
AMS526: Numerical Analysis I
(Numerical Linear Algebra for

Computational and Data Sciences)
Lecture 13: Stability of Householder Triangularization;

Other Methods for Least Squares Problems;
Linear Algebra Software

Xiangmin Jiao

Stony Brook University

Xiangmin Jiao Numerical Analysis I 1 / 23



Outline

1 Stability of Householder Triangularization (NLA§16,19)

2 Solution of Least Squares Problems

3 Rank-Deficient Least Squares Problems

4 Software for Linear Algebra

Xiangmin Jiao Numerical Analysis I 2 / 23



Solution of Least Squares Problems

An efficient and robust approach is to use QR factorization A = Q̂R̂
▶ b can be projected onto range(A) by P = Q̂Q̂T , and therefore

Q̂R̂x = Q̂Q̂Tb
▶ Left-multiply by Q̂T and we get R̂x = Q̂Tb (note A+ = R̂−1Q̂T )

Least squares via QR Factorization
Compute reduced QR factorization A = Q̂R̂
Compute vector c = Q̂Tb
Solve upper-triangular system R̂x = c for x

Computation is dominated by QR factorization (2mn2 − 2
3n

3)
What about stability?

Xiangmin Jiao Numerical Analysis I 3 / 23



Backward Stability of Householder Triangularization

For a QR factorization A = QR computed by Householder
triangularization, the factors Q̃ and R̃ satisfy

Q̃R̃ = A+ δA, ∥δA∥/∥A∥ = O(ϵmachine),

i.e., exact QR factorization of a slightly perturbed A

R̃ is R computed by algorithm using floating points
However, Q̃ is product of exactly orthogonal reflectors

Q̃ = Q̃1Q̃2 . . . Q̃n

where Q̃k is given by computed ṽk , since Q is not formed explicitly

Xiangmin Jiao Numerical Analysis I 4 / 23



Backward Stability of Solving Ax = b with QR

Algorithm: Solving Ax = b by QR Factorization
Compute A = QR using Householder, represent Q by reflectors
Compute vector y = QTb implicitly using reflectors
Solve upper-triangular system R1:n,1:nx = y1:n for x

All three steps are backward stable
Overall, we can show that

(A+∆A)x̃ = b, ∥∆A∥/∥A∥ = O(ϵmachine)

as we prove next

Xiangmin Jiao Numerical Analysis I 5 / 23



Backward Stability of Solving Ax = b with Householder
Triangularization
Proof: Step 2 gives

(Q̃ + δQ)ỹ = b, ∥δQ∥ = O(ϵmachine)

Step 3 gives

(R̃ + δR)x̃ = ỹ , ∥δR∥/∥R̃∥ = O(ϵmachine)

Therefore,

b = (Q̃ + δQ)(R̃ + δR)x̃ =
[
Q̃R̃ + (δQ)R̃ + Q̃(δR) + (δQ)(δR)

]
x̃

Step 1 gives

b =

A+ δA+ (δQ)R̃ + Q̃(δR) + (δQ)(δR)︸ ︷︷ ︸
∆A

 x̃

where Q̃R̃ = A+ δA
Xiangmin Jiao Numerical Analysis I 6 / 23



Proof of Backward Stability Cont’d
Q̃R̃ = A+ δA where ∥δA∥/∥A∥ = O(ϵmachine), and therefore

∥R̃∥
∥A∥

≤ ∥Q̃T∥∥A+ δA∥
∥A∥

= O(1)

Now show that each term in ∆A is small

∥(δQ)R̃∥
∥A∥

≤ ∥(δQ)∥∥R̃∥
∥A∥

= O(ϵmachine)

∥Q̃(δR)∥
∥A∥

≤ ∥Q̃∥∥δR∥
∥R̃∥

∥R̃∥
∥A∥

= O(ϵmachine)

∥(δQ)(δR)∥
∥A∥

≤ ∥δQ∥∥δR∥
∥A∥

= O(ϵ2machine)

