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Krylov Subspace Algorithms

o Create a sequence of Krylov subspaces for Ax = b
Ky ={b,Ab,... Ak"1p}

and find an “optimal” solutions xx in I at kth step
@ Only matrix-vector products involved

@ For SPD matrices, the most famous method is Conjugate Gradient
(CG) method discovered by Hestenes/Stiefel in 1952

» Finds best solution x, € K in norm [|x][a = VxT Ax
» Only requires storing 4 vectors (instead of k vectors) due to three-term
recurrence
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Motivation of Conjugate Gradients

o If Ae R"™"is SPD, then quadratic function
1
o(x) = EXTAX —xTh

has unique minimum
o Negative gradient of this function is residual vector

—Vo(x)=b—Ax=r

so minimum is obtained precisely when Ax = b
@ Optimization methods have form

Xk+1 = Xk + Pk

where py is search direction and « is step length chosen to minimize
o(xk + axpk)

o Line search parameter is oy = r,] px/p] Apk

@ In CG, py is chosen to be A-conjugate (or A-orthogonal) to previous
search directions, i.e., p,Z—Apj =0forj <k
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Conjugate Gradient Method

Algorithm: Conjugate Gradient Method

X():O, r0:b, PO = h

for k=1,2,3,...
ak = (rl 1re-1)/(p]_1Apk-1) step length
Xk = Xk—1 + QxPr—_1 approximate solution
ry = rg—1 — OékApk_l residual
B = (rf rk)/(r] 1rk—1) improvement this step
Pk = r + Brpr—1 search direction

Only one matrix-vector product Apy_1 per iteration

Apart from matrix-vector product, #flops per iteration is O(n)

If A is sparse with constant number of nonzeros per row, O(n)
operations per iteration

CG can be viewed as minimization of quadratic function

¢(x) = 3xT Ax — xT b by modifying steepest descent
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An Alternative Interpretation of CG

Pk = rk + BkPk—1

Algorithm: CG Algorithm: A non-standard CG
XoZO,I’o:b,p():ro XoZO,I’o:b,pQZI‘o
for k=1,2,3,... for k=1,2,3,...
ag = (rd_yr—1)/(P{_1 Apk—1 ok = r_1pk—1/(P{_1APk-1)
Xk = Xk—1 + Qg Pr—1 Xk = Xk—1 T Q) Pk—1
rk = rk—1 — QkApg_1 rk = b — Axg
B = (r )/ (r]_yre1) Bk = —r Apk—1/(p{_1 Apk-1)
Pk = rk + BrpPr—1

@ The non-standard one is less efficient but easier to understand

@ It is easy to see ry = rx_1 — aApx—1 = b — Ax

@ We need to show:

> «y minimizes ¢ along search direction py
» «y and (i are equivalent to those in standard CG
» Minimizing ¢ along pi also minimizes ¢ within Krylov subspace
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Optimality of Step Length

@ Select step length ay over vector py_; to minimize
o(x) = ixTAx —xTh
o Let xx = xk—1 + akpr-1,

1
olar) = = (xk_1 + pr—1) TAGx—1 + akpr_1) — (xk—1 + axpk_1)T b

2
1
= Eaika_lApk_l + oyupl_{Axk_1 — ayp/_1b + constant
1
= Eaip,;’llApk,l — agpy_1rk—1 + constant
@ Therefore,
dp T T P/Z-_1rk71
—— =0= upy_1APk—1 — Ppo1k-1 = 0= = .
doy Pl Apk—1

@ In addition, ka_lrk_l = rkT_lrk_l because px_1 = rk—1 + Bixpk—> and
rkT_lpk,z = 0 due to the following theorem.
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Krylov Subspace in Conjugate Gradient
Theorem (Theorem 38.1 in NLA p. 295)

If re_1 # 0, spaces spanned by approximate solutions xy, search directions
Pk, and residuals ry are all equal to Krylov subspaces

Ki = (x1,x2,...,xk) = (Po, P1s- - -+ Pk—1)
= (ro, My yrk—1) = (b, Ab, ..., AkK=1h)

The residuals are orthogonal (i.e., rl rj =0 for j < k) and search directions
are A-conjugate (i.e, pZ—Apj =0 forj < k).

V.

This theorem implies that

ak = (n_1r—1)/(Pi_1APk-1) = r{_1pk—1/(Pd_1APk—1)

and
T T T
3 Me Tk Ty (rk—1 — axApk-1) re APk—1
e 17k—1 e _1Mk—1 pkflApk—l
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Proof of Properties of CG
Prove based on notation of standard CG.
@ Proof of equality of subspaces by simple induction.

