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@ Krylov Subspace and Arnoldi Iterations (NLA§32-33)

Xiangmin Jiao Numerical Analysis |



Krylov Subspace Methods

@ Given A and b, Krylov subspace

{b,Ab, A%b, ... AK"1p}

’ ‘ linear systems ‘ eigenvalue problems ‘
Hermitian CG Lanczos
Nonhermitian | GMRES, BiCG, etc. Arnoldi

o CG, GMRES etc. are Krylov subspace methods for solving sparse
linear systems (later)

@ Lanczos and Arnoldi iterations are Krylov subspace methods for
reduction to Hessenberg form
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Review: Reduction to Hessenberg Form

e General A: First convert to upper-Hessenberg form, then to upper

triangular
X X X X X X X X X X X X X x X
X X X X X X X X X X X X X X
X X X X X | Phase 1 X X X X | Phase 2 X X X
X X X X X X X X X X
X X X X X X X X
A#A* upper-Hessenberg triangular
@ Hermitian A: First convert to tridiagonal form, then to diagonal
X X X X X X X X
X X X X X X X X X
X X X X X | Phase 1 X X X Phase 2 X
/=3 TR
X X X X X X X X X
X X X X X X X X
A=A* tridiagonal diagonal

o In general, phase 1 is direct and requires O(n®) flops
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Arnoldi lteration

@ The Arnoldi iteration reduces a general, nonsymmetric matrix A to
Hessenberg form by similarity transformation A = QHQ*

@ It is analogous to Gram-Schmidt-style iteration instead of Householder
reflections

o Let Qx =[q1 ] g2 | - | gx] be n x k matrix with first k columns of Q
and Hy be (k+1) x k upper-left section of H, i.e., Hx = Hik+11:k

o Consider first k columns of AQ = QH, or AQx = QH. 1.4 = Qk+1f:/k

hll e hlk
h21

A q1 [ i = q1 s Jk+1

hiy1k

A Qk Qhi1 ':’k

@ Question: How do we choose ¢17

Xiangmin Jiao Numerical Analysis | 5/ 18



Arnoldi Algorithm

o Start with a random gy, then determine g» and Hi, and so on
@ The kth columns of AQx = Q.1 Hk can be written as

Aqk = Mg + -+ + i + P kGt

where hjy = q; Aqy.

Algorithm: Arnoldi Iteration
given random nonzero b, let g1 = b/||b||
for k=1,2.3,...
v = Aqk
forj=1to k
hjk = qj’-*v
v =v — hjq;
b1k = [v]
Gk1 = V/ i1k

@ Question: What if g; happens to be an eigenvector?
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QR Factorization of Krylov Matrix

@ The vector g; from Arnoldi are orthonormal bases of successive Krylov
subspaces

’Ck = <baAb7"‘7Ak71b> = <CI1,CI27- "?qk> - (Cna

assuming hyi1x # 0
@ Q@ is reduced QR factorization K, = Qx Ry of Krylov matrix

Ki= 1| b| Ab | --- | A1p

@ However, K and Ry are not formed explicitly; forming them explicitly
would be unstable and can suffer from overflow and underflow
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Projection onto Krylov Subspaces

@ Arnoldi process computes projections of A onto successive Krylov
subspaces

Hi = QAQx
because AQx = Quy1Hk, Hy = Qi 1AGQk, and Hy = Fik1k
@ Hjy can be interpreted as orthogonal projection of A onto K in the
basis {q1, g2, ..., gk}, restricting mapping A: C" — C" to
Hi : K — K. This kind of projection is known as Rayleigh-Ritz
procedure

o Arnoldi iteration is useful as

@ basis for iterative algorithms (such as GMRES, to be discussed later)
@ technique for estimating eigenvalues of nonhermitian matrices

o Caution: eigenvalues of nonmormal matrices may have little to do
with physical system, since eigenvalues of such equations are
ill-conditioned. When such problems arise, the original problem is
mostly likely posed improperly
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Estimating Eigenvalues by Arnoldi Iteration

@ Diagonal entries of Hy are Rayleigh quotients of A w.r.t. vectors g;

® H is “generalized Rayleigh quotient” w.r.t Qx, whose eigenvalues {6;}
are called Arnoldi estimates or Ritz values w.r.t. Ky of A

@ Ritz vectors corresponds to 0; are Qyy;, where Hyy; = 0;y;

To use Arnoldi iteration to estimate eigenvalues, compute eigenvalues
of H, at kth step

When k = n, Ritz values are eigenvalues

In general, k < n, so we can estimate only a few eigenvalues

Which eigenvalues? Typically, it finds extreme eigenvalues first

In many applications, extreme eigenvalues are of main interests

» Stability analysis typically requires estimating spectral radius
» Principal component analysis requires estimating largest eigenvalues
and corresponding eigenvectors of AT A
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Invariance Properties of Arnoldi Iteration

Theorem
Let the Arnoldi iteration be applied to matrix A € C"*" as described above.

