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Eigenvalue and Eigenvectors

Eigenvalue problem of n × n matrix A is

Ax = λx

with eigenvalues λ and eigenvectors x (nonzero)

The set of all the eigenvalues of A is the spectrum of A

Eigenvalues are generally used where a matrix is to be compounded

iteratively

Eigenvalues are useful for algorithmic and physical reasons

I Algorithmically, eigenvalue analysis can reduce a coupled system to a
collection of scalar problems

I Physically, eigenvalue analysis can be used to study resonance of
musical instruments and stability of physical systems
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Eigenvalue Decomposition

Eigenvalue decomposition of A is

A = XΛX−1 or AX = XΛ

with eigenvectors xi as columns of X and eigenvalues λi along
diagonal of Λ. Alternatively,

Axi = λixi

Eigenvalue decomposition is change of basis to �eigenvector

coordinates�

Ax = b → (X−1b) = Λ(X−1x)

Note that eigenvalue decomposition may not exist

Question: How does eigenvalue decomposition di�er from SVD?
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Geometric Multiplicity

Eigenvectors corresponding to a speci�c eigenvalue λ form an

eigenspace Eλ ⊆ Cn×n

Eigenspace is invariant in that AEλ ⊆ Eλ

Dimension of Eλ is the maximum number of linearly independent

eigenvectors that can be found

Geometric multiplicity of λ is dimension of Eλ, i.e., dim(null(A− λI ))
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Algebraic Multiplicity

The characteristic polynomial of A is degree m polynomial

pA(z) = det(zI − A) = (z − λ1)(z − λ2) · · · (z − λn)

which is monic in that coe�cient of zn is 1

λ is eigenvalue of A i� pA(λ) = 0

I If λ is eigenvalue, then by de�nition, λx − Ax = (λI − A)x = 0, so
(λI − A) is singular and its determinant is 0

I If (λI − A) is singular, then for x ∈ null(λI − A) we have λx − Ax = 0

Algebraic multiplicity of λ is its multiplicity as a root of pA

Any matrix A ∈ Cn×n has n eigenvalues, counted with algebraic

multiplicity

Question: What are the eigenvalues of a triangular matrix?

Question: How are geometric multiplicity and algebraic multiplicity

related?
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Similarity Transformations

The map A→ Y−1AY is a similarity transformation of A for any

nonsingular Y ∈ Cn×n

A and B are similar if there is a similarity transformation B = Y−1AY

Theorem

If Y is nonsingular, then A and Y−1AY have the same characteristic

polynomials, eigenvalues, and algebraic and geometric multiplicities.

1 For characteristic polynomial:

det(zI − Y−1AY ) = det(Y−1(zI − A)Y ) = det(zI − A)

so algebraic multiplicities remain the same

2 If x ∈ Eλ for A, then Y−1x is in eigenspace of Y−1AY corresponding

to λ, and vice versa, so geometric multiplicities remain the same
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Algebraic Multiplicity ≥ Geometric Multiplicity

Let k be be geometric multiplicity of λ for A. Let V̂ ∈ Cn×k

constitute of orthonormal basis of the Eλ

Extend V̂ to unitary V ≡ [V̂ , Ṽ ] ∈ Cn×n and form

B = V ∗AV =

[
V̂ ∗AV̂ V̂ ∗AṼ

Ṽ ∗AV̂ Ṽ ∗AṼ

]
=

[
λI C

0 D

]
det(zI − B) = det(zI − λI )det(zI − D) = (z − λ)kdet(zI − D), so the

algebraic multiplicity of λ as an eigenvalue of B is ≥ k

A and B are similar, so the algebraic multiplicity of λ as an eigenvalue

of A is at least ≥ k

Examples:

A =

 2

2

2

 , B =

 2 1

2 1

2


Their characteristic polynomial is (z − 2)3, so algebraic multiplicity of

λ = 2 is 3. Geometric multiplicity of A is 3 and that of B is 1.
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Defective and Diagonalizable Matrices

An eigenvalue of a matrix is defective if its algebraic multiplicity > its

geometric multiplicity

A matrix is defective if it has a defective eigenvalue. Otherwise, it is

called nondefective.

Theorem

An n × n matrix A is nondefective i� it has an eigenvalue decomposition

A = XΛX−1.

(⇐) Λ is nondefective, and A is similar to Λ, so A is nondefective.

(⇒) A nondefective matrix has n linearly independent eigenvectors.

Take them as columns of X to obtain A = XΛX−1.

Nondefective matrices are therefore also said to be diagonalizable.
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Determinant and Trace

Determinant of A is det(A) =
∏n

j=1 λj , because

det(A) = (−1)ndet(−A) = (−1)npA(0) =
n∏

j=1

λj

Trace of A is tr(A) =
∑n

j=1 λj , since

pA(z) = det(zI − A) = zn −
n∑

j=1

ajjz
n−1 + O(zn−2)

pA(z) =
n∏

j=1

(z − λj) = zn −
n∑

j=1

λjz
n−1 + O(zn−2)

Question: Are these results valid for defective or nondefective

matrices?
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Unitary Diagonalization

A matrix A is unitarily diagonalizable if A = QΛQ∗ for a unitary

matrix Q

A Hermitian matrix is unitarily diagonalizable, with real eigenvalues

A matrix A is normal if A∗A = AA∗

I Examples of normal matrices include Hermitian matrices, skew
Hermitian matrices

I Hermitian ⇔ matrix is normal and all eigenvalues are real
I skew Hermitian ⇔ matrix is normal and all eigenvalues are imaginary
I If A is both triangular and normal, then A is diagonal

Unitarily diagonalizable ⇔ normal

I �⇒� is easy. Prove �⇐� by induction using Schur factorization next
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Schur Factorization

Schur factorization is A = QTQ∗, where Q is unitary and T is upper

triangular

Theorem

Every square matrix A has a Schur factorization.

Proof by induction on dimension of A. Case n = 1 is trivial.

For n ≥ 2, let x be any unit eigenvector of A, with corresponding

eigenvalue λ. Let U be unitary matrix with x as �rst column. Then

U∗AU =

[
λ w∗

0 C

]
.

By induction hypothesis, there is a Schur factorization T̃ = V ∗CV . Let

Q = U

[
1 0

0 V

]
, T =

[
λ w∗V

0 T̃

]
,

and then A = QTQ∗.
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Eigenvalue Revealing Factorizations

Eigenvalue-revealing factorization of square matrix A

I Diagonalization A = XΛX−1 (nondefective A)
I Unitary Diagonalization A = QΛQ∗ (normal A)
I Unitary triangularization (Schur factorization) A = QTQ∗ (any A)
I Jordan normal form A = XJX−1, where J block diagonal with

Ji =


λi 1

λi

. . .

. . . 1
λi


In general, Schur factorization is used, because

I Unitary matrices are involved, so algorithm tends to be more stable
I If A is normal, then Schur form is diagonal
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