@ To prove r,;rrj =0, note that r, = ry_1 — axApk_1 and

(Apk—1)T = p[_1A so
-
rkT”j = (rk—1 — Apk_1) rp= rkT_lrj — akka_lArj.
» If j < k — 1, then both terms on right are zero by induction.
> If j=k—1, plug in ax = (r]_yr—1)/(P{_1APk-1)

-
Pi_1Ark—1

T T _ T T
M1t — QkPg_1 Al = Ne_q M1 — rk—lrk—lp'r Apr1
k—1 -1

which is zero because

pl_1Apk—1 = p{_1A(rk—1 + Bkpx—2) = py_1Ark_1

by induction hypothesis.
T



Proof Cont'd

e To prove p/ Ap; = 0, note that px = rx + Bkpi_1, SO
k AP

pi Apj = r{ Apj + Bkpi_1Ap;-

» If j < k — 1, then both terms on right are zero by induction.
» If j=k—1, plugin Bk = (r] r)/(r]_1re—1),

1
r¢ Apj + Bipi—1Ap; = 1 Api—1 + a—kfkak

1
= —rl(r + axApi_1)
Qg

1
-
= —r k-1
(673

=0.
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Relationship with Lanczos Iteration
CG and Lanczos iteration are essentially the same process
@ In CG, let b be right-hand side of Ax = b

Kk = (%2, -, x) = (po, p1, - - -, Pk—1)
= (ro,n,...,rk_1) = (b, Ab,..., Ak_1b>
@ In Lanczos iteration for A € R™ ", starting from q1 = b/||b||
AQi = Qi1 Tk, (1)

where Tj is (k+ 1) x k; Qk is composed of orthonormal basis of Ky
o If g1 is a multiple of ry = b, then ¢; will be proportional to rj_;

ar B
3 fr
@ In (1), Tk = Bk—l
Br-1
i Bk
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Alternative Derivation Based on Lanczos lteration

o Let x, = Qryk. Then,
rk =b—Axx =b— AQkyk = b — Qx11 7-k)/k
o Let Q,Z—rk = Q,Z— (b — Qks1 Tkyk) =0 (i.e., rx L K), we obtain

QF QuirTuyk = Qb

where Q] Qx1Tx = Ty and Q] b = Be; with 8 = | b]|
@ Hence,
Tkyx = Ber (2)
where T = QkTAQk is tridiagonal, and is SPD if A is SPD

o It takes O(1) flops to update Cholesky factorization of T, and then
O(k) flops to solve (2). Resulting algorithm is equivalent to CG
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Termination in Exact Arithmetic
Theorem (Theorem 11.3.1 in MC p. 629)

If k. is dimension of smallest invariant space that contains ry, then CG
terminates in k, steps in exact arithmetic.

o A subspace S is invariant w.r.t. to Aifforanyve S, Ave S

Proof.
ro = b can be written as a linear combination of k, eigenvectors of A,
{vi,va,..., v}, 50 is x. = A71b (since A is diagonalizable).

At step k = ky, dim(KCx,) = ki, and {v1, va,..., v, } form a basis of Iy,
and hence x, € Iy, .

If x, € KCx for k < ki, dim(fCx) = k < k., then ry would have been
contained in a lower-dimensional invariant space. Contradiction. Ol

@ If A has s distinct eigenvalues, CG converges in < s iterations.
e With rounding errors, we may not get exact x, after k, iterations
@ In addition, we may want to terminate sooner than k, iterations
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Optimality of Conjugate Gradients

Theorem (Theorem 38.2 in NLA p. 296)

If re_1 # 0, then error e, = xx — X is minimized in A-norm in Ky.
Proof.

Consider arbitrary point x = x;, — Ax € Ky with error
e =Xy — x = ¢+ Ax. So

lelld = (ex + Ax)T A(ex + Ax)
= ¢/ Aey + AxT AAx + 2¢] AAx,

where e,Z—AAx = rkTAx = 0 because r, L K. Since A is SPD,
lell% > llexl|% and equality holds iff Ax = 0.

@ Because Ky grows monotonically, ||ex| 4 decreases monotonically

o Note: A-norm is defined as ||x||a = VxT Ax, assuming A is SPD. It is
different from weighted norm ||x||y = || Wx]|
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Convergence Rate with Rounding Errors

@ If A has 2-norm condition number &, error is bounded by

ex|la <2<\/E—1>k
leolla = \Vr+1

Proof is based on analysis of matrix polynomials

» CG minimizes ||px(A)eo|la at kth step, with g = x,, where py is
degree-k polynomial px(x) = 1+ c1x + cox? + - + cxx¥

> |lexlla/lleolla < infp, maxy [pk(A)|, where A are eigenvalues of A, which
is further bounded using theory of orthogonal polynomials

k k
2 (ﬁ;i) ~ 2 ( - ﬁ) for large k, so CG takes up to O(\/k)

iterations

In general, CG performs well with clustered eigenvalues

Xiangmin Jiao Numerical Analysis | 17 / 17



	CG as Optimization Method
	CG and Krylov Subspace
	Convergence Properties of CG

