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Krylov Subspace Algorithms

Create a sequence of Krylov subspaces for Ax = b

Kk = {b,Ab, . . . ,Ak−1b}

and �nd an �optimal� solutions xk in Kk at kth step

Only matrix-vector products involved

For SPD matrices, the most famous method is Conjugate Gradient

(CG) method discovered by Hestenes/Stiefel in 1952

I Finds best solution xk ∈ Kk in norm ‖x‖A ≡
√
xTAx

I Only requires storing 4 vectors (instead of k vectors) due to three-term
recurrence
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Motivation of Conjugate Gradients

If A ∈ Rn×n is SPD, then quadratic function

ϕ(x) =
1

2
xTAx − xTb

has unique minimum

Negative gradient of this function is residual vector

−∇ϕ(x) = b − Ax = r

so minimum is obtained precisely when Ax = b

Optimization methods have form

xk+1 = xk + αkpk

where pk is search direction and α is step length chosen to minimize
ϕ(xk + αkpk)

Line search parameter is αk = rTk pk/p
T
k Apk

In CG, pk is chosen to be A-conjugate (or A-orthogonal) to previous
search directions, i.e., pTk Apj = 0 for j < k
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Conjugate Gradient Method

Algorithm: Conjugate Gradient Method

x0 = 0, r0 = b, p0 = r0
for k = 1, 2, 3, . . .

αk = (rTk−1rk−1)/(pTk−1Apk−1) step length

xk = xk−1 + αkpk−1 approximate solution
rk = rk−1 − αkApk−1 residual
βk = (rTk rk)/(rTk−1rk−1) improvement this step

pk = rk + βkpk−1 search direction

Only one matrix-vector product Apk−1 per iteration

Apart from matrix-vector product, #�ops per iteration is O(n)

If A is sparse with constant number of nonzeros per row, O(n)
operations per iteration

CG can be viewed as minimization of quadratic function
ϕ(x) = 1

2
xTAx − xTb by modifying steepest descent
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An Alternative Interpretation of CG

Algorithm: CG

x0 = 0, r0 = b, p0 = r0
for k = 1, 2, 3, . . .
αk = (rTk−1rk−1)/(pTk−1Apk−1)

xk = xk−1 + αkpk−1
rk = rk−1 − αkApk−1
βk = (rTk rk)/(rTk−1rk−1)

pk = rk + βkpk−1

Algorithm: A non-standard CG

x0 = 0, r0 = b, p0 = r0
for k = 1, 2, 3, . . .
αk = rTk−1pk−1/(pTk−1Apk−1)

xk = xk−1 + αkpk−1
rk = b − Axk
βk = −rTk Apk−1/(pTk−1Apk−1)

pk = rk + βkpk−1

The non-standard one is less e�cient but easier to understand

It is easy to see rk = rk−1 − αkApk−1 = b − Axk
We need to show:

I αk minimizes ϕ along search direction pk
I αk and βk are equivalent to those in standard CG
I Minimizing ϕ along pk also minimizes ϕ within Krylov subspace
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Optimality of Step Length

Select step length αk over vector pk−1 to minimize

ϕ(x) = 1
2
xTAx − xTb

Let xk = xk−1 + αkpk−1,

ϕ(αk) =
1

2
(xk−1 + αkpk−1)TA(xk−1 + αkpk−1)− (xk−1 + αkpk−1)Tb

=
1

2
α2kp

T
k−1Apk−1 + αkp

T
k−1Axk−1 − αkpTk−1b + constant

=
1

2
α2kp

T
k−1Apk−1 − αkpTk−1rk−1 + constant

Therefore,

dϕ

dαk
= 0⇒ αkp

T
k−1Apk−1 − pTk−1rk−1 = 0⇒ αk =

pTk−1rk−1

pTk−1Apk−1
.

In addition, pTk−1rk−1 = rTk−1rk−1 because pk−1 = rk−1 + βkpk−2 and

rTk−1pk−2 = 0 due to the following theorem.
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Krylov Subspace in Conjugate Gradient

Theorem (Theorem 38.1 in NLA p. 295)

If rk−1 6= 0, spaces spanned by approximate solutions xk , search directions

pk , and residuals rk are all equal to Krylov subspaces

Kk = 〈x1, x2, . . . , xk〉 = 〈p0, p1, . . . , pk−1〉
= 〈r0, r1, . . . , rk−1〉 = 〈b,Ab, . . . ,Ak−1b〉

The residuals are orthogonal (i.e., rTk rj = 0 for j < k) and search directions

are A-conjugate (i.e, pTk Apj = 0 for j < k).

This theorem implies that

αk = (rTk−1rk−1)/(pTk−1Apk−1) = rTk−1pk−1/(pTk−1Apk−1)

and

βk =
rTk rk

rTk−1rk−1
=

rTk (rk−1 − αkApk−1)

rTk−1rk−1
= −

rTk Apk−1

pTk−1Apk−1
.
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Proof of Properties of CG
Prove based on notation of standard CG.

Proof of equality of subspaces by simple induction.

To prove rTk rj = 0, note that rk = rk−1 − αkApk−1 and
(Apk−1)T = pTk−1A, so

rTk rj = (rk−1 − αkApk−1)T rj = rTk−1rj − αkpTk−1Arj .

