AMS526: Numerical Analysis I (Numerical Linear Algebra for
 Computational and Data Sciences)
 Lecture 15: Reduction to Hessenberg and Tridiagonal Forms; Rayleigh Quotient Iteration

Xiangmin Jiao

Stony Brook University

Outline

(1) Schur Factorization (NLA§26)

(2) Reduction to Hessenberg and Tridiagonal Forms (NLA§26)

(3) Rayleigh Quotient Iteration (NLA§27)

"Obvious" Algorithms

- Most obvious method is to find roots of characteristic polynomial $p_{A}(\lambda)$, but it is very ill-conditioned
- Another idea is power iteration, using fact that

$$
\frac{x}{\|x\|}, \frac{A x}{\|A x\|}, \frac{A^{2} x}{\left\|A^{2} x\right\|}, \frac{A^{3} x}{\left\|A^{3} x\right\|}, \ldots
$$

converge to an eigenvector corresponding to the largest eigenvalue of A in absolute value, but it may converge very slowly

"Obvious" Algorithms

- Most obvious method is to find roots of characteristic polynomial $p_{A}(\lambda)$, but it is very ill-conditioned
- Another idea is power iteration, using fact that

$$
\frac{x}{\|x\|}, \frac{A x}{\|A x\|}, \frac{A^{2} x}{\left\|A^{2} x\right\|}, \frac{A^{3} x}{\left\|A^{3} x\right\|}, \ldots
$$

converge to an eigenvector corresponding to the largest eigenvalue of A in absolute value, but it may converge very slowly

- Instead, compute an eigenvalue-revealing factorization, such as Schur factorization

$$
A=Q T Q^{*}
$$

by introducing zeros, using algorithms similar to $Q R$ factorization

A Fundamental Difficulty

- However, eigenvalue-revealing factorization cannot be done in finite number of steps:

Any general eigenvalue solver must be iterative

- To see this, consider a general polynomial of degree n

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

There is no closed-form expression for roots for $n>4$: In general, the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations (Abel, 1824)

A Fundamental Difficulty Cont'd

- However, the roots of p_{A} are the eigenvalues of the companion matrix

$$
A=\left[\begin{array}{ccccc}
0 & & & & -a_{0} \\
1 & 0 & & & -a_{1} \\
& 1 & \ddots & & \vdots \\
& & \ddots & 0 & -a_{n-2} \\
& & & 1 & -a_{n-1}
\end{array}\right]
$$

- Therefore, in general, we cannot find the eigenvalues of a matrix in a finite number of steps
- In practice, however, there are algorithms that converge to desired precision in a few iterations

Schur Factorization and Diagonalization

- Most eigenvalue algorithms compute Schur factorization $A=Q T Q^{*}$ by transforming A with similarity transformations

$$
\underbrace{Q_{j}^{*} \cdots Q_{2}^{*} Q_{1}^{*}}_{Q^{*}} A \underbrace{Q_{1} Q_{2} \cdots Q_{j}}_{Q},
$$

where Q_{i} are unitary matrices, which converge to T as $j \rightarrow \infty$

- Note: Real matrices might need complex Schur forms and eigenvalues
- Question: For Hermitian A, what matrix will the sequence converge to?

Outline

(1) Schur Factorization (NLA§26)
(2) Reduction to Hessenberg and Tridiagonal Forms (NLA§26)

(3) Rayleigh Quotient Iteration (NLA§27)

Two Phases of Eigenvalue Computations

- General A : First convert to upper-Hessenberg form, then to upper triangular
- Hermitian A : First convert to tridiagonal form, then to diagonal

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] \xrightarrow[A=A^{*}]{ } \quad\left[\begin{array}{ccccc}
\times & \times & & & \\
\times & \times & \times & & \\
& \times & \times & \times & \\
& & \times & \times & \times \\
& & \times & \times
\end{array}\right] \xrightarrow{\text { Phase } 1}\left[\begin{array}{ccc}
\times & \times & \times
\end{array}\right]
$$

