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@ Schur Factorization (NLA§26)
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“Obvious” Algorithms

@ Most obvious method is to find roots of characteristic polynomial
pa(A), but it is very ill-conditioned

@ Another idea is power iteration, using fact that

X Ax A2x Adx
[[xI]7 1A (| A2 [|A3x|]”

converge to an eigenvector corresponding to the largest eigenvalue of
A in absolute value, but it may converge very slowly
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“Obvious” Algorithms

@ Most obvious method is to find roots of characteristic polynomial
pa(A), but it is very ill-conditioned

@ Another idea is power iteration, using fact that

X Ax A2x Adx
[[xI]7 1A (| A2 [|A3x|]”

converge to an eigenvector corresponding to the largest eigenvalue of
A in absolute value, but it may converge very slowly

@ Instead, compute an eigenvalue-revealing factorization, such as Schur
factorization

A=QTQ"

by introducing zeros, using algorithms similar to QR factorization
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A Fundamental Difficulty

@ However, eigenvalue-revealing factorization cannot be done in finite
number of steps:

Any general eigenvalue solver must be iterative
@ To see this, consider a general polynomial of degree n
p(z)=2z"+ an_1z" 14+ az+ag

There is no closed-form expression for roots for n > 4:

In general, the roots of polynomial equations higher than fourth
degree cannot be written in terms of a finite number of operations
(Abel, 1824)
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A Fundamental Difficulty Cont'd

@ However, the roots of py are the eigenvalues of the companion matrix

i 0 —ag
10 —di
A= 1 :
0 —dp-2
- 1 _an_l -

@ Therefore, in general, we cannot find the eigenvalues of a matrix in a
finite number of steps

@ In practice, however, there are algorithms that converge to desired
precision in a few iterations
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Schur Factorization and Diagonalization

@ Most eigenvalue algorithms compute Schur factorization A = QTQ*
by transforming A with similarity transformations

Q QAR Q;
o Q

where Q; are unitary matrices, which converge to T as j — oo
@ Note: Real matrices might need complex Schur forms and eigenvalues

@ Question: For Hermitian A, what matrix will the sequence converge
to?
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© Reduction to Hessenberg and Tridiagonal Forms (NLA§26)
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Two Phases of Eigenvalue Computations

o General A: First convert to upper-Hessenberg form, then to upper

triangular

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X | Phase 1 X X X X | Phase 2 X X X

—_— —5

X X X X X X X X X X

X X X X X X % x
AFA* upper-Hessenberg triangular

@ Hermitian A: First convert to tridiagonal form, then to diagonal

X X X X X X X X

X X X X X X X X X

X X X X X | Phase 1 X X X Phase 2 X

X X X X X X X X X

X X X X X X X X
A=A* tridiagonal diagonal

o In general, phase 1 is direct and requires O(n®) flops, and phase 2 is
iterative and requires O(n) iterations, and O(n®) flops for
non-Hermitian matrices and O(n?) flops for Hermitian matrices
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Introducing Zeros by Similarity Transformations

o First attempt: Compute Schur factorization A = QTQ™* by applying
Householder reflectors from both left and right
X X X X X x X X X X X x X X X
|: X X X X X 0 x x x X |: X X X X X ]
X X X X X Q;~ 0 x X X X ‘@1 X X X X X
X X X X X — 0 x x x x |7 x x x x x
X X X X X 0 x x x x X X X X X
A QfA Qf AQy
@ Unfortunately, the right multiplication destroys the zeros introduced by
Q1
@ This would not work because of Abel's theorem
@ However, the subdiagonal entries typically decrease in magnitude
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The Hessenberg Form

@ Second attempt: try to compute upper Hessenberg matrix H similar

to A:
X X X X X X X X X X X X X X X
X X X X X X X X X X X x X X X
X X X X X Q;f- 0 x X x X -03 X X X X
X X X X X — 0 X X X X X X X X
X X X X X 0 X X X X X X X X
* *
A QA Q7 AQy

@ The zeros introduced by Q; A were not destroyed this time!
e Continue with remaining columns would result in Hessenberg form:

X X X X X X X X X X
X X X X X X X X X X
Q; . x X X X Q2 X X X X
— 0 x X x - x x x
0 X X X X X X

Q3 QF AQ1 Q3 QI AQL Q2
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The Hessenberg Form

o After n — 2 steps, we obtain the Hessenberg form:

X X X X X
X X X X X

\:_2“'Q;QIAQ1Q2"'Qn—2:H: X X X X
(‘{* ‘(3 X X X

X X

@ For Hermitian matrix A, H is Hermitian and hence is tridiagonal
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Householder Reduction to Hessenberg

Householder Reduction to Hessenberg Form
fork=1ton-2
X = Ak+1:n,k
v = sign(xq)||x|l2e1 + x
Vi = Vie/ || vill2
Akt1inkin = Akt iinken — 2V (Vi Akt1:nken)
Al:n,k—l—l:n = Al:n,k+1:n - 2(Al:n,k—l—l:nd)VZ<

o Note: @ is never formed explicitly.