I If j < k − 1, then both terms on right are zero by induction.
I If j = k − 1, plug in αk = (rTk−1

rk−1)/(pTk−1
Apk−1)

rTk−1
rj − αkpTk−1

Arj = rTk−1
rk−1 − rTk−1

rk−1

pTk−1
Ark−1

pTk−1
Apk−1

,

which is zero because

pTk−1
Apk−1 = pTk−1

A(rk−1 + βkpk−2) = pTk−1
Ark−1

by induction hypothesis.
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Proof Cont'd

To prove pTk Apj = 0, note that pk = rk + βkpk−1, so

pTk Apj = rTk Apj + βkp
T
k−1Apj .

I If j < k − 1, then both terms on right are zero by induction.
I If j = k − 1, plug in βk = (rTk rk)/(rTk−1

rk−1),

rTk Apj + βkp
T
k−1

Apj = rTk Apk−1 +
1

αk
rTk rk

=
1

αk
rTk (rk + αkApk−1)

=
1

αk
rTk rk−1

= 0.
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Relationship with Lanczos Iteration
CG and Lanczos iteration are essentially the same process

In CG, let b be right-hand side of Ax = b

Kk = 〈x1, x2, . . . , xk〉 = 〈p0, p1, . . . , pk−1〉
= 〈r0, r1, . . . , rk−1〉 = 〈b,Ab, . . . ,Ak−1b〉

In Lanczos iteration for A ∈ Rn×n, starting from q1 = b/‖b‖

AQk = Qk+1T̃k , (1)

where T̃k is (k + 1)× k ; Qk is composed of orthonormal basis of Kk
If q1 is a multiple of r0 = b, then qi will be proportional to ri−1

In (1), T̃k =


α1 β1

β1 α2
. . .

. . .
. . . βk−1
βk−1 αk

βk
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Alternative Derivation Based on Lanczos Iteration

Let xk = Qkyk . Then,

rk = b − Axk = b − AQkyk = b − Qk+1T̃kyk

Let QT
k rk = QT

k

(
b − Qk+1T̃kyk

)
= 0 (i.e., rk ⊥ Kk), we obtain

QT
k Qk+1T̃kyk = QT

k b

where QT
k Qk+1T̃k = Tk and QT

k b = βe1 with β = ‖b‖
Hence,

Tkyk = βe1 (2)

where Tk = QT
k AQk is tridiagonal, and is SPD if A is SPD

It takes O(1) �ops to update Cholesky factorization of Tk and then
O(k) �ops to solve (2). Resulting algorithm is equivalent to CG
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Termination in Exact Arithmetic

Theorem (Theorem 11.3.1 in MC p. 629)

If k∗ is dimension of smallest invariant space that contains r0, then CG

terminates in k∗ steps in exact arithmetic.

A subspace S is invariant w.r.t. to A if for any v ∈ S, Av ∈ S

Proof.

r0 = b can be written as a linear combination of k∗ eigenvectors of A,
{v1, v2, . . . , vk∗}, so is x∗ = A−1b (since A is diagonalizable).
At step k = k∗, dim(Kk∗) = k∗, and {v1, v2, . . . , vk∗} form a basis of Kk∗ ,
and hence x∗ ∈ Kk∗ .
If x∗ ∈ Kk for k < k∗, dim(Kk) = k < k∗, then r0 would have been
contained in a lower-dimensional invariant space. Contradiction.

If A has s distinct eigenvalues, CG converges in ≤ s iterations.
With rounding errors, we may not get exact x∗ after k∗ iterations
In addition, we may want to terminate sooner than k∗ iterations
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Optimality of Conjugate Gradients

Theorem (Theorem 38.2 in NLA p. 296)

If rk−1 6= 0, then error ek = x∗ − xk is minimized in A-norm in Kk .

Proof.

Consider arbitrary point x = xk −∆x ∈ Kk with error
e = x∗ − x = ek + ∆x . So

‖e‖2A = (ek + ∆x)T A (ek + ∆x)

= eTk Aek + ∆xTA∆x + 2eTk A∆x ,

where eTk A∆x = rTk ∆x = 0 because rk ⊥ Kk . Since A is SPD,
‖e‖2A ≥ ‖ek‖2A and equality holds i� ∆x = 0.

Because Kk grows monotonically, ‖ek‖A decreases monotonically

Note: A-norm is de�ned as ‖x‖A =
√
xTAx , assuming A is SPD. It is

di�erent from weighted norm ‖x‖W = ‖Wx‖
Xiangmin Jiao Numerical Analysis I 16 / 17



Convergence Rate with Rounding Errors

If A has 2-norm condition number κ, error is bounded by

‖ek‖A
‖e0‖A

≤ 2

(√
κ− 1√
κ+ 1

)k

Proof is based on analysis of matrix polynomials

I CG minimizes ‖pk(A)e0‖A at kth step, with e0 = x∗, where pk is
degree-k polynomial pk(x) = 1 + c1x + c2x

2 + · · ·+ ckx
k

I ‖ek‖A/‖e0‖A ≤ infpk maxλ |pk(λ)|, where λ are eigenvalues of A, which
is further bounded using theory of orthogonal polynomials

2
(√

κ−1√
κ+1

)k
≈ 2

(
1− 2√

κ

)k
for large κ, so CG takes up to O(

√
κ)

iterations

In general, CG performs well with clustered eigenvalues
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