- In general, phase 1 is direct and requires $O\left(n^{3}\right)$ flops, and phase 2 is iterative and requires $O(n)$ iterations, and $O\left(n^{3}\right)$ flops for non-Hermitian matrices and $O\left(n^{2}\right)$ flops for Hermitian matrices

Introducing Zeros by Similarity Transformations

- First attempt: Compute Schur factorization $A=Q T Q^{*}$ by applying Householder reflectors from both left and right
- Unfortunately, the right multiplication destroys the zeros introduced by Q_{1}^{*}
- This would not work because of Abel's theorem
- However, the subdiagonal entries typically decrease in magnitude

The Hessenberg Form

- Second attempt: try to compute upper Hessenberg matrix H similar to A :
- The zeros introduced by $Q_{1}^{*} A$ were not destroyed this time!
- Continue with remaining columns would result in Hessenberg form:

$$
\xrightarrow{Q_{2}^{*}:}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& 0 & \times & \times & \times \\
& 0 & \times & \times & \times
\end{array}\right] \stackrel{Q_{2}}{ }\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & Q_{2}^{*} Q_{1}^{*} A Q_{1}
\end{array}\right]
$$

The Hessenberg Form

- After $n-2$ steps, we obtain the Hessenberg form:

- For Hermitian matrix A, H is Hermitian and hence is tridiagonal

Householder Reduction to Hessenberg

$$
\begin{array}{|l}
\hline \text { Householder Reduction to Hessenberg Form } \\
\text { for } k=1 \text { to } n-2 \\
\quad x=A_{k+1: n, k} \\
\quad v_{k}=\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}+x \\
v_{k}=v_{k} /\left\|v_{k}\right\|_{2} \\
\\
A_{k+1: n, k: n}=A_{k+1: n, k: n}-2 v_{k}\left(v_{k}^{*} A_{k+1: n, k: n}\right) \\
\\
A_{1: n, k+1: n}=A_{1: n, k+1: n}-2\left(A_{1: n, k+1: n} v_{k}\right) v_{k}^{*}
\end{array}
$$

- Note: Q is never formed explicitly.
- Operation count

$$
\sim \sum_{k=1}^{n-2} 4(n-k)^{2}+4 n(n-k) \sim 4 n^{3} / 3+4 n^{3}-4 n^{3} / 2=10 n^{3} / 3
$$

Reduction to Tridiagonal Form

- If A is Hermitian, then

- For Hermitian A, operation count would be same as Householder QR: $4 n^{3} / 3$
- First, taking advantage of sparsity, cost of applying right reflectors is also $4(n-k)^{2}$ instead of $4 n(n-k)$, so cost is

$$
\sim \sum_{k=1}^{n-2} 8(n-k)^{2} \sim 8 n^{3} / 3
$$

- Second, taking advantage of symmetry, cost is reduced by 50% to $4 n^{3} / 3$

Stability of Hessenberg Reduction

Theorem
Householder reduction to Hessenberg form is backward stable, in that

$$
\tilde{Q} \tilde{H} \tilde{Q}^{*}=A+\delta A, \quad \frac{\|\delta A\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right)
$$

for some $\delta A \in \mathbb{C}^{n \times n}$
Note: Similar to Householder QR, \tilde{Q} is exactly unitary based on some \tilde{v}_{k}

Outline

(1) Schur Factorization (NLA§26)
(2) Reduction to Hessenberg and Tridiagonal Forms (NLA§26)
(3) Rayleigh Quotient Iteration (NLA§27)

Solving Eigenvalue Problems

- All eigenvalue solvers must be iterative
- Iterative algorithms have multiple facets:
(1) Basic idea behind the algorithms
(2) Convergence and techniques to speed-up convergence
(3) Efficiency of implementation
(9) Termination criteria
- We will focus on first two aspects

Simplification: Real Symmetric Matrices

- We will consider eigenvalue problems for real symmetric matrices, i.e.

