AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)
Lecture 14: Eigenvalue Problems; Eigenvalue Revealing Factorizations

Xiangmin Jiao
Stony Brook University

Outline

(1) Properties of Eigenvalue Problems (NLA§24)

(2) Eigenvalue Revealing Factorizations (NLA§24)

Eigenvalue and Eigenvectors

- Eigenvalue problem of $n \times n$ matrix A is

$$
A x=\lambda x
$$

with eigenvalues λ and eigenvectors x (nonzero)

- The set of all the eigenvalues of A is the spectrum of A
- Eigenvalues are generally used where a matrix is to be compounded iteratively
- Eigenvalues are useful for algorithmic and physical reasons
- Algorithmically, eigenvalue analysis can reduce a coupled system to a collection of scalar problems
- Physically, eigenvalue analysis can be used to study resonance of musical instruments and stability of physical systems

Eigenvalue Decomposition

- Eigenvalue decomposition of A is

$$
A=X \wedge X^{-1} \text { or } A X=X \wedge
$$

with eigenvectors x_{i} as columns of X and eigenvalues λ_{i} along diagonal of Λ. Alternatively,

$$
A x_{i}=\lambda_{i} x_{i}
$$

- Eigenvalue decomposition is change of basis to "eigenvector coordinates"

$$
A x=b \rightarrow\left(X^{-1} b\right)=\Lambda\left(X^{-1} x\right)
$$

- Note that eigenvalue decomposition may not exist
- Question: How does eigenvalue decomposition differ from SVD?

Geometric Multiplicity

- Eigenvectors corresponding to a specific eigenvalue λ form an eigenspace $E_{\lambda} \subseteq \mathbb{C}^{n \times n}$
- Eigenspace is invariant in that $A E_{\lambda} \subseteq E_{\lambda}$
- Dimension of E_{λ} is the maximum number of linearly independent eigenvectors that can be found
- Geometric multiplicity of λ is dimension of E_{λ}, i.e., $\operatorname{dim}(\operatorname{null}(A-\lambda I))$

Algebraic Multiplicity

- The characteristic polynomial of A is degree m polynomial

$$
p_{A}(z)=\operatorname{det}(z I-A)=\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{n}\right)
$$

which is monic in that coefficient of z^{n} is 1

- λ is eigenvalue of A iff $p_{A}(\lambda)=0$
- If λ is eigenvalue, then by definition, $\lambda x-A x=(\lambda I-A) x=0$, so $(\lambda I-A)$ is singular and its determinant is 0
- If $(\lambda I-A)$ is singular, then for $x \in \operatorname{null}(\lambda I-A)$ we have $\lambda x-A x=0$
- Algebraic multiplicity of λ is its multiplicity as a root of p_{A}
- Any matrix $A \in \mathbb{C}^{n \times n}$ has n eigenvalues, counted with algebraic multiplicity
- Question: What are the eigenvalues of a triangular matrix?
- Question: How are geometric multiplicity and algebraic multiplicity related?

Similarity Transformations

- The map $A \rightarrow Y^{-1} A Y$ is a similarity transformation of A for any nonsingular $Y \in \mathbb{C}^{n \times n}$
- A and B are similar if there is a similarity transformation $B=Y^{-1} A Y$

Theorem

If Y is nonsingular, then A and $Y^{-1} A Y$ have the same characteristic polynomials, eigenvalues, and algebraic and geometric multiplicities.
(1) For characteristic polynomial:

$$
\operatorname{det}\left(z I-Y^{-1} A Y\right)=\operatorname{det}\left(Y^{-1}(z I-A) Y\right)=\operatorname{det}(z I-A)
$$

so algebraic multiplicities remain the same
(2) If $x \in E_{\lambda}$ for A, then $Y^{-1} x$ is in eigenspace of $Y^{-1} A Y$ corresponding to λ, and vice versa, so geometric multiplicities remain the same

Algebraic Multiplicity \geq Geometric Multiplicity

- Let k be be geometric multiplicity of λ for A. Let $\hat{V} \in \mathbb{C}^{n \times k}$ constitute of orthonormal basis of the E_{λ}
- Extend \hat{V} to unitary $V \equiv[\hat{V}, \tilde{V}] \in \mathbb{C}^{n \times n}$ and form

$$
B=V^{*} A V=\left[\begin{array}{cc}
\hat{V}^{*} A \hat{V} & \hat{V}^{*} A \tilde{V} \\
\tilde{V}^{*} A \hat{V} & \tilde{V}^{*} A \tilde{V}
\end{array}\right]=\left[\begin{array}{cc}
\lambda I & C \\
0 & D
\end{array}\right]
$$

- $\operatorname{det}(z I-B)=\operatorname{det}(z I-\lambda I) \operatorname{det}(z I-D)=(z-\lambda)^{k} \operatorname{det}(z I-D)$, so the algebraic multiplicity of λ as an eigenvalue of B is $\geq k$
- A and B are similar, so the algebraic multiplicity of λ as an eigenvalue of A is at least $\geq k$
- Examples:

$$
A=\left[\begin{array}{lll}
2 & & \\
& 2 & \\
& & 2
\end{array}\right], \quad B=\left[\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
& & 2
\end{array}\right]
$$

Their characteristic polynomial is $(z-2)^{3}$, so algebraic multiplicity of $\lambda=2$ is 3 . Geometric multiplicity of A is 3 and that of B is 1 .