Overall,

∥∆A∥
∥A∥

≤ ∥δA∥
∥A∥

+
∥(δQ)R̃∥

∥A∥
+

∥Q̃(δR)∥
∥A∥

+
∥(δQ)(δR)∥

∥A∥
= O(ϵmachine)

Since the algorithm is backward stable, it is also accurate.
Xiangmin Jiao Numerical Analysis I 7 / 23



Backward Stability of Householder Triangularization

Theorem
Let the full-rank least squares problem be solved using Householder
triangularization on a computer satisfying the two axioms of floating point
numbers. The algorithm is backward stable in the sense that the computed
solution x̃ has the property

∥(A+ δA)x̃ − b)∥ = min,
∥δA∥
∥A∥

= O(ϵmachine)

for some δA ∈ Rm×n.

Backward stability of the algorithm is true whether Q̂Tb is computed
via explicit formation of Q̂ or computed implicitly
Backward stability also holds for Householder triangularization with
arbitrary column pivoting AP = Q̂R̂

Xiangmin Jiao Numerical Analysis I 8 / 23



Outline

1 Stability of Householder Triangularization (NLA§16,19)

2 Solution of Least Squares Problems

3 Rank-Deficient Least Squares Problems

4 Software for Linear Algebra

Xiangmin Jiao Numerical Analysis I 9 / 23



Algorithms for Solving Least Squares Problems

There are many variants of algorithms for solving least squares
problems

▶ Householder QR (with/without pivoting, explicit or implicit Q):
Backward stable

▶ Classical Gram-Schmidt: Unstable
▶ Modified Gram-Schmidt with explicit Q: Unstable
▶ Modified Gram-Schmidt with augmented system of equations with

implicit Q: Backward stable
▶ Normal equations (solve ATAx = ATb): Unstable
▶ Singular value decomposition: Stable and most accurate

Xiangmin Jiao Numerical Analysis I 10 / 23



Stability of Gram-Schmidt Orthogonalization

Gram-Schmidt QR is unstable, due to loss of orthogonality
Gram-Schmidt can be stabilized using augmented system of equations

1 Compute QR factorization of augmented matrix: [Q,R1]=mgs([A,b])
2 Extract R and Q̂Tb from R1: R=R1(1:n,1:n); Qb=R1(1:n,n+1)
3 Back solve: x=R\Qb

Theorem
The solution of the full-rank least squares problem by Gram-Schmidt
orthogonality is backward stable in the sense that the computed solution x̃
has the property

∥(A+ δA)x̃ − b)∥ = min,
∥δA∥
∥A∥

= O(ϵmachine)

for some δA ∈ Rm×n, provided that Q̂Tb is formed implicitly.

Xiangmin Jiao Numerical Analysis I 11 / 23



Other Methods

The method of normal equation solves x = (ATA)−1ATb, due to
squaring of condition number of A

Theorem
The solution of the full-rank least squares problem via normal equation is
unstable. Stability can be achieved, however, by restriction to a class of
problems in which κ(A) is uniformly bounded above.

Another method is to SVD

Xiangmin Jiao Numerical Analysis I 12 / 23



Solution by SVD

Using A = ÛΣ̂V T , b can be projected onto range(A) by P = ÛÛT ,
and therefore ÛΣ̂V T x = ÛÛTb

Left-multiply by ÛT and we get Σ̂V T x = ÛTb

Least squares via SVD
Compute reduced SVD factorization A = ÛΣ̂V T

Compute vector c = ÛTb
Solve diagonal system Σ̂w = c for w
Set x = Vw

Work is dominated by SVD, which is ∼ 2mn2 + 11n3 flops, very
expensive if m ≈ n

Question: If A is rank deficient, how to solve Ax ≈ b?

