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Stationary Iterative Methods

@ Stationary iterative methods can be interpreted as a fixed point
iteration obtained by matrix splitting.

o Let A= M — N and r, = b — Ax, we can obtain
Xkr1 = M7INx + M~1h (1)

Xk+1 = Xk + M_lrk (2)

o Different choices of splitting lead to various schemes
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Stationary lterative Methods

@ These iteration schemes work for a wide range of problems
@ They can often be implemented without forming the matrix explicitly.

@ However, they have slow convergence

Example

For 2D Poisson equation,
Spectral radius of Jacobi iteration matrix is cos (Z) ~ 1 — O ().
Number of iterations required to achieve ¢ is O(n?Ine™1).
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Stationary Iterative Methods
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After 5 Jacobi iterations on a Poisson equation, error decreases very slowly.
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Smoothing Effect

@ The reason behind this behavior is the smoothing property of
stationary iterative methods

@ This property is one of the theoretical foundations of multigrid
methods

@ To illustrate the idea we apply iterative methods to the homogeneous
system with initial guess vk

n

@ vy is chosen as(vk)j:sin(jk”), 1<k<n-1,1<j<n-1

(Fourier modes)
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Smoothing Effect

@ The modes in the lower half of the spectrum, with wavenumbers in
the range 1 < k < 5 are called low frequency or smooth modes.

@ The modes in the upper half of the spectrum, with 5 <k <n—1 are
called high frequency modes or oscillatory modes.
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Smoothing Effect

Weighted Jacobi applied on 1-D model problem with 64 points with initial
guess vq,v3 and vg
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Smoothing Effect
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Gauss Seidel applied on 1-D model problem with 64 points with initial
guess vi,v3 and vg
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Smoothing Effect

@ Oscillatory modes are eliminated quickly
@ Smooth modes remain relatively unchanged

@ Errors for the model problem can be decomposed using these Fourier
modes

o After several iterations, high frequency components will disappear and
the error becomes smooth
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Smoothing Effect
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If we project a smooth wave directly onto a coarser grid, it becomes more
oscillatory.
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Smoothing Effect

@ What does it imply?

@ If we can move the error to a coarser grid, iterations will be more
effective!

@ Even if the error does not become more oscillatory, relaxing on the
coarse grid is simply cheaper

@ We may consider using coarse grids
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Nested lteration

We can solve problems on coarse grids to obtain better initial guesses:

@ Relax Au = f on a very coarse grid Q8" to obtain an initial guess for
the next finer grid Q4"

@ Relax Au = f on grid Q*" to obtain an initial guess for Q2"
@ Relax Au = f on grid Q2" to obtain an initial guess for Q.

@ Relax Au = f on Q" to obtain a final approximation to the solution.
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Correction Scheme

@ From our previous observations, error becomes smooth after
relaxations.

@ If we move the error to a coarser grid, it becomes oscillatory and
iterations are effective

@ What problem should we be solving then?

@ The residual equation Ae = f — Av = r, where v is approximate
solution of u
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Correction Scheme

@ Why residual equation?

@ We want to relax the error directly since it becomes oscillatory on
coarse level

@ If we can solve the residual equation accurately then the real solution
u can be obtained by u = v + e.

@ Relaxation on the original equation Au = f with arbitrary initial guess
v is equivalent to relaxing on the residual equation Ae = r with
specific initial guess e = 0
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Two-Grid Correction Scheme

The basic form of the multigrid method is defined as the following two-grid
correction scheme [Briggs et al., Multigrid Tutorial]:

v MG (vh, fh)

@ Presmoothing: relax uq times on Ahu = £ on Q" with initial guess
g 1 g

vh.

@ Restriction: compute the fine-grid residual r" = f" — A"v" and
restrict it to the coarse grid by r2" = Rrh.

© Coarse Grid Solving: either solve AZhg2h — 2 o relax 143 times
with initial guess 0 on Q2"

@ Prolongation: interpolate the coarse-grid error to the fine grid by
e = Pe?h and correct the fine-grid approximation by v/ « v/ + ef.

© Postsmoothing: Relax po times on A"uf = £ on Q" with initial

guess v/

Xiangmin Jiao Numerical Analysis | 17 / 29



Presmoothing

Presmoothing: relax ;1 times on Ahu" = £ on Q" with initial guess v".

@ We apply 1 steps of iterations on the original linear system
@ This step is known as the presmoothing step

o After iterations errors e” will become smooth and it will appear
oscillatory on Q2"

o We then approximate the residual equation on Q2"
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Restriction

Restriction: compute the fine-grid residual r" = f" — Abvh and restrict it
to the coarse grid by r?" = Rrh.

