AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)
 Lecture 17: Other Eigenvalue Algorithms; Generalized Eigenvalue Problems

Xiangmin Jiao
SUNY Stony Brook

Outline

(1) Other Eigenvalue Algorithms (NLA§30)

(2) Generalized Eigenvalue Problems

Three Alternative Algorithms

- Jacobi algorithm: earliest known method
- Bisection method: standard way for finding few eigenvalues
- Divide-and-conquer: faster than QR and amenable to parallelization

The Jacobi Algorithm

- Diagonalize 2×2 real symmetric matrix by Jacobi rotation

$$
J^{T}\left[\begin{array}{ll}
a & d \\
d & b
\end{array}\right] J=\left[\begin{array}{cc}
\neq 0 & 0 \\
0 & \neq 0
\end{array}\right]
$$

where $J=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, and $\tan (2 \theta)=2 d /(b-a)$

- What are its similarity and differences with Givens rotation?
- Iteratively apply transformation to two rows and two corresponding columns of $A \in \mathbb{R}^{n \times n}$
- Need not tridiagonalize first, but loop over all pairs of rows and columns by choosing greedily or cyclically
- Magnitude of nonzeros shrink steadily, converging quadratically
- In each iteration, $O\left(n^{2}\right)$ Jacobi rotation, $O(n)$ operations per rotation, leading to $\left.O\left(n^{3} \log \left(\mid \log \epsilon_{\text {machine }}\right) \mid\right)\right)$ flops total
- Jacobi method is easy to parallelize (QR algorithm does not scale well), delivers better accuracy than QR algorithm, but far slower than QR algorithm

Method of Bisection

- Idea: Search the real line for roots of $p(x)=\operatorname{det}(A-x I)$
- Finding roots from coefficients is highly unstable, but computing $p(x)$ from given x is stable (e.g., can be computed using Gaussian elimination with partial pivoting)
- Let $A^{(i)}$ denote principal square submatrix of dimension i for irreducible matrix A (note: different from notation in QR algorithm)
- Key property: eigenvalues of $A^{(1)}, \ldots, A^{(n)}$ strictly interlace

$$
\lambda_{j}^{(k+1)}<\lambda_{j}^{(k)}<\lambda_{j+1}^{(k+1)}
$$

Method of Bisection

- Interlacing property allows us to determine number of negative eigenvalues of A, which is equal to number of sign changes in Sturm sequence

$$
1, \operatorname{det}\left(A^{(1)}\right), \operatorname{det}\left(A^{(2)}\right), \ldots, \operatorname{det}\left(A^{(n)}\right)
$$

- Shift A to get number of eigenvalues in $(-\infty, b)$ and $(-\infty, a)$, and in turn $[a, b$)
- Three-term recurrence for determinants for tridiagonal matrices

$$
\operatorname{det}\left(A^{(k)}\right)=a_{k, k} \operatorname{det}\left(A^{(k-1)}\right)-a_{k, k-1}^{2} \operatorname{det}\left(A^{(k-2)}\right)
$$

- With shift $x I$ and $p^{(k)}(x)=\operatorname{det}\left(A^{(k)}-x I\right)$:

$$
p^{(k)}(x)=\left(a_{k, k}-x\right) p^{(k-1)}(x)-a_{k, k-1}^{2} p^{(k-2)}(x)
$$

- Bisection algorithm can locate eigenvalues in arbitrarily small intervals
- $O\left(n\left|\log \left(\epsilon_{\text {machine }}\right)\right|\right)$ flops per eigenvalue, always high relative accuracy

Notes on Bisection

- It is standard algorithm if one needs a few eigenvalues
- Key step of bisection is to determine the inertia (i.e., the numbers of positive, negative, and zero eigenvalues) of $A-\mu l$
- Sylvester's Law of Inertia: inertia is invariant under congruence transformation $S A S^{T}$, where S is nonsingular (proved in 1852)
- Therefore, $L D L^{T}$ may be used to determine inertia

Divide-and-Conquer Algorithm

- Split symmetric algorithm T into submatrices

- Sum of 2×2 block-diagonal matrix and rank-one correction
- Split T in equal sizes and compute eigenvalues of \hat{T}_{1} and \hat{T}_{2} recursively
- Solve a nonlinear problem to get eigenvalues of T from those of \hat{T}_{1} and \hat{T}_{2}

Divide-and-Conquer Algorithm

- Suppose diagonalizations $\hat{T}_{1}=Q_{1} D_{1} Q_{1}^{T}$ and $\hat{T}_{2}=Q_{2} D_{2} Q_{2}^{T}$ have been computed. We then have

$$
T=\left[\begin{array}{ll}
Q_{1} & \\
& Q_{2}
\end{array}\right]\left(\left[\begin{array}{ll}
D_{1} & \\
& D_{2}
\end{array}\right]+\beta z z^{T}\right)\left[\begin{array}{ll}
Q_{1}^{T} & \\
& Q_{2}^{T}
\end{array}\right]
$$

with $z^{T}=\left(q_{1}^{T}, q_{2}^{T}\right)$, where q_{1}^{T} is last row of Q_{1} and q_{2}^{T} is first row of Q_{2}

- This is similarity transformation: Find eigenvalues of diagonal matrix plus rank-one correction

Divide-and-Conquer Algorithm

- Eigenvalues of $D+w w^{T}$ are the roots of rational function

$$
f(\lambda)=1+\sum_{j=1}^{n} \frac{w_{j}^{2}}{d_{j}-\lambda}
$$

Divide-and-Conquer Algorithm

- Solve secular equation $f(\lambda)=0$ with quadratic convergence
- $O\left(n \log \left|\log \left(\epsilon_{\text {machine }}\right)\right|\right)$ flops per root; $O\left(n^{2} \log \left|\log \left(\epsilon_{\text {machine }}\right)\right|\right)$ flops for all roots
- Total cost for divide-and-conquer algorithm is

$$
O\left(\sum_{k=1}^{\log n} 2^{k-1}\left(\frac{n}{2^{k-1}}\right)^{2}\right)=O\left(n^{2}\right)
$$

where constant depends on $\log \left|\log \left(\epsilon_{\text {machine }}\right)\right|$

- For computing eigenvalues only, most of operations are spent in tridiagonal reduction, and constant in "Phase 2" is not important
- However, for computing eigenvectors, divide-and-conquer reduces phase 2 to $4 n^{3} / 3$ flops compared to $6 n^{3}$ for QR

Outline

(1) Other Eigenvalue Algorithms (NLA§30)

(2) Generalized Eigenvalue Problems

Generalized Eigenvalue Problem

- Generalized eigenvalue problem has the form

$$
A x=\lambda B x
$$

where A and B are $n \times n$ matrices

- For example, in structural vibration problems, A represents the stiffness matrix, B the mass matrix, and eigenvalues and eigenvectors determine natural frequencies and modes of vibration of structures
- If A or B is nonsingular, then it can be converted into standard eigenvalue problem $\left(B^{-1} A\right) x=\lambda x$ or $\left(A^{-1} B\right) x=(1 / \lambda) x$
- If A and B are both symmetric, preceding transformation loses symmetry and in turn may lose orthogonality of generalized eigenvectors. If B is positive definite, alternative transformation is

$$
\left(L^{-1} A L^{-T}\right) y=\lambda y, \text { where } B=L L^{T} \text { and } y=L^{T} x
$$

- If A and B are both singular or indefinite, then use $Q Z$ algorithm to reduce A and B into triangular matrices simultaneously by orthogonal transformation (see Golub and van Loan for detail)

