
AMS526: Numerical Analysis I
(Numerical Linear Algebra for

Computational and Data Sciences)
Lecture 15: Reduction to Hessenberg and Tridiagonal Forms;

Rayleigh Quotient Iteration

Xiangmin Jiao

Stony Brook University

Xiangmin Jiao Numerical Analysis I 1 / 24

Outline

1 Schur Factorization (NLA§26)

2 Reduction to Hessenberg and Tridiagonal Forms (NLA§26)

3 Rayleigh Quotient Iteration (NLA§27)

Xiangmin Jiao Numerical Analysis I 2 / 24

“Obvious” Algorithms

Most obvious method is to find roots of characteristic polynomial
pA(λ), but it is very ill-conditioned
Another idea is power iteration, using fact that

x

∥x∥
,

Ax

∥Ax∥
,

A2x

∥A2x∥
,

A3x

∥A3x∥
, . . .

converge to an eigenvector corresponding to the largest eigenvalue of
A in absolute value, but it may converge very slowly

Instead, compute an eigenvalue-revealing factorization, such as Schur
factorization

A = QTQ∗

by introducing zeros, using algorithms similar to QR factorization

Xiangmin Jiao Numerical Analysis I 3 / 24

“Obvious” Algorithms

Most obvious method is to find roots of characteristic polynomial
pA(λ), but it is very ill-conditioned
Another idea is power iteration, using fact that

x

∥x∥
,

Ax

∥Ax∥
,

A2x

∥A2x∥
,

A3x

∥A3x∥
, . . .

converge to an eigenvector corresponding to the largest eigenvalue of
A in absolute value, but it may converge very slowly

Instead, compute an eigenvalue-revealing factorization, such as Schur
factorization

A = QTQ∗

by introducing zeros, using algorithms similar to QR factorization

Xiangmin Jiao Numerical Analysis I 3 / 24

A Fundamental Difficulty

However, eigenvalue-revealing factorization cannot be done in finite
number of steps:

Any general eigenvalue solver must be iterative

To see this, consider a general polynomial of degree n

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

There is no closed-form expression for roots for n > 4:
In general, the roots of polynomial equations higher than fourth
degree cannot be written in terms of a finite number of operations
(Abel, 1824)

Xiangmin Jiao Numerical Analysis I 4 / 24

A Fundamental Difficulty Cont’d

However, the roots of pA are the eigenvalues of the companion matrix

A =

0 −a0
1 0 −a1

1
. . .

...
. . . 0 −an−2

1 −an−1

Therefore, in general, we cannot find the eigenvalues of a matrix in a
finite number of steps
In practice, however, there are algorithms that converge to desired
precision in a few iterations

Xiangmin Jiao Numerical Analysis I 5 / 24

Schur Factorization and Diagonalization

Most eigenvalue algorithms compute Schur factorization A = QTQ∗

by transforming A with similarity transformations

Q∗
j · · ·Q∗

2Q
∗
1︸ ︷︷ ︸

Q∗

AQ1Q2 · · ·Qj︸ ︷︷ ︸
Q

,

where Qi are unitary matrices, which converge to T as j → ∞
Note: Real matrices might need complex Schur forms and eigenvalues
Question: For Hermitian A, what matrix will the sequence converge
to?

Xiangmin Jiao Numerical Analysis I 6 / 24

Outline

1 Schur Factorization (NLA§26)

2 Reduction to Hessenberg and Tridiagonal Forms (NLA§26)

3 Rayleigh Quotient Iteration (NLA§27)

Xiangmin Jiao Numerical Analysis I 7 / 24

Two Phases of Eigenvalue Computations

General A: First convert to upper-Hessenberg form, then to upper
triangular

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

A̸=A∗

Phase 1−−−−→

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

upper-Hessenberg

Phase 2−−−−→

× × × × ×

× × × ×
× × ×

× ×
×

triangular

Hermitian A: First convert to tridiagonal form, then to diagonal

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

A=A∗

Phase 1−−−−→

× ×
× × ×

× × ×
× × ×

× ×

tridiagonal

Phase 2−−−−→

×

×
×

×
×

diagonal

In general, phase 1 is direct and requires O(n3) flops, and phase 2 is
iterative and requires O(n) iterations, and O(n3) flops for
non-Hermitian matrices and O(n2) flops for Hermitian matrices

Xiangmin Jiao Numerical Analysis I 8 / 24

Introducing Zeros by Similarity Transformations

First attempt: Compute Schur factorization A = QTQ∗ by applying
Householder reflectors from both left and right

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

A

Q∗
1 ·

−−→

x x x x x
0 x x x x
0 x x x x
0 x x x x
0 x x x x

Q∗
1 A

·Q1−→

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

Q∗
1 AQ1

Unfortunately, the right multiplication destroys the zeros introduced by
Q∗

1

This would not work because of Abel’s theorem
However, the subdiagonal entries typically decrease in magnitude

Xiangmin Jiao Numerical Analysis I 9 / 24

The Hessenberg Form

Second attempt: try to compute upper Hessenberg matrix H similar
to A:

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

A

Q∗
1 ·

−−→

× × × × ×
x x x x x
0 x x x x
0 x x x x
0 x x x x

Q∗
1 A

·Q1−→

× x x x x
× x x x x

x x x x
x x x x
x x x x

Q∗
1 AQ1

The zeros introduced by Q∗
1A were not destroyed this time!

