AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 14: Eigenvalue Problems; Eigenvalue Revealing Factorizations

Xiangmin Jiao

Stony Brook University

Outline

1 Properties of Eigenvalue Problems (NLA§24)

② Eigenvalue Revealing Factorizations (NLA§24)

Xiangmin Jiao Numerical Analysis | 2 / 14

Eigenvalue and Eigenvectors

• Eigenvalue problem of $n \times n$ matrix A is

$$Ax = \lambda x$$

with eigenvalues λ and eigenvectors x (nonzero)

- The set of all the eigenvalues of A is the spectrum of A
- Eigenvalues are generally used where a matrix is to be compounded iteratively
- Eigenvalues are useful for algorithmic and physical reasons
 - Algorithmically, eigenvalue analysis can reduce a coupled system to a collection of scalar problems
 - Physically, eigenvalue analysis can be used to study resonance of musical instruments and stability of physical systems

Eigenvalue Decomposition

• Eigenvalue decomposition of A is

$$A = X\Lambda X^{-1}$$
 or $AX = X\Lambda$

with eigenvectors x_i as columns of X and eigenvalues λ_i along diagonal of Λ . Alternatively,

$$Ax_i = \lambda_i x_i$$

 Eigenvalue decomposition is change of basis to "eigenvector coordinates"

$$Ax = b \rightarrow (X^{-1}b) = \Lambda(X^{-1}x)$$

- Note that eigenvalue decomposition may not exist
- Question: How does eigenvalue decomposition differ from SVD?

Geometric Multiplicity

- Eigenvectors corresponding to a specific eigenvalue λ form an eigenspace $E_{\lambda} \subseteq \mathbb{C}^{n \times n}$
- ullet Eigenspace is *invariant* in that $AE_\lambda\subseteq E_\lambda$
- Dimension of E_{λ} is the maximum number of linearly independent eigenvectors that can be found
- Geometric multiplicity of λ is dimension of E_{λ} , i.e., dim(null($A \lambda I$))

Algebraic Multiplicity

• The characteristic polynomial of A is degree m polynomial

$$p_A(z) = \det(zI - A) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)$$

which is *monic* in that coefficient of z^n is 1

- λ is eigenvalue of A iff $p_A(\lambda) = 0$
 - ▶ If λ is eigenvalue, then by definition, $\lambda x Ax = (\lambda I A)x = 0$, so $(\lambda I A)$ is singular and its determinant is 0
 - ▶ If $(\lambda I A)$ is singular, then for $x \in \text{null}(\lambda I A)$ we have $\lambda x Ax = 0$
- Algebraic multiplicity of λ is its multiplicity as a root of p_A
- Any matrix $A \in \mathbb{C}^{n \times n}$ has n eigenvalues, counted with algebraic multiplicity
- Question: What are the eigenvalues of a triangular matrix?
- Question: How are geometric multiplicity and algebraic multiplicity related?

Similarity Transformations

- The map $A o Y^{-1}AY$ is a *similarity transformation* of A for any nonsingular $Y \in \mathbb{C}^{n \times n}$
- A and B are similar if there is a similarity transformation $B = Y^{-1}AY$

Theorem

If Y is nonsingular, then A and $Y^{-1}AY$ have the same characteristic polynomials, eigenvalues, and algebraic and geometric multiplicities.

For characteristic polynomial:

$$\det(zI - Y^{-1}AY) = \det(Y^{-1}(zI - A)Y) = \det(zI - A)$$

so algebraic multiplicities remain the same

② If $x \in E_{\lambda}$ for A, then $Y^{-1}x$ is in eigenspace of $Y^{-1}AY$ corresponding to λ , and vice versa, so geometric multiplicities remain the same

- Let k be be geometric multiplicity of λ for A. Let $\hat{V} \in \mathbb{C}^{n \times k}$ constitute of orthonormal basis of the E_{λ}
- Extend \hat{V} to unitary $V \equiv [\hat{V}, \tilde{V}] \in \mathbb{C}^{n \times n}$ and form

$$B = V^*AV = \begin{bmatrix} \hat{V}^*A\hat{V} & \hat{V}^*A\tilde{V} \\ \tilde{V}^*A\hat{V} & \tilde{V}^*A\tilde{V} \end{bmatrix} = \begin{bmatrix} \lambda I & C \\ 0 & D \end{bmatrix}$$

- $\det(zI B) = \det(zI \lambda I)\det(zI D) = (z \lambda)^k \det(zI D)$, so the algebraic multiplicity of λ as an eigenvalue of B is $\geq k$
- A and B are similar, so the algebraic multiplicity of λ as an eigenvalue of A is at least > k
- Examples:

$$A = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 1 & \\ & 2 & 1 \\ & & 2 \end{bmatrix}$$

Their characteristic polynomial is $(z-2)^3$, so algebraic multiplicity of $\lambda = 2$ is 3. Geometric multiplicity of A is 3 and that of B is 1.