@ Operation count

n—2
~ Z4(n — k)> +4n(n— k) ~4n*/3 +4n® — 4n*/2 = 10n/3
k=1
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Reduction to Tridiagonal Form

o If Ais Hermitian, then

Qro " QBRRANR - Qro=H=
Q* Q X X X
X X

@ For Hermitian A, operation count would be same as Householder QR:
4n3/3
» First, taking advantage of sparsity, cost of applying right reflectors is
also 4(n — k)? instead of 4n(n — k), so cost is

n—2

~> 8(n—k)*~8n%/3

k=1

» Second, taking advantage of symmetry, cost is reduced by 50% to
4n3/3
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Stability of Hessenberg Reduction

Theorem

Householder reduction to Hessenberg form is backward stable, in that

[6A] _

QI:I@* = A+ A, W = O(Emachine)

for some 6A € C"*n

Note: Similar to Householder QR, Q is exactly unitary based on some v
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© Rayleigh Quotient Iteration (NLA§27)

Xiangmin Jiao Numerical Analysis |



Solving Eigenvalue Problems

o All eigenvalue solvers must be iterative

@ lterative algorithms have multiple facets:

© Basic idea behind the algorithms

@ Convergence and techniques to speed-up convergence
© Efficiency of implementation

@ Termination criteria

o We will focus on first two aspects
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Simplification: Real Symmetric Matrices

@ We will consider eigenvalue problems for real symmetric matrices, i.e.
A=AT e R™" and Ax = A\x for x € R"

» Note: x* = x', and ||x|| = VxTx
@ A has real eigenvalues A1,)5, ..., A\, and orthonormal eigenvectors ¢y,
G2, ..., Gn, where ||gj|| =1

e Eigenvalues are often also ordered in a particular way (e.g., ordered
from large to small in magnitude)

@ In addition, we focus on symmetric tridiagonal form

» Why? Because phase 1 of two-phase algorithm reduces matrix into
tridiagonal form
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Rayleigh Quotient

@ The Rayleigh quotient of x € R" is the scalar
T
x " Ax
)=

e For an eigenvector x, its Rayleigh quotient is r(x) = xT Ax/x"x = X,
the corresponding eigenvalue of x

For general x, r(x) = « that minimizes ||Ax — ax||2.

x is eigenvector of A<= Vr(x) = —2-(Ax — r(x)x) = 0 with x # 0

xTx

r(x) is smooth and Vr(q;) = 0 for any j, and therefore is
quadratically accurate:

r(x) — r(qy) = O(||x — qy||?) as x — g for some J
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Power lteration

@ Simple power iteration for largest eigenvalue

Algorithm: Power Iteration
v(® =some unit-length vector
for k=1,2,...
w = Av(k—1)
) = w]
MK = r(v(R)) = (V)T Ay(k)

@ Termination condition is omitted for simplicity
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Convergence of Power lteration

o Expand initial v(%) in orthonormal eigenvectors g;, and apply A¥:

v = a1q1 + 222+ - + 2nGn
v(k) = CkAkv(O)
= ck(a1Afq1 + @2A5q2 + -+ + apA5qn)
= aMf(a1q1 + a2(02/M) g2 + -+ + an(An/ A1) an)

o If [A1| > |Xa| > -+ > [Am| > 0and gf v(® #£ 0, this gives

V9 — () = 0 (Ro/Al) . WO = x| = O (1xo/M )

where =+ sign is chosen to be sign of qlTv(k)

o It finds the largest eigenvalue (unless eigenvector is orthogonal to v(©))
@ Error reduces by only a constant factor (=~ |A\2/\1]) each step, and
very slowly especially when |Aa| = |Aq]
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Inverse lteration

o Apply power iteration on (A — /)L, with eigenvalues {()\; — u)~1}
o If 1~ X\ for some J, then (A, — p1)~! may be far larger than

(Aj — )L, j # J, so power iteration may converge rapidly

Algorithm: Inverse Iteration

v(®) =some unit-length vector

for k=1,2,...
Solve (A — pl)w = v(k=1) for w
W = w/w]
AK) — r(v(k)) — (V(k))TAV(k)

o Converges to eigenvector q; if parameter p is close to Ay

k
HV(k)—(iQJ)H:OOM >, !/\(k)—)\J|:O<‘“ Ay
p— Ak

= Ak
where A and Ak are closest and second closest eigenvalues to

Zk)
e Standard method for determining eigenvector given eigenvalue
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Rayleigh Quotient Iteration

e Parameter y is constant in inverse iteration, but convergence is better
for 11 close to the eigenvalue

@ Improvement: At each iteration, set i to last computed Rayleigh
quotient

Algorithm: Rayleigh Quotient Iteration

v(® =some unit-length vector

A0) — r(V(O)) — (V(O))TAV(O)

for k=1,2,...
Solve (A — XD w = v(k=1) for w
v = w/|wl|
AK) — r(v(k)) — (V(k))TAV(k)

o Cost per iteration is linear for tridiagonal matrix
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Convergence of Rayleigh Quotient lteration

@ Cubic convergence in Rayleigh quotient iteration
VD — (g = O(Iv™ = (xa))IP)

and
A =0 = 0 (1AW =A%)

@ In other words, each iteration triples number of digits of accuracy

e Proof idea: If v(kK) is close to an eigenvector, ||v(K) — (£q,)|| < e, then
accuracy of Rayleigh quotient estimate A(%) is |A(K) — X )| = O(€?).
One step of inverse iteration then gives

VD — g = O(IA) — x|V — qy]|) = O(e3)

o Rayleigh quotient is great in finding one eigenvalue and its
corresponding eigenvector. What if we want to find all eigenvalues?
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Operation Counts

In Rayleigh quotient iteration,
o if A€ R"™" is full matrix, then solving (A — u/)w = v(*~1) may take
O(n®) flops per step
o if A€ R"™" is upper Hessenberg, then each step takes O(n?) flops
o if A R™" is tridiagonal, then each step takes O(n) flops
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