Xiangmin Jiao Numerical Analysis I 13 / 23



Outline

1 Stability of Householder Triangularization (NLA§16,19)

2 Solution of Least Squares Problems

3 Rank-Deficient Least Squares Problems

4 Software for Linear Algebra

Xiangmin Jiao Numerical Analysis I 14 / 23



Rank-Deficient Least Squares Problems

Least squares problems Ax ≈ b is the most challenging if A is (nearly)
rank deficient
If A is rank deficient, there are an infinite number of x that minimizes
∥b − Ax∥. This is because if y ∈ null(A), for any x that minimizes
∥b − Ax∥, x + y also minimizes ∥b − Ax∥
“Uniqueness” is recovered by requiring x ⊥ null(A) . Or equivalently,
minimize ∥x∥ subject to (b − Ax) ⊥ range(A)
In practice, however, we often have near rank deficiency instead of
exact rank deficiency
For rank deficiency, (left or right) null space is the space span by (left
or right) singular vectors corresponding to zero singular values
For nearly rank deficient least squares problem, define “numerical null
space” to be singular vectors corresponding to smallest singular values

Xiangmin Jiao Numerical Analysis I 15 / 23



Solving Rank-Deficient Least Squares Problems by SVD

If A is full rank, A = ÛΣ̂V T =
∑min{m,n}

j=1 σjujv
T
j , and

A+ =
∑min{m,n}

j=1
1
σj
vju

T
j

If A is rank deficient, A+ =
∑r

j=1
1
σj
vju

T
j , where r is rank of A

If A is nearly rank deficient, Ã+ =
∑r

j=1
1
σj
vju

T
j , where r is numerical

rank of A, i.e., largest j such that σj ≥ ϵσ1 for some small ϵ. This is
called truncated SVD
Ã =

∑r
j=1 σjujv

T
j is a low-rank approximation to A

Rank-deficient least squares via truncated SVD
Compute reduced SVD factorization A = ÛΣ̂V T and estimate r

Compute vector c =
(
Û:,1:r

)T
b

Solve diagonal system Σ̂1:r ,1:rw = c for w
Set x = V1:m,1:rw

Xiangmin Jiao Numerical Analysis I 16 / 23



A Note on Pseudoinverse

If A ∈ Rm×n is rank deficient, the pseudoinverse of A is defined as

A+ =
r∑

j=1

1
σj

vju
T
j ,

where r is rank of A
It is unique minimum Frobenius norm solution to

min
X∈Rn×m

∥AX − Im∥F

It is also unique matrix X ∈ Rn×m that satisfies four Moore-Penrose
conditions:

1 AXA = A
2 XAX = X
3 (AX )T = AX
4 (XA)T = XA

Xiangmin Jiao Numerical Analysis I 17 / 23



QR with Column Pivoting
Another approach is to use QR with column pivoting, or QRCP
Suppose A ∈ Rm×n, and r be its rank. In exact arithmetic, QR with
column pivoting is rank revealing if

QTAΠ =

[
R11 R12
0 0

]
r n − r

r
m − r

where Π is a permutation matrix. range(A) = span{q1, . . . , qr}
In exact arithmetic, a rank-revealing QRCP is obtained by permuting
columns such that diagonal entry in R is maximized at each step
In particular, at kth step,

(Qk−1 · · ·Q1)A(Π1 · · ·Πk−1) = R(k−1) =

[
R
(k−1)
11 R

(k−1)
12

0 R
(k−1)
22

]
k − 1 n − k + 1

k − 1
m − k + 1

permute column with maximum 2-norm in R
(k−1)
22 to kth column

Xiangmin Jiao Numerical Analysis I 18 / 23



Solving Rank-Deficient Least Squares Problems by QRCP
With rounding errors, one terminates if the computed R

(k−1)
22 (R̃(k−1)

22 )
has a sufficient small 2-norm compared to that of A

▶ If R̃(k−1)
22 is small, then A is (numerically) rank deficient

▶ However, if rank(A) = k , it does not follow that R̃(k−1)
22 is small, so it

may not reveal rank deficiency (and still lead to instability)

In practice, QRCP needs to be coupled with a condition number
estimator to help reveal the rank

