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Three Alternative Algorithms

Jacobi algorithm: earliest known method
Bisection method: standard way for finding few eigenvalues
Divide-and-conquer: faster than QR and amenable to parallelization
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The Jacobi Algorithm
Diagonalize 2 × 2 real symmetric matrix by Jacobi rotation

JT
[

a d
d b

]
J =

[
̸= 0 0
0 ̸= 0

]
where J =

[
cos θ sin θ
− sin θ cos θ

]
, and tan(2θ) = 2d/(b − a)

What are its similarity and differences with Givens rotation?
Iteratively apply transformation to two rows and two corresponding
columns of A ∈ Rn×n

Need not tridiagonalize first, but loop over all pairs of rows and
columns by choosing greedily or cyclically
Magnitude of nonzeros shrink steadily, converging quadratically
In each iteration, O(n2) Jacobi rotation, O(n) operations per rotation,
leading to O(n3 log(| log ϵmachine)|)) flops total
Jacobi method is easy to parallelize (QR algorithm does not scale
well), delivers better accuracy than QR algorithm, but far slower than
QR algorithm
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Method of Bisection
Idea: Search the real line for roots of p(x) = det(A− xI )

Finding roots from coefficients is highly unstable, but computing p(x)
from given x is stable (e.g., can be computed using Gaussian
elimination with partial pivoting)
Let A(i) denote principal square submatrix of dimension i for
irreducible matrix A (note: different from notation in QR algorithm)
Key property: eigenvalues of A(1), . . . ,A(n) strictly interlace

λ
(k+1)
j < λ

(k)
j < λ

(k+1)
j+1
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Method of Bisection
Interlacing property allows us to determine number of negative
eigenvalues of A, which is equal to number of sign changes in Sturm
sequence

1, det(A(1)), det(A(2)), . . . , det(A(n))

Shift A to get number of eigenvalues in (−∞, b) and (−∞, a), and in
turn [a, b)

Three-term recurrence for determinants for tridiagonal matrices

det(A(k)) = ak,kdet(A(k−1))− a2
k,k−1det(A(k−2))

With shift xI and p(k)(x) = det(A(k) − xI ):

p(k)(x) = (ak,k − x)p(k−1)(x)− a2
k,k−1p

(k−2)(x)

Bisection algorithm can locate eigenvalues in arbitrarily small intervals
O(n| log(ϵmachine)|) flops per eigenvalue, always high relative accuracy
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Notes on Bisection

It is standard algorithm if one needs a few eigenvalues
Key step of bisection is to determine the inertia (i.e., the numbers of
positive, negative, and zero eigenvalues) of A− µI

Sylvester’s Law of Inertia: inertia is invariant under congruence
transformation SAST , where S is nonsingular (proved in 1852)
Therefore, LDLT may be used to determine inertia
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Divide-and-Conquer Algorithm

Split symmetric algorithm T into submatrices

Sum of 2 × 2 block-diagonal matrix and rank-one correction
Split T in equal sizes and compute eigenvalues of T̂1 and T̂2
recursively
Solve a nonlinear problem to get eigenvalues of T from those of T̂1
and T̂2
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Divide-and-Conquer Algorithm

Suppose diagonalizations T̂1 = Q1D1Q
T
1 and T̂2 = Q2D2Q

T
2 have

been computed. We then have

T =

[
Q1

Q2

]([
D1

D2

]
+ βzzT

)[
QT

1
QT

2

]
with zT = (qT1 , qT2 ), where qT1 is last row of Q1 and qT2 is first row of
Q2

This is similarity transformation: Find eigenvalues of diagonal matrix
plus rank-one correction
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Divide-and-Conquer Algorithm

Eigenvalues of D + wwT are the roots of rational function

f (λ) = 1 +
n∑

j=1

w2
j

dj − λ
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Divide-and-Conquer Algorithm

Solve secular equation f (λ) = 0 with quadratic convergence
O(n log | log(ϵmachine)|) flops per root; O(n2 log | log(ϵmachine)|) flops
for all roots
Total cost for divide-and-conquer algorithm is

O

(
log n∑
k=1

2k−1
( n

2k−1

)2
)

= O(n2),

where constant depends on log | log(ϵmachine)|
For computing eigenvalues only, most of operations are spent in
tridiagonal reduction, and constant in “Phase 2” is not important
However, for computing eigenvectors, divide-and-conquer reduces
phase 2 to 4n3/3 flops compared to 6n3 for QR
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Generalized Eigenvalue Problem
Generalized eigenvalue problem has the form

Ax = λBx ,

where A and B are n × n matrices
For example, in structural vibration problems, A represents the
stiffness matrix, B the mass matrix, and eigenvalues and eigenvectors
determine natural frequencies and modes of vibration of structures
If A or B is nonsingular, then it can be converted into standard
eigenvalue problem (B−1A)x = λx or (A−1B)x = (1/λ)x
If A and B are both symmetric, preceding transformation loses
symmetry and in turn may lose orthogonality of generalized
eigenvectors. If B is positive definite, alternative transformation is

(L−1AL−T )y = λy , where B = LLT and y = LT x

If A and B are both singular or indefinite, then use QZ algorithm to
reduce A and B into triangular matrices simultaneously by orthogonal
transformation (see Golub and van Loan for detail)
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