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@ Stability of Householder Triangularization (NLA§16,19)
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Solution of Least Squares Problems

o An efficient and robust approach is to use QR factorization A = QR
» b can be projected onto range(A) by P = QQT, and therefore
Ok« - 007
> Left-multiply by Q7 and we get Rx = Q7 b (note AT = R~1Q7)

Least squares via QR Factorization
Compute reduced QR factorization A = CA),‘i>
Compute vector ¢ = Qb
Solve upper-triangular system Rx = ¢ for x

o Computation is dominated by QR factorization (2mn? — 2n?)
@ What about stability?
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Backward Stability of Householder Triangularization

@ For a QR factorization A = QR computed by Householder
triangularization, the factors Q and R satisfy

QI% =A+0A, |[[6A]l/I|All = O(€emachine)s

i.e., exact QR factorization of a slightly perturbed A
o R is R computed by algorithm using floating points

o However, Q is product of exactly orthogonal reflectors
Q=0&Q...0,

where Qy is given by computed i, since Q is not formed explicitly
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Backward Stability of Solving Ax = b with QR

Algorithm: Solving Ax = b by QR Factorization
Compute A = QR using Householder, represent @ by reflectors
Compute vector y = QT b implicitly using reflectors
Solve upper-triangular system Ry.p1.nx = y1.n for x

@ All three steps are backward stable

@ Overall, we can show that
(A + AA))’2 = b7 “AA”/HAH = O(emachine)

as we prove next
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Backward Stability of Solving Ax = b with Householder

Triangularization
Proof: Step 2 gives

(Q+0Q)7 =b, [I6Q] = O(emachine)
Step 3 gives
(R+0R)x =3, |I0RII/IIR]| = O(emachine)
Therefore,
b=(Q+0Q)(R+0R)% = |GR + (3Q)R + Q(4R) + (5Q)(¢R) | %

Step 1 gives

b= |A+A+(BQ)R + Q(6R) + (3Q)(5R) | X
AA

where QR = A+ /A
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Proof of Backward Stability Cont'd
QR = A+ 5A where ||6A||/||All = O(€émachine), and therefore

IIR’II | A+ A
<[|QT =0(1
Ay <191z = o
Now show that each term in AA is small
||(5Q)R’|| IIRIl
< (6@ =0 €machine
1Q(SR)| = R |IR]]
— < = 7:OGmacine
A 1B [A] = Olémchine)
[EQIOR) [oR]| 2
= 6Q O €machine
jag = 1091 = Olemactine)
Overall,
IAAL _ I8A]  IGQR] , IQGR)I | I(BQ)(R)
< + + + =0 €machine
Al S Al A Al Al (€machine)

Since the algorithm is backward stable, it is also accurate.
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Backward Stability of Householder Triangularization

Theorem

Let the full-rank least squares problem be solved using Householder
triangularization on a computer satisfying the two axioms of floating point

numbers. The algorithm is backward stable in the sense that the computed
solution X has the property

16A]l _

4+ 64)% — b)) = min, {2 = Olenachine)

for some §A € R™*",

o Backward stability of the algorithm is true whether Q7 b is computed
via explicit formation of @ or computed implicitly

@ Backward stability also holds for Householder triangularization with
arbitrary column pivoting AP = QR
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© Solution of Least Squares Problems
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Algorithms for Solving Least Squares Problems

@ There are many variants of algorithms for solving least squares
problems

» Householder QR (with/without pivoting, explicit or implicit Q):
Backward stable

» Classical Gram-Schmidt: Unstable

» Modified Gram-Schmidt with explicit Q: Unstable

» Modified Gram-Schmidt with augmented system of equations with
implicit Q: Backward stable

» Normal equations (solve AT Ax = ATb): Unstable

» Singular value decomposition: Stable and most accurate
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Stability of Gram-Schmidt Orthogonalization