@ We restrict the residual onto Q2"

@ Restriction operator can be chosen as injection vjzh = vzhj or

full-weighting ijh = %(vzhj_1 + 2v2hj + v2hj+1)
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w
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Figure: Restriction by full weighting
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Solving on coarse level

Coarse Grid Solving: either solve A%Me2h = r2h or relax p3 times with
g o

initial guess 0 on Q2.
o We obtain A%" by rediscretizing the PDE on Q2"
o A?he2h — r2h i an approximation of Afe = r on Q2h
o lterative methods are effective as e2" becomes oscillatory

@ lIterations are also cheaper as there are less grid points
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Prolongation

Prolongation: interpolate the coarse-grid error to the fine grid by
h = Pe?" and correct the fine-grid approximation by v < v/ + e”.

o After €2/ is obtained, we interpolate it back to Q" and update error.

@ Prolongation operator can be chosen as linear interpolation
h _ 2h h  _ 1(2h
Vo = Vi Voi = ( + V L)
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Figure: Prolongation by linear interpolation
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Postsmoothing

Postsmoothing: relax po times on A"uf = 7 on Q" with initial guess v/

@ We apply uo steps of iterations on the original linear system
@ This step is known as the postmoothing step

@ Errors will be further reduced
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Two-Grid Correction Scheme

e lteration on fine grid leaves smooth errors e and they appear to be
oscillatory on coarse grid as e?".

o Iteration on coarse grid then solve e effectively and €2/ will become
a good approximation of e/ after interpolation.

o Finally with the correction step v/ <— v/ 4 e/, we will obtain a
solution very close to u.

@ Errors which cannot be eliminated effectively by iterations are removed
by coarse grid correction.
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Toward Multigrids

@ In our description, we assume e>" on coarse level is solved accurately

@ Practically a few steps of iterations can not guarantee sufficient
accuracy of e?h
@ We may apply two-grid idea recursively on subsequent levels

@ We can recursively solve problems on coarser levels and use them as
initial guesses on fine levels
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V-cycle and Full Multigrid scheme
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Figure: V-cycle and FMG scheme
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Classical Algebraic Multigrid Method

@ Smooth errors are defined algebraically as ex11 ~ ex which leads us to
Ae=0

@ Define interpolation operator P

@ Coarsening is performed by a greedy maximum independent set
algorithm on weighted graph

@ Restriction is chosen as the transpose of interpolation and
Aoy = PTALP

@ Current AMG development focuses on improving coarsening strategy
and interpolation formula
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Numerical Results: Poisson Equation

@ Poisson equation discretized using third-order generalized finite
difference method. The resulting matrix is asymmetric

e Comparison of algebraic multigrid method, MATLAB's built in direct
solver and GMRES to problems of various sizes

y | AMG (TOL=10""9) | Direct Solver | GMRES(10) |

10 x 10 x 10 0.0081 seconds 0.0093 seconds | 0.020 seconds
20 x 20 x 20 0.081 seconds 0.21 seconds 0.28 seconds
40 x 40 x 40 0.95 seconds 8.14 seconds 7.15 seconds
80 x 80 x 80 11.79 seconds out of memory | 470.88 seconds
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Multigrid Software

@ hypre: A library of high-performance preconditioners with a focus on
multigrid methods. Developed by Lawrence Livermore National
Laboratory. [Website: https://computing.11lnl.gov/projects/
hypre-scalable-linear-solvers-multigrid-methods]

e ML (Multi-Level): Part of the Trilinos project, ML is a scalable
preconditioning library for solving large sparse linear systems, with a
focus on algebraic multigrid methods. [Website:
https://trilinos.github.io/ml.html]

e PyAMG (Python Algebraic Multigrid): A Python library
implementing various algebraic multigrid solvers and tools. Great for
integration with Python-based scientific computing stacks. [Website:
https://github.com/pyamg/pyamg]
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Further Reading

e Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A
Multigrid Tutorial (2nd ed.). SIAM. [An excellent resource for
understanding multigrid methods in detail.]

e Trottenberg, U., Oosterlee, C. W., & Schiiller, A. (2001). Multigrid.
Academic Press. [Provides a comprehensive overview of multigrid
techniques.]

e Hackbusch, W. (2013). Multi-Grid Methods and Applications.
Springer-Verlag. [Focuses on both the practical and theoretical
aspects of multigrid methods.]
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