Rank-deficient least squares via truncated QRCP
Compute QRCP AP = QR and estimate r
Compute vector c = (Q:,1:r )

T b
Solve triangular system R1:r ,1:ry = c for y
Set x = P1:m,1:ry

Truncated QRCP is far less expensive than truncated SVD, and is
robust with a good condition number estimator
Unlike SVD, QRCP uses a subset of columns of A

Xiangmin Jiao Numerical Analysis I 19 / 23



Outline

1 Stability of Householder Triangularization (NLA§16,19)

2 Solution of Least Squares Problems

3 Rank-Deficient Least Squares Problems

4 Software for Linear Algebra

Xiangmin Jiao Numerical Analysis I 20 / 23



Software for Linear Algebra
LAPACK: Linear Algebra PACKage (www.netlib.org/lapack/lug)

▶ Standard library for solving linear systems and eigenvalue problems
▶ Successor of LINPACK (www.netlib.org/linpack) and EISPACK

(www.netlib.org/eispack)
▶ Depends on BLAS (Basic Linear Algebra Subprograms)
▶ Parallel extensions include ScaLAPACK and PLAPACK (with MPI)
▶ Note: Uses Fortran conventions for matrix arrangements

MATLAB
▶ Factorization A: lu(A) and chol(A)
▶ Solve Ax = b: x = A\b

⋆ Uses back/forward substitution for triangular matrices
⋆ Uses Cholesky factorization for positive-definite matrices
⋆ Uses LU factorization with partial pivoting for nonsymmetric matrices
⋆ Uses Householder QR for least squares problems
⋆ Uses some special routines for matrices with special sparsity patterns

▶ Uses LAPACK and other packages internally

Direct solvers for sparse matrices (e.g., SuperLU, SuiteSparse,
MUMPS)

Xiangmin Jiao Numerical Analysis I 21 / 23

www.netlib.org/lapack/lug
www.netlib.org/linpack
www.netlib.org/eispack
https://portal.nersc.gov/project/sparse/superlu/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://mumps.enseeiht.fr/


Some Commonly Used Functions
Example BLAS routines: Matrix-vector multip.: dgemv; Matrix-matrix multip: dgemm

LU Factorization Solve linear system Est. cond

General Symmetric General Symmetric

LAPACK dgetrf dpotrf/dsytrf dgesv dposv/dposvx dgecon

LINPACK dgefa dpofa/dsifa dgesl dposl/dsisl dgeco

MATLAB lu chol \ \ rcond

Linear least squares Eigenvalue/vector SVD

QR Solve Rank-deficient General Sym.

LAPACK dgeqrf dgels dgelsy/s/d dgeev dsyev dgesvd
LINPACK dqrdc dqrsl dqrst - - dsvdc

MATLAB qr \ \ eig eig svd

For BLAS, LINPACK, and LAPACK, first letter s stands for single-precision
real, d for double-precision real, c for single-precision complex, and z for
double-precision complex. Boldface LAPACK routines are driver routines;
others are computational routines.

Xiangmin Jiao Numerical Analysis I 22 / 23



Using LAPACK Routines in C Programs

LAPACK was written in Fortran 77. Special attention is required when
calling from C.
Key differences between C and Fortran

1 Storage of matrices: column major (Fortran) versus row major
(C/C++)

2 Argument passing for subroutines in C and Fortran: pass by reference
(Fortran) and pass by value (C/C++)

Example C code (example.c) for solving linear system using sgesv
▶ See class website for sample code
▶ To compile, issue command “cc -o example example.c -llapack -lblas”

Hint: To find a function name, refer to LAPACK Users’ Guide
To find out arguments for a given function, search on netlib.org

Xiangmin Jiao Numerical Analysis I 23 / 23

http://www.ams.sunysb.edu/~jiao/teaching/ams526/lectures/example.c
http://netlib.org

	Stability of Householder Triangularization (NLA§16,19)
	Solution of Least Squares Problems
	Rank-Deficient Least Squares Problems
	Software for Linear Algebra