Translation invariance. If A is changed to A+ ol for some o € C, and b is
unchanged, then Ritz values {6;} change to {0; + c}.

Scale invariance. If A is changed to oA for some o € C, and b is
unchanged, then {6;} change to {c6;}.

Invariance under unitary similarity transformation. If A is changed to

UAU* for some unitary matrix U, and b is changed to Ub,
then {6;} do not change.

In all three cases, the Ritz vectors, namely Qyyy corresponding to
eigenvectors y; of Hy do not change under indicated transformation.
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Convergence of Arnoldi Iteration

o If A has n distinct eigenvalues, Arnoldi iteration finds them all in n
steps

@ Under certain circumstances, convergence of some Arnoldi estimates is
geometric (i.e., linear), and it accelerates in later iterations

@ However, these matters are not yet fully understood

DR

L n
0 25 50

Example convergence of extreme Arnoldi eigenvalue estimation.
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© Lanczos Iterations (NLA§36)
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Lanczos Iteration for Symmetric Matrices

o For symmetric A, Hy and Hy in Arnoldi iteration are tridiagonal

o We denote them by Te and Ty, respectively. Let o = hy, and

Bk = hikt1.k = hi k41

o AQy = Qk+1l:lk can then be written as three-term recurrence

Aqk = Brk—19k—1 + ok + Brqr+1

where «; are diagonal entries and 3; are sub-diagonal entries of T

Ty =

a1 B
fr a2
B2

B2

as

Br-1

Bk—1 ok

@ Arnoldi iteration for symmetric matrices is known as Lanczos iteration
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Algorithm of Lanczos Iteration

Algorithm: Lanczos lteration
Bo=0,g0=0
given random b, let g1 = b/||b||
for k=1,2,3,...
v = Agk
Qak = gkv
V=v— Bk_1Gk—1 — Gk
B = v
Gk+1 = v/ Bk

@ Each step consists of matrix-vector multiplication, an inner product,
and a couple of vector operations

o This is particularly efficient for sparse matrices. In practice, Lanczos
iteration is used to compute eigenvalues of large symmetric matrices

o Like Arnoldi iteration, Lanczos iteration is useful as

@ basis for other iterative algorithms (such as conjugate gradient)
@ technique for estimating eigenvalues of Hermitian matrices
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Estimating Eigenvalues by Lanczos Iterations

@ For symmetric matrices with evenly spaced eigenvalues, Ritz values
tend to first convert to extreme eigenvalue.

Ritz
values 2

)

ok

f
!

L
o

step
number n

L
0 5 10 15

Ritz values for first 20 steps for Lanczos iteration applied to example 203 x 203
matrix. Convergence of extreme eigenvalues is geometric.
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Effect of Rounding Errors

@ Rounding errors have complex effects on Lanczos iteration and all
iterations based on three-term recurrence

@ Rounding errors cause loss of orthogonality of g1, g, ..., g«

» In Arnoldi iteration, vectors g1, g2, ..., gk are enforced to be
orthogonal by explicit modified Gram-Schmidt orthogonalization, which
suffer some but not as much loss of orthogonality

» In Lanczos iteration, orthogonality of g;, gqj—1 and gj_» are “enforced”,
but orthogonality of g; with g;_3,..., q; are “automatic”, based on
mathematical identities

» In practice, such mathematical identities are not accurately preserved in
the presence of rounding errors

@ In practice, periodic re-orthogonalization of Qi is sometimes used to
alleviate effect of rounding errors
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Rounding Errors and Ghost Eigenvalues

e With rounding errors, Lanczos iteration can suffer from loss of
orthogonality and can in turn lead to spurious “ghost” eigenvalues

W L T LT

values

)
T
L

) step
0 40 80 120 number n

Continuation to 120 steps of Lanczos iteration. Numbers indicate multiplicities of
Ritz values. 4 “ghost” copies of 3.0 and 2 “ghost” copies of 2.5 appear.
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Explanation of Ghost Eigenvalues

@ Intuitive explanation of ghost eigenvalues

» Convergence of Ritz value annihilates corresponding eigenvector
components in the vector being operated upon
» With rounding errors, random noise re-introduce and excite those

components again
@ We cannot trust multiplicities of Ritz values as those of eigenvalues
@ Nevertheless, Lanczos iteration can still be very useful in practice

» E.g., in PCA for dimension reduction in data analysis, one needs to find
leading singular values and corresponding singular vectors of A.

» One standard approach is to apply Lanczos iteration to AT A or AAT
without forming the product explicitly, and then use Ritz vectors to
approximate singular vectors
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