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Outline

1 Krylov Subspace and Arnoldi Iterations (NLA�32-33)

2 Lanczos Iterations (NLA�36)
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Krylov Subspace Methods

Given A and b, Krylov subspace

{b,Ab,A2b, . . . ,Ak−1b}

linear systems eigenvalue problems

Hermitian CG Lanczos

Nonhermitian GMRES, BiCG, etc. Arnoldi

CG, GMRES etc. are Krylov subspace methods for solving sparse

linear systems (later)

Lanczos and Arnoldi iterations are Krylov subspace methods for

reduction to Hessenberg form
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Review: Reduction to Hessenberg Form

General A: First convert to upper-Hessenberg form, then to upper
triangular


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


A6=A∗

Phase 1−−−−→


× × × × ×
× × × × ×

× × × ×
× × ×

× ×


upper-Hessenberg

Phase 2−−−−→


× × × × ×

× × × ×
× × ×

× ×
×


triangular

Hermitian A: First convert to tridiagonal form, then to diagonal


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


A=A∗

Phase 1−−−−→


× ×
× × ×

× × ×
× × ×

× ×


tridiagonal

Phase 2−−−−→


×

×
×

×
×


diagonal

In general, phase 1 is direct and requires O(n3) �ops
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Arnoldi Iteration

The Arnoldi iteration reduces a general, nonsymmetric matrix A to

Hessenberg form by similarity transformation A = QHQ∗

It is analogous to Gram-Schmidt-style iteration instead of Householder

re�ections

Let Qk = [q1 | q2 | · | qk ] be n × k matrix with �rst k columns of Q

and H̃k be (k + 1)× k upper-left section of H, i.e., H̃k = H1:k+1,1:k

Consider �rst k columns of AQ = QH, or AQk = QH:,1:k = Qk+1H̃k A


︸ ︷︷ ︸

A

 q1

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣
qk


︸ ︷︷ ︸

Q
k

=

 q1

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣
qk+1


︸ ︷︷ ︸

Q
k+1


h11 · · · h1k
h21

.

.

.

.

.

.

hk+1,k


︸ ︷︷ ︸

H̃
k

Question: How do we choose q1?
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Arnoldi Algorithm

Start with a random q1, then determine q2 and H̃1, and so on

The kth columns of AQk = Qk+1H̃k can be written as

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1

where hik = q∗i Aqk .

Algorithm: Arnoldi Iteration

given random nonzero b, let q1 = b/‖b‖
for k =1, 2, 3, . . .

v = Aqk

for j = 1 to k

hjk = q∗j v
v = v − hjkqj

hk+1,k = ‖v‖
qk+1 = v/hk+1,k

Question: What if q1 happens to be an eigenvector?
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QR Factorization of Krylov Matrix

The vector qj from Arnoldi are orthonormal bases of successive Krylov

subspaces

Kk =
〈
b,Ab, . . . ,Ak−1b

〉
= 〈q1, q2, . . . , qk〉 ⊆ Cn,

assuming hk+1,k 6= 0

Qk is reduced QR factorization Kk = QkRk of Krylov matrix

Kk =

 b

∣∣∣∣∣∣∣∣∣∣
Ab

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣
Ak−1b


However, Kk and Rk are not formed explicitly; forming them explicitly

would be unstable and can su�er from over�ow and under�ow
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Projection onto Krylov Subspaces

Arnoldi process computes projections of A onto successive Krylov

subspaces

Hk = Q∗
kAQk

because AQk = Qk+1H̃k , H̃k = Q∗
k+1AQk , and Hk = H̃1:k,1:k

Hk can be interpreted as orthogonal projection of A onto Kk in the

basis {q1, q2, . . . , qk}, restricting mapping A : Cn → Cn to

Hk : Kk → Kk . This kind of projection is known as Rayleigh-Ritz

procedure

Arnoldi iteration is useful as

1 basis for iterative algorithms (such as GMRES, to be discussed later)
2 technique for estimating eigenvalues of nonhermitian matrices

Caution: eigenvalues of nonmormal matrices may have little to do

with physical system, since eigenvalues of such equations are

ill-conditioned. When such problems arise, the original problem is

mostly likely posed improperly
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Estimating Eigenvalues by Arnoldi Iteration

Diagonal entries of Hk are Rayleigh quotients of A w.r.t. vectors qi

Hk is �generalized Rayleigh quotient� w.r.t Qk , whose eigenvalues {θj}
are called Arnoldi estimates or Ritz values w.r.t. Kk of A

Ritz vectors corresponds to θj are Qkyj , where Hkyj = θjyj

To use Arnoldi iteration to estimate eigenvalues, compute eigenvalues

of Hk at kth step

When k = n, Ritz values are eigenvalues

In general, k � n, so we can estimate only a few eigenvalues

Which eigenvalues? Typically, it �nds extreme eigenvalues �rst

In many applications, extreme eigenvalues are of main interests

I Stability analysis typically requires estimating spectral radius
I Principal component analysis requires estimating largest eigenvalues

and corresponding eigenvectors of ATA
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Invariance Properties of Arnoldi Iteration

Theorem

Let the Arnoldi iteration be applied to matrix A ∈ Cn×n as described above.