$$
A=A^{T} \in \mathbb{R}^{n \times n}, \text { and } A x=\lambda x \text { for } x \in \mathbb{R}^{n}
$$

- Note: $x^{*}=x^{\top}$, and $\|x\|=\sqrt{x^{\top} x}$
- A has real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and orthonormal eigenvectors q_{1}, q_{2}, \ldots, q_{n}, where $\left\|q_{j}\right\|=1$
- Eigenvalues are often also ordered in a particular way (e.g., ordered from large to small in magnitude)
- In addition, we focus on symmetric tridiagonal form
- Why? Because phase 1 of two-phase algorithm reduces matrix into tridiagonal form

Rayleigh Quotient

- The Rayleigh quotient of $x \in \mathbb{R}^{n}$ is the scalar

$$
r(x)=\frac{x^{\top} A x}{x^{\top} x}
$$

- For an eigenvector x, its Rayleigh quotient is $r(x)=x^{T} \lambda x / x^{T} x=\lambda$, the corresponding eigenvalue of x
- For general $x, r(x)=\alpha$ that minimizes $\|A x-\alpha x\|_{2}$.
- x is eigenvector of $A \Longleftrightarrow \nabla r(x)=\frac{2}{x^{T} x}(A x-r(x) x)=0$ with $x \neq 0$
- $r(x)$ is smooth and $\nabla r\left(q_{j}\right)=0$ for any j, and therefore is quadratically accurate:

$$
r(x)-r\left(q_{J}\right)=O\left(\left\|x-q_{J}\right\|^{2}\right) \text { as } x \rightarrow q_{J} \text { for some } J
$$

Power Iteration

- Simple power iteration for largest eigenvalue

Algorithm: Power Iteration
$v^{(0)}=$ some unit-length vector
for $k=1,2, \ldots$

$$
\begin{aligned}
& w=A v^{(k-1)} \\
& v^{(k)}=w /\|w\| \\
& \lambda^{(k)}=r\left(v^{(k)}\right)=\left(v^{(k)}\right)^{T} A v^{(k)}
\end{aligned}
$$

- Termination condition is omitted for simplicity

Convergence of Power Iteration

- Expand initial $v^{(0)}$ in orthonormal eigenvectors q_{i}, and apply A^{k} :

$$
\begin{aligned}
v^{(0)} & =a_{1} q_{1}+a_{2} q_{2}+\cdots+a_{n} q_{n} \\
v^{(k)} & =c_{k} A^{k} v^{(0)} \\
& =c_{k}\left(a_{1} \lambda_{1}^{k} q_{1}+a_{2} \lambda_{2}^{k} q_{2}+\cdots+a_{n} \lambda_{n}^{k} q_{n}\right) \\
& =c_{k} \lambda_{1}^{k}\left(a_{1} q_{1}+a_{2}\left(\lambda_{2} / \lambda_{1}\right)^{k} q_{2}+\cdots+a_{n}\left(\lambda_{n} / \lambda_{1}\right)^{k} q_{n}\right)
\end{aligned}
$$

- If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{m}\right| \geq 0$ and $q_{1}^{T} v^{(0)} \neq 0$, this gives

$$
\left\|v^{(k)}-\left(\pm q_{1}\right)\right\|=O\left(\left|\lambda_{2} / \lambda_{1}\right|^{k}\right),\left|\lambda^{(k)}-\lambda_{1}\right|=O\left(\left|\lambda_{2} / \lambda_{1}\right|^{2 k}\right)
$$

where \pm sign is chosen to be sign of $q_{1}^{T} v^{(k)}$

- It finds the largest eigenvalue (unless eigenvector is orthogonal to $v^{(0)}$)
- Error reduces by only a constant factor $\left(\approx\left|\lambda_{2} / \lambda_{1}\right|\right)$ each step, and very slowly especially when $\left|\lambda_{2}\right| \approx\left|\lambda_{1}\right|$