Continue with remaining columns would result in Hessenberg form:

Q∗
2 ·

−−→

× × × × ×
× × × × ×

x x x x
0 x x x
0 x x x

Q∗
2 Q∗

1 AQ1

·Q2−→

× × x x x
× × x x x

× x x x
x x x
x x x

Q∗
2 Q∗

1 AQ1Q2

· · ·

Xiangmin Jiao Numerical Analysis I 10 / 24

The Hessenberg Form

After n − 2 steps, we obtain the Hessenberg form:

Q∗
n−2 · · ·Q∗

2Q
∗
1︸ ︷︷ ︸

Q∗

AQ1Q2 · · ·Qn−2︸ ︷︷ ︸
Q

= H =

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

For Hermitian matrix A, H is Hermitian and hence is tridiagonal

Xiangmin Jiao Numerical Analysis I 11 / 24

Householder Reduction to Hessenberg

Householder Reduction to Hessenberg Form
for k = 1 to n − 2

x = Ak+1:n,k
vk = sign(x1)∥x∥2e1 + x
vk = vk/∥vk∥2
Ak+1:n,k:n = Ak+1:n,k:n − 2vk(v∗kAk+1:n,k:n)
A1:n,k+1:n = A1:n,k+1:n − 2(A1:n,k+1:nvk)v

∗
k

Note: Q is never formed explicitly.
Operation count

∼
n−2∑
k=1

4(n − k)2 + 4n(n − k) ∼ 4n3/3 + 4n3 − 4n3/2 = 10n3/3

Xiangmin Jiao Numerical Analysis I 12 / 24

Reduction to Tridiagonal Form
If A is Hermitian, then

Q∗
n−2 · · ·Q∗

2Q
∗
1︸ ︷︷ ︸

Q∗

AQ1Q2 · · ·Qn−2︸ ︷︷ ︸
Q

= H =

× ×
× × ×

.
× × ×

× ×

For Hermitian A, operation count would be same as Householder QR:
4n3/3

▶ First, taking advantage of sparsity, cost of applying right reflectors is
also 4(n − k)2 instead of 4n(n − k), so cost is

∼
n−2∑
k=1

8(n − k)2 ∼ 8n3/3

▶ Second, taking advantage of symmetry, cost is reduced by 50% to
4n3/3

Xiangmin Jiao Numerical Analysis I 13 / 24

Stability of Hessenberg Reduction

Theorem
Householder reduction to Hessenberg form is backward stable, in that

Q̃H̃Q̃∗ = A+ δA,
∥δA∥
∥A∥

= O(ϵmachine)

for some δA ∈ Cn×n

Note: Similar to Householder QR, Q̃ is exactly unitary based on some ṽk

Xiangmin Jiao Numerical Analysis I 14 / 24

Outline

1 Schur Factorization (NLA§26)

2 Reduction to Hessenberg and Tridiagonal Forms (NLA§26)

3 Rayleigh Quotient Iteration (NLA§27)

Xiangmin Jiao Numerical Analysis I 15 / 24

Solving Eigenvalue Problems

All eigenvalue solvers must be iterative
Iterative algorithms have multiple facets:

1 Basic idea behind the algorithms
2 Convergence and techniques to speed-up convergence
3 Efficiency of implementation
4 Termination criteria

We will focus on first two aspects

Xiangmin Jiao Numerical Analysis I 16 / 24

Simplification: Real Symmetric Matrices

We will consider eigenvalue problems for real symmetric matrices, i.e.
A = AT ∈ Rn×n, and Ax = λx for x ∈ Rn

▶ Note: x∗ = xT , and ∥x∥ =
√
xT x

A has real eigenvalues λ1,λ2, . . . , λn and orthonormal eigenvectors q1,
q2, . . . , qn, where ∥qj∥ = 1
Eigenvalues are often also ordered in a particular way (e.g., ordered
from large to small in magnitude)
In addition, we focus on symmetric tridiagonal form

▶ Why? Because phase 1 of two-phase algorithm reduces matrix into
tridiagonal form

Xiangmin Jiao Numerical Analysis I 17 / 24

Rayleigh Quotient

The Rayleigh quotient of x ∈ Rn is the scalar

r(x) =
xTAx

xT x

For an eigenvector x , its Rayleigh quotient is r(x) = xTλx/xT x = λ,
the corresponding eigenvalue of x
For general x , r(x) = α that minimizes ∥Ax − αx∥2.
x is eigenvector of A⇐⇒ ∇r(x) = 2

xT x
(Ax − r(x)x) = 0 with x ̸= 0

r(x) is smooth and ∇r(qj) = 0 for any j , and therefore is
quadratically accurate:

r(x)− r(qJ) = O(∥x − qJ∥2) as x → qJ for some J

Xiangmin Jiao Numerical Analysis I 18 / 24

Power Iteration

Simple power iteration for largest eigenvalue

Algorithm: Power Iteration
v (0) =some unit-length vector
for k = 1, 2, . . .

