
AMS526: Numerical Analysis I
(Numerical Linear Algebra for

Computational and Data Sciences)
Lecture 20: Direct Methods for Sparse Linear Systems;

Overview of Iterative Methods

Xiangmin Jiao

Stony Brook University

Xiangmin Jiao Numerical Analysis I 1 / 24



Outline

1 Direct Methods for Sparse Linear Systems (MC�11.1-11.2)

2 Overview of Iterative Methods for Sparse Linear Systems

Xiangmin Jiao Numerical Analysis I 2 / 24



Banded Linear Systems

Cost of factorizing banded linear system depends on bandwidth
▶ For SPD n × n matrix with semi-bandwidth s, total �op count of

Cholesky factorization is about ns2

▶ For n × n matrix with lower bandwidth p and upper bandwidth q,
⋆ In A = LU (LU without pivoting), total �op count is about 2npq
⋆ In PA = LU (LU with partial pivoting), total �op count is about

2np(p + q)

Banded matrices have their own special storage formats (such as

Compressed Diagonal Storage (CDS))

Xiangmin Jiao Numerical Analysis I 3 / 24



Fill

When applying LU or Cholesky factorization to general sparse matrix,

taking linear combinations of rows or columns to annihilate unwanted

nonzero entries can introduce new nonzeros into matrix locations that

were initially zero

Such new nonzeros, called �lls or �ll-ins, must be stored and may

themselves eventually need to be annihilated in order to obtain

triangular factors

Resulting triangular factors can be expected to contain at least as

many nonzeros as original matrix and usually signi�cant �lls as well

Xiangmin Jiao Numerical Analysis I 4 / 24



Sparse Cholesky Factorization

In general, some heuristic algorithms are employed to reorder the

matrix to reduce �lls

Amount of �lls is sensitive to order in which rows and columns of

matrix are processed, so basic problem in sparse factorization is

reordering matrix to limit �ll during factorization

Exact minimization of �lls is hard combinatorial problem

(NP-complete), but heuristic algorithms such as minimum degree and

nested dissection limit �lls well for many types of problems

For Cholesky factorization, both rows and columns are reordered

Xiangmin Jiao Numerical Analysis I 5 / 24



Graph and Sparse Matrix

Xiangmin Jiao Numerical Analysis I 6 / 24



Graph Model of Elimination

Each step of factorization process corresponds to elimination of one

node from graph

Eliminating node causes its neighboring nodes to become connected to

each other

If any such neighbors were not already connected, then �ll results

(new edges in graph and new nonzeros in matrix)

Commonly used reordering methods include Cuthill-McKee,

approximate minimum degree ordering (AMD) and nested dissection

Xiangmin Jiao Numerical Analysis I 7 / 24



Reordering to Reduce Bandwidth

The Cuthill-McKee algorithm and reverse Cuthill-McKee algorithm
▶ The Cuthill-McKee algorithm is a variant of the breadth-�rst search

algorithm on graphs.
⋆ Starts with a peripheral node
⋆ Generates levels Ri for i = 1, 2, . . . until all nodes are exhausted
⋆ The set Ri+1 is created from set Ri by listing all vertices adjacent to all

nodes in Ri

⋆ Within each level, nodes are listed in ascending order by minimum
predecessor (the already-visited neighbors) and as a tiebreak ascending
by vertex degree

▶ The reverse Cuthill�McKee algorithm (RCM) reserves the resulting
index numbers

Xiangmin Jiao Numerical Analysis I 8 / 24



Example Cuthill-McKee Reordering

Xiangmin Jiao Numerical Analysis I 9 / 24



Approximate Minimum Degree Ordering

Good heuristic for limiting �lls is to eliminate �rst those nodes having

fewest neighbors

Number of neighbors is called degree of node, so heuristic is known as

minimum degree

At each step, select node of smallest degree for elimination, breaking

ties arbitrarily

After node has been eliminated, its neighbors become connected to

each other, so degrees of some nodes may change

Process is then repeated, with new node of minimum degree

eliminated next, and so on until all nodes have been eliminated

Xiangmin Jiao Numerical Analysis I 10 / 24



Minimum Degree Ordering, continued

Cholesky factor su�ers much fewer �lls than with original ordering,

and advantage grows with problem size

Sophisticated versions of minimum degree are among most e�ective

general-purpose orderings known

Xiangmin Jiao Numerical Analysis I 11 / 24



Comparison of Di�erent Orderings of Example Matrix

Left: Nonzero pattern of matrix A. Right: Nonzero pattern of matrix R .

Xiangmin Jiao Numerical Analysis I 12 / 24



Nested Dissection Ordering

Nested dissection is based on divide-and-conquer

First, small set of nodes is selected whose removal splits graph into

two pieces of roughly equal size

No node in either piece is connected to any node in other, so no �ll

occurs in either piece due to elimination of any node in the other

Separator nodes are numbered last, then process is repeated recursively

on each remaining piece of graph until all nodes have been numbered

Xiangmin Jiao Numerical Analysis I 13 / 24



Nested Dissection Ordering Continued

Dissection induces blocks of zeros in matrix that are automatically

preserved during factorization

Recursive nature of algorithm can be seen in hierarchical block

structure of matrix, which would involve many more levels in larger

problems

Again, Cholesky factor su�ers much less �ll than with original

ordering, and advantage grows with problem size

Xiangmin Jiao Numerical Analysis I 14 / 24



Sparse Gaussian Elimination

For Gaussian elimination, only columns are reordered

Pivoting introduces additional �lls in sparse Gaussian elimination

Reordering may be done dynamically or statically

The reverse Cuthill-McKee algorithm applied to A+ AT may be used

to reduce bandwidth

Column approximate minimum-degree, may be employed to reorder

matrix to reduce �lls

Xiangmin Jiao Numerical Analysis I 15 / 24



Comparison of Di�erent Orderings of Example Matrix

Nonzero pattern of A and L+ U with random ordering.