Inverse Iteration

- Apply power iteration on $(A-\mu I)^{-1}$, with eigenvalues $\left\{\left(\lambda_{j}-\mu\right)^{-1}\right\}$
- If $\mu \approx \lambda_{J}$ for some J, then $\left(\lambda_{J}-\mu\right)^{-1}$ may be far larger than $\left(\lambda_{j}-\mu\right)^{-1}, j \neq J$, so power iteration may converge rapidly

$$
\begin{aligned}
& \text { Algorithm: Inverse Iteration } \\
& \begin{array}{l}
v^{(0)}=\text { some unit-length vector } \\
\text { for } k=1,2, \ldots \\
\text { Solve }(A-\mu I) w=v^{(k-1)} \text { for } w \\
\quad v^{(k)}=w /\|w\| \\
\quad \lambda^{(k)}=r\left(v^{(k)}\right)=\left(v^{(k)}\right)^{T} A v^{(k)} \\
\hline
\end{array}
\end{aligned}
$$

- Converges to eigenvector q_{J} if parameter μ is close to λ_{J}

$$
\left\|v^{(k)}-\left(\pm q_{J}\right)\right\|=O\left(\left|\frac{\mu-\lambda_{J}}{\mu-\lambda_{K}}\right|^{k}\right),\left|\lambda^{(k)}-\lambda_{J}\right|=O\left(\left|\frac{\mu-\lambda_{J}}{\mu-\lambda_{K}}\right|^{2 k}\right)
$$

where λ_{J} and λ_{K} are closest and second closest eigenvalues to μ

- Standard method for determining eigenvector given eigenvalue

Rayleigh Quotient Iteration

- Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- Improvement: At each iteration, set μ to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration
$v^{(0)}=$ some unit-length vector

$$
\lambda^{(0)}=r\left(v^{(0)}\right)=\left(v^{(0)}\right)^{T} A v^{(0)}
$$

$$
\text { for } k=1,2, \ldots
$$

Solve $\left(A-\lambda^{(k-1)} I\right) w=v^{(k-1)}$ for w
$v^{(k)}=w /\|w\|$
$\lambda^{(k)}=r\left(v^{(k)}\right)=\left(v^{(k)}\right)^{T} A v^{(k)}$

- Cost per iteration is linear for tridiagonal matrix

Convergence of Rayleigh Quotient Iteration

- Cubic convergence in Rayleigh quotient iteration

$$
\left\|v^{(k+1)}-\left(\pm q_{J}\right)\right\|=O\left(\left\|v^{(k)}-\left(\pm q_{J}\right)\right\|^{3}\right)
$$

and

$$
\left|\lambda^{(k+1)}-\lambda_{J}\right|=O\left(\left|\lambda^{(k)}-\lambda_{J}\right|^{3}\right)
$$

- In other words, each iteration triples number of digits of accuracy
- Proof idea: If $v^{(k)}$ is close to an eigenvector, $\left\|v^{(k)}-\left(\pm q_{J}\right)\right\| \leq \epsilon$, then accuracy of Rayleigh quotient estimate $\lambda^{(k)}$ is $\left|\lambda^{(k)}-\lambda_{J}\right|=O\left(\epsilon^{2}\right)$.
One step of inverse iteration then gives

$$
\left\|v^{(k+1)}-q_{J}\right\|=O\left(\left|\lambda^{(k)}-\lambda_{J}\right|\left\|v^{(k)}-q_{J}\right\|\right)=O\left(\epsilon^{3}\right)
$$

- Rayleigh quotient is great in finding one eigenvalue and its corresponding eigenvector. What if we want to find all eigenvalues?

Operation Counts

In Rayleigh quotient iteration,

- if $A \in \mathbb{R}^{n \times n}$ is full matrix, then solving $(A-\mu I) w=v^{(k-1)}$ may take $O\left(n^{3}\right)$ flops per step
- if $A \in \mathbb{R}^{n \times n}$ is upper Hessenberg, then each step takes $O\left(n^{2}\right)$ flops
- if $A \in \mathbb{R}^{n \times n}$ is tridiagonal, then each step takes $O(n)$ flops