Defective and Diagonalizable Matrices

- An eigenvalue of a matrix is defective if its algebraic multiplicity $>$ its geometric multiplicity
- A matrix is defective if it has a defective eigenvalue. Otherwise, it is called nondefective.

Theorem

An $n \times n$ matrix A is nondefective iff it has an eigenvalue decomposition $A=X \wedge X^{-1}$.

Defective and Diagonalizable Matrices

- An eigenvalue of a matrix is defective if its algebraic multiplicity $>$ its geometric multiplicity
- A matrix is defective if it has a defective eigenvalue. Otherwise, it is called nondefective.

Theorem

An $n \times n$ matrix A is nondefective iff it has an eigenvalue decomposition $A=X \wedge X^{-1}$.

- $(\Leftarrow) \wedge$ is nondefective, and A is similar to Λ, so A is nondefective.
- (\Rightarrow) A nondefective matrix has n linearly independent eigenvectors. Take them as columns of X to obtain $A=X \wedge X^{-1}$.
- Nondefective matrices are therefore also said to be diagonalizable.

Determinant and Trace

- Determinant of A is $\operatorname{det}(A)=\prod_{j=1}^{n} \lambda_{j}$, because

$$
\operatorname{det}(A)=(-1)^{n} \operatorname{det}(-A)=(-1)^{n} p_{A}(0)=\prod_{j=1}^{n} \lambda_{j}
$$

- Trace of A is $\operatorname{tr}(A)=\sum_{j=1}^{n} \lambda_{j}$, since

$$
\begin{aligned}
& p_{A}(z)=\operatorname{det}(z I-A)=z^{n}-\sum_{j=1}^{n} a_{j j} z^{n-1}+O\left(z^{n-2}\right) \\
& p_{A}(z)=\prod_{j=1}^{n}\left(z-\lambda_{j}\right)=z^{n}-\sum_{j=1}^{n} \lambda_{j} z^{n-1}+O\left(z^{n-2}\right)
\end{aligned}
$$

- Question: Are these results valid for defective or nondefective matrices?

Outline

(1) Properties of Eigenvalue Problems (NLA§24)
(2) Eigenvalue Revealing Factorizations (NLA§24)

Unitary Diagonalization

- A matrix A is unitarily diagonalizable if $A=Q \wedge Q^{*}$ for a unitary matrix Q
- A Hermitian matrix is unitarily diagonalizable, with real eigenvalues
- A matrix A is normal if $A^{*} A=A A^{*}$
- Examples of normal matrices include Hermitian matrices, skew Hermitian matrices
- Hermitian \Leftrightarrow matrix is normal and all eigenvalues are real
- skew Hermitian \Leftrightarrow matrix is normal and all eigenvalues are imaginary
- If A is both triangular and normal, then A is diagonal
- Unitarily diagonalizable \Leftrightarrow normal
- " \Rightarrow " is easy. Prove " \Leftarrow " by induction using Schur factorization next

Schur Factorization

- Schur factorization is $A=Q T Q^{*}$, where Q is unitary and T is upper triangular

Theorem

Every square matrix A has a Schur factorization.
Proof by induction on dimension of A. Case $n=1$ is trivial. For $n \geq 2$, let x be any unit eigenvector of A, with corresponding eigenvalue λ. Let U be unitary matrix with x as first column. Then

$$
U^{*} A U=\left[\begin{array}{cc}
\lambda & w^{*} \\
0 & C
\end{array}\right]
$$

By induction hypothesis, there is a Schur factorization $\tilde{T}=V^{*} C V$. Let

$$
Q=U\left[\begin{array}{cc}
1 & 0 \\
0 & V
\end{array}\right], \quad T=\left[\begin{array}{cc}
\lambda & w^{*} V \\
0 & \tilde{T}
\end{array}\right]
$$

and then $A=Q T Q^{*}$.

Eigenvalue Revealing Factorizations

- Eigenvalue-revealing factorization of square matrix A
- Diagonalization $A=X \wedge X^{-1}$ (nondefective A)
- Unitary Diagonalization $A=Q \wedge Q^{*}($ normal $A)$
- Unitary triangularization (Schur factorization) $A=Q T Q^{*}$ (any A)
- Jordan normal form $A=X J X^{-1}$, where J block diagonal with

$$
J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right]
$$

- In general, Schur factorization is used, because
- Unitary matrices are involved, so algorithm tends to be more stable
- If A is normal, then Schur form is diagonal