Translation invariance. If A is changed to A+ σI for some σ ∈ C, and b is

unchanged, then Ritz values {θj} change to {θj + σ}.
Scale invariance. If A is changed to σA for some σ ∈ C, and b is

unchanged, then {θj} change to {σθj}.
Invariance under unitary similarity transformation. If A is changed to

UAU∗ for some unitary matrix U, and b is changed to Ub,

then {θj} do not change.

In all three cases, the Ritz vectors, namely Qkyk corresponding to

eigenvectors yj of Hk do not change under indicated transformation.
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Convergence of Arnoldi Iteration

If A has n distinct eigenvalues, Arnoldi iteration �nds them all in n

steps

Under certain circumstances, convergence of some Arnoldi estimates is

geometric (i.e., linear), and it accelerates in later iterations

However, these matters are not yet fully understood
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Example convergence of extreme Arnoldi eigenvalue estimation.
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Outline

1 Krylov Subspace and Arnoldi Iterations (NLA�32-33)

2 Lanczos Iterations (NLA�36)
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Lanczos Iteration for Symmetric Matrices

For symmetric A, H̃k and Hk in Arnoldi iteration are tridiagonal

We denote them by T̃k and Tk , respectively. Let αk = hkk and

βk = hk+1,k = hk,k+1

AQk = Qk+1H̃k can then be written as three-term recurrence

Aqk = βk−1qk−1 + αkqk + βkqk+1

where αi are diagonal entries and βi are sub-diagonal entries of T̃k

Tk =


α1 β1
β1 α2 β2

β2 α3
. . .

. . .
. . . βk−1

βk−1 αk


Arnoldi iteration for symmetric matrices is known as Lanczos iteration
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Algorithm of Lanczos Iteration

Algorithm: Lanczos Iteration

β0 = 0, q0 = 0

given random b, let q1 = b/‖b‖
for k = 1, 2, 3, . . .

v = Aqk

αk = qkv

v = v − βk−1qk−1 − αkqk

βk = ‖v‖
qk+1 = v/βk

Each step consists of matrix-vector multiplication, an inner product,

and a couple of vector operations

This is particularly e�cient for sparse matrices. In practice, Lanczos

iteration is used to compute eigenvalues of large symmetric matrices

Like Arnoldi iteration, Lanczos iteration is useful as
1 basis for other iterative algorithms (such as conjugate gradient)
2 technique for estimating eigenvalues of Hermitian matrices
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Estimating Eigenvalues by Lanczos Iterations

For symmetric matrices with evenly spaced eigenvalues, Ritz values

tend to �rst convert to extreme eigenvalue.
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Ritz values for �rst 20 steps for Lanczos iteration applied to example 203× 203
matrix. Convergence of extreme eigenvalues is geometric.
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E�ect of Rounding Errors

Rounding errors have complex e�ects on Lanczos iteration and all

iterations based on three-term recurrence

Rounding errors cause loss of orthogonality of q1, q2, . . . , qk

I In Arnoldi iteration, vectors q1, q2, . . . , qk are enforced to be
orthogonal by explicit modi�ed Gram-Schmidt orthogonalization, which
su�er some but not as much loss of orthogonality

I In Lanczos iteration, orthogonality of qj , qj−1 and qj−2 are �enforced�,
but orthogonality of qj with qj−3, . . . , q1 are �automatic�, based on
mathematical identities

I In practice, such mathematical identities are not accurately preserved in
the presence of rounding errors

In practice, periodic re-orthogonalization of Qk is sometimes used to

alleviate e�ect of rounding errors
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Rounding Errors and Ghost Eigenvalues

With rounding errors, Lanczos iteration can su�er from loss of

orthogonality and can in turn lead to spurious �ghost� eigenvalues
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Continuation to 120 steps of Lanczos iteration. Numbers indicate multiplicities of
Ritz values. 4 �ghost� copies of 3.0 and 2 �ghost� copies of 2.5 appear.
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Explanation of Ghost Eigenvalues

Intuitive explanation of ghost eigenvalues

I Convergence of Ritz value annihilates corresponding eigenvector
components in the vector being operated upon

I With rounding errors, random noise re-introduce and excite those
components again

We cannot trust multiplicities of Ritz values as those of eigenvalues

Nevertheless, Lanczos iteration can still be very useful in practice

I E.g., in PCA for dimension reduction in data analysis, one needs to �nd
leading singular values and corresponding singular vectors of A.

I One standard approach is to apply Lanczos iteration to ATA or AAT

without forming the product explicitly, and then use Ritz vectors to
approximate singular vectors
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