
AMS526: Numerical Analysis I
(Numerical Linear Algebra for

Computational and Data Sciences)
Lecture 19: Computing the SVD;

Sparse Storage Formats

Xiangmin Jiao

Stony Brook University

Xiangmin Jiao Numerical Analysis I 1 / 13

Outline

1 Computing the SVD (NLA§31)

2 Sparse Storage Format

Xiangmin Jiao Numerical Analysis I 2 / 13

SVD of A and Eigenvalues of A∗A

Intuitive idea for computing SVD of A ∈ Cm×n:
▶ Form A∗A and compute its eigenvalue decomposition A∗A = VΛV ∗

▶ Let Σ =
√
Λ, i.e., diag(

√
λ1,

√
λ2, . . . ,

√
λn)

▶ Solve system UΣ = AV to obtain U

This method is efficient if m ≫ n.
However, it may not be stable, especially for smaller singular values
because of the squaring of the condition number

▶ For SVD of A, |σ̃k − σk | = O(ϵmachine∥A∥), where σ̃k and σk denote
the computed and exact kth singular value

▶ If computed from eigenvalue decomposition of A∗A,
|σ̃k − σk | = O(ϵmachine∥A∥

2/σk), which is problematic if σk ≪ ∥A∥
If one is interested in only relatively large singular values, then
computing eigenvalues of A∗A is not a problem. For general
situations, a more stable algorithm is desired.

Xiangmin Jiao Numerical Analysis I 3 / 13

A Different Reduction to Eigenvalue Problem

Typical algorithm for computing SVD are similar to computation of
eigenvalues

Consider A ∈ Cm×n, then Hermitian matrix H =

[
0 A∗

A 0

]
has

eigenvalue decomposition

H

[
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]
,

where A = UΣV ∗ gives the SVD. This approach is stable.
In practice, such a reduction is done implicitly without forming the
large matrix
Typically done in two phases

Xiangmin Jiao Numerical Analysis I 4 / 13

Two-Phase Method
In the first phase, reduce to bidiagonal form by applying different
orthogonal transformations on left and right, which involves O(mn2)
operations
In the second phase, reduce to diagonal form using a variant of QR
algorithm or divide-and-conquer algorithm, which involves O(n2)
operations for fixed precision

We hereafter focus on the first phase
Xiangmin Jiao Numerical Analysis I 5 / 13

Golub-Kahan Bidiagonalization
Apply Householder reflectors on both left and right sides

Work for Golub-Kahan bidiagonalization ∼ 4mn2 − 4
3n

3 flops

Xiangmin Jiao Numerical Analysis I 6 / 13

Lawson-Hanson-Chan Bidiagonalization

Speed up by first performing QR factorization on A

Work for LHC bidiagonalization ∼ 2mn2 + 2n3 flops, which is
advantageous if m ≥ 5

3n

Xiangmin Jiao Numerical Analysis I 7 / 13

Three-Step Bidiagonalization

Hybrid approach: Apply QR at suitable time on submatrix with 2 : 1
aspect ratio

Work for three-step bidiagonalization is ∼ 4mn2 − 4
3n

3 − 2
3(m − n)3

Xiangmin Jiao Numerical Analysis I 8 / 13

Comparison of Performance

One-s
tep

 (G
olub-Kahan)

Two-step (LHC)

Three-step bidiagonalization

Xiangmin Jiao Numerical Analysis I 9 / 13

Outline

1 Computing the SVD (NLA§31)

2 Sparse Storage Format

Xiangmin Jiao Numerical Analysis I 10 / 13

Sparse Linear System

Boundary value problems and implicit methods for time-dependent
PDEs yield systems of linear algebraic equations to solve
A matrix is sparse if it has relatively few nonzeros in its entries
Sparsity can be exploited to use far less than O(n2) storage and O(n3)
work required in standard approach to solving system with dense
matrix, assuming matrix is n × n

Xiangmin Jiao Numerical Analysis I 11 / 13

Storage Format of Sparse Matrices
Sparse-matrices are typically stored in special formats that store only
nonzero entries, along with indices to identify their locations in matrix,
such as

▶ compressed-row storage (CRS)
▶ compressed-column storage (CCS)
▶ block compressed row storage (BCRS)

Banded matrices have their own special storage formats (such as
Compressed Diagonal Storage (CDS))
See survey at http://netlib.org/linalg/html_templates/node90.html
Explicitly storing indices incurs additional storage overhead and makes
arithmetic operations on nonzeros less efficient due to indirect
addressing to access operands, so they are beneficial only for very
sparse matrices
Storage format can have big impact the effectiveness of different
versions of same algorithm (with different ordering of loops)
Besides direct methods, these storage formats are also important in
implementing iterative and multigrid solvers

Xiangmin Jiao Numerical Analysis I 12 / 13

http://netlib.org/linalg/html_templates/node90.html

Example of Compressed-Row Storage (CRS)

Xiangmin Jiao Numerical Analysis I 13 / 13

	Computing the SVD (NLA§31)
	Sparse Storage Format