Defective and Diagonalizable Matrices

- An eigenvalue of a matrix is defective if its algebraic multiplicity > its geometric multiplicity
- A matrix is *defective* if it has a defective eigenvalue. Otherwise, it is called *nondefective*.

Theorem

An $n \times n$ matrix A is nondefective iff it has an eigenvalue decomposition $A = X \Lambda X^{-1}$.

Defective and Diagonalizable Matrices

- An eigenvalue of a matrix is defective if its algebraic multiplicity > its geometric multiplicity
- A matrix is defective if it has a defective eigenvalue. Otherwise, it is called nondefective.

Theorem

An $n \times n$ matrix A is nondefective iff it has an eigenvalue decomposition $A = X \Lambda X^{-1}$.

- (\Leftarrow) Λ is nondefective, and A is similar to Λ , so A is nondefective.
- (\Rightarrow) A nondefective matrix has n linearly independent eigenvectors. Take them as columns of X to obtain $A = X\Lambda X^{-1}$.
- Nondefective matrices are therefore also said to be diagonalizable.

Determinant and Trace

• Determinant of A is $\det(A) = \prod_{j=1}^n \lambda_j$, because

$$\det(A) = (-1)^n \det(-A) = (-1)^n \rho_A(0) = \prod_{j=1}^n \lambda_j$$

• Trace of A is $\operatorname{tr}(A) = \sum_{j=1}^{n} \lambda_{j}$, since

$$p_A(z) = \det(zI - A) = z^n - \sum_{i=1}^n a_{jj}z^{n-1} + O(z^{n-2})$$

$$p_A(z) = \prod_{j=1}^n (z - \lambda_j) = z^n - \sum_{j=1}^n \lambda_j z^{n-1} + O(z^{n-2})$$

 Question: Are these results valid for defective or nondefective matrices?

Outline

Properties of Eigenvalue Problems (NLA§24

Eigenvalue Revealing Factorizations (NLA§24)

Xiangmin Jiao Numerical Analysis | 11 / 14

Unitary Diagonalization

- A matrix A is unitarily diagonalizable if $A = Q \Lambda Q^*$ for a unitary matrix Q
- A Hermitian matrix is unitarily diagonalizable, with real eigenvalues
- A matrix A is normal if $A^*A = AA^*$
 - Examples of normal matrices include Hermitian matrices, skew Hermitian matrices
 - ▶ Hermitian ⇔ matrix is normal and all eigenvalues are real
 - ▶ skew Hermitian ⇔ matrix is normal and all eigenvalues are imaginary
 - ▶ If A is both triangular and normal, then A is diagonal
- Unitarily diagonalizable ⇔ normal
 - "⇒" is easy. Prove "←" by induction using Schur factorization next

Schur Factorization

• Schur factorization is $A = QTQ^*$, where Q is unitary and T is upper triangular

Theorem

Every square matrix A has a Schur factorization.

Proof by induction on dimension of A. Case n=1 is trivial. For $n\geq 2$, let x be any unit eigenvector of A, with corresponding eigenvalue λ . Let U be unitary matrix with x as first column. Then

$$U^*AU = \left[\begin{array}{cc} \lambda & w^* \\ 0 & C \end{array} \right].$$

By induction hypothesis, there is a Schur factorization $\tilde{T} = V^*CV$. Let

$$Q = U \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}, \quad T = \begin{bmatrix} \lambda & w^*V \\ 0 & \widetilde{T} \end{bmatrix},$$

and then $A = QTQ^*$.

Eigenvalue Revealing Factorizations

- Eigenvalue-revealing factorization of square matrix A
 - ▶ Diagonalization $A = X \Lambda X^{-1}$ (nondefective A)
 - ▶ Unitary Diagonalization $A = Q \Lambda Q^*$ (normal A)
 - ▶ Unitary triangularization (Schur factorization) $A = QTQ^*$ (any A)
 - ▶ Jordan normal form $A = XJX^{-1}$, where J block diagonal with

- In general, Schur factorization is used, because
 - Unitary matrices are involved, so algorithm tends to be more stable
 - ▶ If A is normal, then Schur form is diagonal

Xiangmin Jiao