
(4) $(X A)^{T}=X A$


## QR with Column Pivoting

- Another approach is to use QR with column pivoting, or QRCP
- Suppose $A \in \mathbb{R}^{m \times n}$, and $r$ be its rank. In exact arithmetic, QR with column pivoting is rank revealing if

$$
\begin{gathered}
Q^{T} A \Pi=\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & 0
\end{array}\right] \begin{array}{c}
r \\
r
\end{array} \quad n-r \\
r n-r
\end{gathered}
$$

where $\Pi$ is a permutation matrix. range $(A)=\operatorname{span}\left\{q_{1}, \ldots, q_{r}\right\}$

- In exact arithmetic, a rank-revealing QRCP is obtained by permuting columns such that diagonal entry in $R$ is maximized at each step
- In particular, at kth step,

$$
\begin{array}{rl}
\left(Q_{k-1} \cdots Q_{1}\right) A\left(\Pi_{1} \cdots \Pi_{k-1}\right)=R^{(k-1)}= & {\left[\begin{array}{cc}
R_{11}^{(k-1)} & R_{12}^{(k-1)} \\
0 & R_{22}^{(k-1)}
\end{array}\right] m-k+} \\
k-1 & n-k+1
\end{array}
$$

permute column with maximum 2-norm in $R_{22}^{(k-1)}$ to $k$ th column

## Solving Rank-Deficient Least Squares Problems by QRCP

- With rounding errors, one terminates if the computed $R_{22}^{(k-1)}\left(\tilde{R}_{22}^{(k-1)}\right)$ has a sufficient small 2-norm compared to that of $A$
- If $\tilde{R}_{22}^{(k-1)}$ is small, then $A$ is (numerically) rank deficient
- However, if $\operatorname{rank}(A)=k$, it does not follow that $\tilde{R}_{22}^{(k-1)}$ is small, so it may not reveal rank deficiency (and still lead to instability)
- In practice, QRCP needs to be coupled with a condition number estimator to help reveal the rank

Rank-deficient least squares via truncated QRCP
Compute QRCP AP $=Q R$ and estimate $r$
Compute vector $c=\left(Q_{:, 1: r}\right)^{T} b$
Solve triangular system $R_{1: r, 1: r} y=c$ for $y$
Set $x=P_{1: m, 1: r y}$

- Truncated QRCP is far less expensive than truncated SVD, and is robust with a good condition number estimator
- Unlike SVD, QRCP uses a subset of columns of $A$


## Outline

## (1) Stability of Householder Triangularization (NLA§16,19)

(2) Solution of Least Squares Problems
(3) Rank-Deficient Least Squares Problems

4 Software for Linear Algebra

## Software for Linear Algebra

- LAPACK: Linear Algebra PACKage (www.netlib.org/lapack/lug)
- Standard library for solving linear systems and eigenvalue problems
- Successor of LINPACK (www.netlib.org/linpack) and EISPACK (www.netlib.org/eispack)
- Depends on BLAS (Basic Linear Algebra Subprograms)
- Parallel extensions include ScaLAPACK and PLAPACK (with MPI)
- Note: Uses Fortran conventions for matrix arrangements
- MATLAB
- Factorization $A: \operatorname{lu}(\mathrm{A})$ and $\operatorname{chol}(\mathrm{A})$
- Solve $A x=b: x=A \backslash b$
$\star$ Uses back/forward substitution for triangular matrices
* Uses Cholesky factorization for positive-definite matrices
* Uses LU factorization with partial pivoting for nonsymmetric matrices
* Uses Householder QR for least squares problems
* Uses some special routines for matrices with special sparsity patterns
- Uses LAPACK and other packages internally
- Direct solvers for sparse matrices (e.g., SuperLU, SuiteSparse, MUMPS)


## Some Commonly Used Functions

Example BLAS routines: Matrix-vector multip.: dgemv; Matrix-matrix multip: dgemm

|  | LU Factorization |  | Solve linear system |  | Est. cond |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | General | Symmetric | General | Symmetric |  |
| LAPACK | dgetrf | dpotrf/dsytrf | dgesv | dposv/dposvx | dgecon |
| LINPACK | dgefa | dpofa/dsifa | dgesl | dposl/dsisl | dgeco |
| MATLAB | lu | chol | $\backslash$ | $\backslash$ | rcond |


|  | Linear least squares |  |  |  | Eigenvalue/vector |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SVD |  |  |  |  |  |  |
|  | QR | Solve | Rank-deficient | General | Sym. |  |
| LAPACK | dgeqrf | dgels | dgelsy/s/d | dgeev | dsyev | dgesvd |
| LINPACK | dqrdc | dqrsl | dqrst | - | - | dsvdc |
| MATLAB | qr | $\backslash$ | $\backslash$ | eig | eig | svd |

For BLAS, LINPACK, and LAPACK, first letter s stands for single-precision real, d for double-precision real, c for single-precision complex, and z for double-precision complex. Boldface LAPACK routines are driver routines; others are computational routines.

## Using LAPACK Routines in C Programs

- LAPACK was written in Fortran 77. Special attention is required when calling from $C$.
- Key differences between C and Fortran
(1) Storage of matrices: column major (Fortran) versus row major (C/C++)
(2) Argument passing for subroutines in C and Fortran: pass by reference (Fortran) and pass by value ( $\mathrm{C} / \mathrm{C}++$ )
- Example C code (example.c) for solving linear system using sgesv
- See class website for sample code
- To compile, issue command "cc -o example example.c -llapack -lblas"
- Hint: To find a function name, refer to LAPACK Users' Guide
- To find out arguments for a given function, search on netlib.org