w = Av (k−1)

v (k) = w/∥w∥
λ(k) = r(v (k)) = (v (k))TAv (k)

Termination condition is omitted for simplicity

Xiangmin Jiao Numerical Analysis I 19 / 24

Convergence of Power Iteration
Expand initial v (0) in orthonormal eigenvectors qi , and apply Ak :

v (0) = a1q1 + a2q2 + · · ·+ anqn

v (k) = ckA
kv (0)

= ck(a1λ
k
1q1 + a2λ

k
2q2 + · · ·+ anλ

k
nqn)

= ckλ
k
1(a1q1 + a2(λ2/λ1)

kq2 + · · ·+ an(λn/λ1)
kqn)

If |λ1| > |λ2| ≥ · · · ≥ |λm| ≥ 0 and qT1 v (0) ̸= 0, this gives

∥v (k) − (±q1)∥ = O
(
|λ2/λ1|k

)
, |λ(k) − λ1| = O

(
|λ2/λ1|2k

)
where ± sign is chosen to be sign of qT1 v (k)

It finds the largest eigenvalue (unless eigenvector is orthogonal to v (0))
Error reduces by only a constant factor (≈ |λ2/λ1|) each step, and
very slowly especially when |λ2| ≈ |λ1|

Xiangmin Jiao Numerical Analysis I 20 / 24

Inverse Iteration
Apply power iteration on (A− µI)−1, with eigenvalues {(λj − µ)−1}
If µ ≈ λJ for some J, then (λJ − µ)−1 may be far larger than
(λj − µ)−1, j ̸= J, so power iteration may converge rapidly

Algorithm: Inverse Iteration
v (0) =some unit-length vector
for k = 1, 2, . . .

Solve (A− µI)w = v (k−1) for w
v (k) = w/∥w∥
λ(k) = r(v (k)) = (v (k))TAv (k)

Converges to eigenvector qJ if parameter µ is close to λJ

∥v (k) − (±qJ)∥ = O

(∣∣∣∣ µ− λJ

µ− λK

∣∣∣∣k
)
, |λ(k) − λJ | = O

(∣∣∣∣ µ− λJ

µ− λK

∣∣∣∣2k
)

where λJ and λK are closest and second closest eigenvalues to µ

Standard method for determining eigenvector given eigenvalue
Xiangmin Jiao Numerical Analysis I 21 / 24

Rayleigh Quotient Iteration

Parameter µ is constant in inverse iteration, but convergence is better
for µ close to the eigenvalue
Improvement: At each iteration, set µ to last computed Rayleigh
quotient

Algorithm: Rayleigh Quotient Iteration
v (0) =some unit-length vector
λ(0) = r(v (0)) = (v (0))TAv (0)

for k = 1, 2, . . .
Solve (A− λ(k−1)I)w = v (k−1) for w
v (k) = w/∥w∥
λ(k) = r(v (k)) = (v (k))TAv (k)

Cost per iteration is linear for tridiagonal matrix

Xiangmin Jiao Numerical Analysis I 22 / 24

Convergence of Rayleigh Quotient Iteration

Cubic convergence in Rayleigh quotient iteration

∥v (k+1) − (±qJ)∥ = O(∥v (k) − (±qJ)∥3)

and
|λ(k+1) − λJ | = O

(
|λ(k) − λJ |3

)
In other words, each iteration triples number of digits of accuracy
Proof idea: If v (k) is close to an eigenvector, ∥v (k) − (±qJ)∥ ≤ ϵ, then
accuracy of Rayleigh quotient estimate λ(k) is |λ(k) − λJ | = O(ϵ2).
One step of inverse iteration then gives

∥v (k+1) − qJ∥ = O(|λ(k) − λJ |∥v (k) − qJ∥) = O(ϵ3)

Rayleigh quotient is great in finding one eigenvalue and its
corresponding eigenvector. What if we want to find all eigenvalues?

Xiangmin Jiao Numerical Analysis I 23 / 24

Operation Counts

In Rayleigh quotient iteration,
if A ∈ Rn×n is full matrix, then solving (A− µI)w = v (k−1) may take
O(n3) flops per step
if A ∈ Rn×n is upper Hessenberg, then each step takes O(n2) flops
if A ∈ Rn×n is tridiagonal, then each step takes O(n) flops

Xiangmin Jiao Numerical Analysis I 24 / 24

	Schur Factorization (NLA§26)
	Reduction to Hessenberg and Tridiagonal Forms (NLA§26)
	Rayleigh Quotient Iteration (NLA§27)