@ Gram-Schmidt QR is unstable, due to loss of orthogonality

@ Gram-Schmidt can be stabilized using augmented system of equations

@ Compute QR factorization of augmented matrix: [Q,R1]=mgs([A,b])
@ Extract R and Q7 b from R1: R=R1(1:n,1:n); Qb=R1(1:n,n+1)
© Back solve: x=R\Qb

Theorem

The solution of the full-rank least squares problem by Gram-Schmidt

orthogonality is backward stable in the sense that the computed solution X
has the property

I(A+ dA)X — b)|| = min, ”HAHH O E i)

for some 0A € R™ ", provided that QT b is formed implicitly.
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Other Methods

o The method of normal equation solves x = (AT A)~1AT b, due to
squaring of condition number of A

Theorem

The solution of the full-rank least squares problem via normal equation is
unstable. Stability can be achieved, however, by restriction to a class of
problems in which k(A) is uniformly bounded above.

@ Another method is to SVD
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Solution by SVD

@ Using A= UfA\/AT, b can tzeAprojected onto range(A) by P = 00T,
and therefore UXVTx = UUTb
o Left-multiply by U7 and we get £V 7x = 07b

Least squares via SVD

Compute reduced SVD factorization A = US VT
Compute vector ¢ = 07b

Solve diagonal system Yw = ¢ for w

Set x = Vw

@ Work is dominated by SVD, which is ~ 2mn? + 11n3 flops, very
expensive if m =~ n

@ Question: If A is rank deficient, how to solve Ax ~ b?
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© Rank-Deficient Least Squares Problems
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Rank-Deficient Least Squares Problems

@ Least squares problems Ax ~ b is the most challenging if A is (nearly)
rank deficient

e If Ais rank deficient, there are an infinite number of x that minimizes
||b — Ax||. This is because if y € null(A), for any x that minimizes
||b — Ax||, x 4+ y also minimizes ||b — Ax||

@ “Uniqueness’ is recovered by requiring x L null(A) . Or equivalently,
minimize ||x|| subject to (b — Ax) L range(A)

@ In practice, however, we often have near rank deficiency instead of
exact rank deficiency

e For rank deficiency, (left or right) null space is the space span by (left
or right) singular vectors corresponding to zero singular values

@ For nearly rank deficient least squares problem, define “numerical null
space’ to be singular vectors corresponding to smallest singular values
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Solving Rank-Deficient Least Squares Problems by SVD

o If Ais full rank, A= U3 VT = er-n:iq{m’"} ajujva, and
At = er'n:inl{m,n} J%.VjUJ'T

o If Ais rank deficient, AT = Z}:l UijvjujT, where r is rank of A

o If Ais nearly rank deficient, AT = Z}Zl a%-"j“jT' where r is numerical
rank of A, i.e., largest j such that o; > eo for some small €. This is

called truncated SVD

e A=>" ,ojuj vJ-T is a low-rank approximation to A

Rank-deficient least squares via truncated SVD
Compute reduced SVD factorization A= US VT and estimate r

. T
Compute vector ¢ = (U;,l;r) b

Solve diagonal system 21.,1.,w = ¢ for w
Set x = Vl:m,l:rW
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A Note on Pseudoinverse

e If A e R™*" is rank deficient, the pseudoinverse of A is defined as

where r is rank of A

@ It is unique minimum Frobenius norm solution to

min ||AX — In||F
XeRnxm

@ It is also unique matrix X € R"™*™ that satisfies four Moore-Penrose

conditions:
QO AXA=A
Q XAX =X
9 (AX)T = AX
Q (XA)T = XA
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QR with Column Pivoting

@ Another approach is to use QR with column pivoting, or QRCP
@ Suppose A € R™*" and r be its rank. In exact arithmetic, QR with
column pivoting is rank revealing if

Ri1 R r
T AR 11 R12
@AM = [ 0 0 } m-—r
r n—r
where 1 is a permutation matrix. range(A) = span{q1,...,qr}
@ In exact arithmetic, a rank-revealing QRCP is obtained by permuting

columns such that diagonal entry in R is maximized at each step
@ In particular, at kth step,