Nonzero pattern of A and L+ U with column AMD ordering.

Xiangmin Jiao Numerical Analysis I 16 / 24



Comparison of Direct Methods

Computational cost for Laplace equation on k × k(×k) grid with n
unknowns

method 2-D 3-D

dense Cholesky k6 n3 k9 n3

banded Cholesky k4 n2 k7 n2.33

sparse Cholesky k3 n1.5 k6 n2

Reference: Michael T. Heath, Scienti�c Computing: An Introductory

Survey, 2nd Edition, McGraw-Hill, 2002.

Xiangmin Jiao Numerical Analysis I 17 / 24



Software of Sparse Solvers

Additional implementation complexities include cache performance and

parallelism

It is advisable to use software packages

MATLAB has its own sparse solvers if matrix is stored in sparse format
▶ Sparse matrix is created by using the �sparse� function
▶ Reordering is implemented as �symrcm�, �symamd�, and �colamd�

For symmetric matrices, an example is Taucs

For non-symmetric matrices, popular tools include SuperLU, MUMPS,

and PARDISO

Xiangmin Jiao Numerical Analysis I 18 / 24

http://www.tau.ac.il/~stoledo/taucs/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://mumps.enseeiht.fr/
https://www.pardiso-project.org/


Outline

1 Direct Methods for Sparse Linear Systems (MC�11.1-11.2)

2 Overview of Iterative Methods for Sparse Linear Systems

Xiangmin Jiao Numerical Analysis I 19 / 24



Direct vs. Iterative Methods

Direct methods, or noniterative methods, compute the exact solution

after a �nite number of steps (in exact arithmetic)
▶ Example: Gaussian elimination, QR factorization

Iterative methods produce a sequence of approximations x (1), x (2), . . .
that hopefully converge to the true solution

▶ Example: Jacobi, Conjugate Gradient (CG), GMRES, BiCG, etc.

Caution: The boundary between direct and iterative methods is vague

sometimes

Why use iterative methods (instead of direct methods)?
▶ may be faster than direct methods
▶ produce useful intermediate results
▶ handle sparse matrices more easily (needs only matrix-vector product)
▶ often are easier to implement on parallel computers

Question: When not to use iterative methods?

Xiangmin Jiao Numerical Analysis I 20 / 24



Two Classes of Iterative Methods

Stationary iterative methods are �xed-point iterations obtained by

matrix splitting
▶ Examples: Jacobi (for linear systems, not Jacobi iterations for

eigenvalues), Gauss-Seidel, Successive Over-Relaxation (SOR) etc.

Krylov subspace methods �nd optimal solution in Krylov subspace

{b,Ab,A2b, · · ·Akb}
▶ Build subspace successively
▶ Example: Conjugate Gradient (CG), Generalized Minimum Residual

(GMRES), BiCG, etc.
▶ We will focus on Krylov subspace methods

Xiangmin Jiao Numerical Analysis I 21 / 24



Stationary Iterative Methods
Stationary iterative methods �nd a splitting A = M − N and iterates

xk+1 = M−1(Nxk + b)

Suppose rk = b − Axk , we have x∗ = xk + A−1rk .

Stationary iterative method approximates it by

xk+1 = xk +M−1rk

because

xk+1 = M−1Nxk +M−1b

= M−1Nxk +M−1(rk + Axk)

= M−1(N + A)xk +M−1rk

= xk +M−1rk

A stationary iterative method is good if
▶ ρ(M−1N) < 1, and
▶ M−1 is a good approximation to A−1

Xiangmin Jiao Numerical Analysis I 22 / 24



Stationary Iterative Methods

Di�erent choices of splitting will lead to various schemes

Let A = L+D + U, where D is diagonal, L is strictly lower triangular,

and U is strictly upper triangular
▶ Jacobi iteration: M = D, works well if A is diagonally dominant
▶ Gauss-Seidel: M = L+ D, works well if A is SPD
▶ Successive Over-Relaxation (SOR): M = 1

ωD + L, where 1 ≤ ω < 2,
converges quickly proper choice of ω

▶ Symmetric SOR: symmetric version of SOR

These methods work for some problems, but they may converge slowly

Nevertheless, stationary methods are important as preconditioners for

Krylov-subspace methods and smoothers in multigrid methods (later)

Xiangmin Jiao Numerical Analysis I 23 / 24



Stationary Iterative Methods

Example

For 2D Poisson equation, spectral radius of Jacobi iteration matrix is

cos
(
π
n

)
≈ 1− O

(
1
n2

)
. Number of iterations required to achieve ϵ is

O(n2 ln ϵ−1).

After 5 Jacobi iterations on a Poisson equation, error decreases very slowly.

Xiangmin Jiao Numerical Analysis I 24 / 24


	Direct Methods for Sparse Linear Systems (MC§11.1-11.2)
	Overview of Iterative Methods for Sparse Linear Systems