(Qu_1-- QA(My---My_q) = R(k=1) _

R R k-
0 Rg*l) m—k+
k—1 n—k+1

: : . k—1
permute column with maximum 2-norm in Réz ) to kth column
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Solving Rank-Deficient Least Squares Problems by QRCP

e With rounding errors, one terminates if the computed Rg_l) (Nég_l))

has a sufficient small 2-norm compared to that of A
> If /%55‘1’ is small, then A is (numerically) rank deficient
» However, if rank(A) = k, it does not follow that R’ég_l) is small, so it
may not reveal rank deficiency (and still lead to instability)
@ In practice, QRCP needs to be coupled with a condition number
estimator to help reveal the rank

Rank-deficient least squares via truncated QRCP
Compute QRCP AP = QR and estimate r
Compute vector ¢ = (Q;71;,)T b
Solve triangular system Ry, 1.,y = ¢ for y
Set x = Pl:m,l:r_y

@ Truncated QRCP is far less expensive than truncated SVD, and is
robust with a good condition number estimator

o Unlike SVD, QRCP uses a subset of columns of A
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@ Software for Linear Algebra
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Software for Linear Algebra

e LAPACK: Linear Algebra PACKage (www.netlib.org/lapack/lug)
» Standard library for solving linear systems and eigenvalue problems
» Successor of LINPACK (www.netlib.org/linpack) and EISPACK
(www.netlib.org/eispack)
» Depends on BLAS (Basic Linear Algebra Subprograms)
» Parallel extensions include ScaLAPACK and PLAPACK (with MPI)
» Note: Uses Fortran conventions for matrix arrangements

o MATLAB

» Factorization A: lu(A) and chol(A)

» Solve Ax = b: x = A\b
* Uses back/forward substitution for triangular matrices
* Uses Cholesky factorization for positive-definite matrices
* Uses LU factorization with partial pivoting for nonsymmetric matrices
* Uses Householder QR for least squares problems
* Uses some special routines for matrices with special sparsity patterns

» Uses LAPACK and other packages internally

@ Direct solvers for sparse matrices (e.g., SuperLU, SuiteSparse,
MUMPS)
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www.netlib.org/lapack/lug
www.netlib.org/linpack
www.netlib.org/eispack
https://portal.nersc.gov/project/sparse/superlu/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://mumps.enseeiht.fr/

Some Commonly Used Functions

Example BLAS routines: Matrix-vector multip.: dgemv; Matrix-matrix multip: dgemm

LU

Factorization

Solve linear system Est. cond
General ‘ Symmetric | General ‘ Symmetric
LAPACK dgetrf | dpotrf/dsytrf | dgesv | dposv/dposvx dgecon
LINPACK | dgefa dpofa/dsifa dgesl dposl/dsisl dgeco
MATLAB lu chol \ \ rcond
Linear least squares Eigenvalue/vector | SVD
QR ‘ Solve ‘ Rank-deficient | General ‘ Sym.

LAPACK | dgeqrf | dgels dgelsy/s/d dgeev dsyev | dgesvd
LINPACK | dqrdc | dgrsl dqrst - - dsvdc
MATLAB qr \ \ eig eig svd

For BLAS, LINPACK, and LAPACK, first letter s stands for single-precision
real, d for double-precision real, c for single-precision complex, and z for
double-precision complex. Boldface LAPACK routines are driver routines;
others are computational routines.
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Using LAPACK Routines in C Programs

@ LAPACK was written in Fortran 77. Special attention is required when
calling from C.
o Key differences between C and Fortran
@ Storage of matrices: column major (Fortran) versus row major
(C/C++)
© Argument passing for subroutines in C and Fortran: pass by reference
(Fortran) and pass by value (C/C++)
e Example C code (example.c) for solving linear system using sgesv
» See class website for sample code
» To compile, issue command “cc -o example example.c -llapack -Iblas”
@ Hint: To find a function name, refer to LAPACK Users' Guide
@ To find out arguments for a given function, search on netlib.org
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