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Stationary Iterative Methods

Stationary iterative methods can be interpreted as a fixed point
iteration obtained by matrix splitting.
Let A = M − N and rk = b − Axk we can obtain

xk+1 = M−1Nxk +M−1b (1)

xk+1 = xk +M−1rk (2)

Different choices of splitting lead to various schemes
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Stationary Iterative Methods

These iteration schemes work for a wide range of problems
They can often be implemented without forming the matrix explicitly.
However, they have slow convergence

Example
For 2D Poisson equation,
Spectral radius of Jacobi iteration matrix is cos

(
π
n

)
≈ 1− O

( 1
n2

)
.

Number of iterations required to achieve ϵ is O(n2 ln ϵ−1).
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Stationary Iterative Methods

After 5 Jacobi iterations on a Poisson equation, error decreases very slowly.
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Smoothing Effect

The reason behind this behavior is the smoothing property of
stationary iterative methods
This property is one of the theoretical foundations of multigrid
methods
To illustrate the idea we apply iterative methods to the homogeneous
system with initial guess vk

Au = 0

vk is chosen as (vk)j = sin
(
jkπ
n

)
, 1 ⩽ k ⩽ n − 1, 1 ⩽ j ⩽ n − 1

(Fourier modes)
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Smoothing Effect

The modes in the lower half of the spectrum, with wavenumbers in
the range 1 ⩽ k < n

2 are called low frequency or smooth modes.
The modes in the upper half of the spectrum, with n

2 ⩽ k ⩽ n − 1 are
called high frequency modes or oscillatory modes.

Xiangmin Jiao Numerical Analysis I 7 / 29



Smoothing Effect

Weighted Jacobi applied on 1-D model problem with 64 points with initial
guess v1,v3 and v6
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Smoothing Effect

Gauss Seidel applied on 1-D model problem with 64 points with initial
guess v1,v3 and v6
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Smoothing Effect

Oscillatory modes are eliminated quickly
Smooth modes remain relatively unchanged
Errors for the model problem can be decomposed using these Fourier
modes
After several iterations, high frequency components will disappear and
the error becomes smooth
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Smoothing Effect

If we project a smooth wave directly onto a coarser grid, it becomes more
oscillatory.
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Smoothing Effect

What does it imply?
If we can move the error to a coarser grid, iterations will be more
effective!
Even if the error does not become more oscillatory, relaxing on the
coarse grid is simply cheaper
We may consider using coarse grids
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Nested Iteration

We can solve problems on coarse grids to obtain better initial guesses:
Relax Au = f on a very coarse grid Ω8h to obtain an initial guess for
the next finer grid Ω4h.
Relax Au = f on grid Ω4h to obtain an initial guess for Ω2h.
Relax Au = f on grid Ω2h to obtain an initial guess for Ωh.
Relax Au = f on Ωh to obtain a final approximation to the solution.
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Correction Scheme

From our previous observations, error becomes smooth after
relaxations.
If we move the error to a coarser grid, it becomes oscillatory and
iterations are effective
What problem should we be solving then?
The residual equation Ae = f − Av = r , where v is approximate
solution of u
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Correction Scheme

Why residual equation?
We want to relax the error directly since it becomes oscillatory on
coarse level
If we can solve the residual equation accurately then the real solution
u can be obtained by u = v + e.
Relaxation on the original equation Au = f with arbitrary initial guess
v is equivalent to relaxing on the residual equation Ae = r with
specific initial guess e = 0
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Two-Grid Correction Scheme
The basic form of the multigrid method is defined as the following two-grid
correction scheme [Briggs et al., Multigrid Tutorial]:

vh ← MG
(
vh, f h

)
1 Presmoothing: relax µ1 times on Ahuh = f h on Ωh with initial guess

vh.
2 Restriction: compute the fine-grid residual rh = f h − Ahvh and

restrict it to the coarse grid by r2h = Rrh.
3 Coarse Grid Solving: either solve A2he2h = r2h or relax µ3 times

with initial guess 0 on Ω2h.
4 Prolongation: interpolate the coarse-grid error to the fine grid by

eh = Pe2h and correct the fine-grid approximation by vh ← vh + eh.
5 Postsmoothing: Relax µ2 times on Ahuh = f h on Ωh with initial

guess vh.
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Presmoothing

Presmoothing: relax µ1 times on Ahuh = f h on Ωh with initial guess vh.
We apply µ1 steps of iterations on the original linear system
This step is known as the presmoothing step
After iterations errors eh will become smooth and it will appear
oscillatory on Ω2h

We then approximate the residual equation on Ω2h
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Restriction

Restriction: compute the fine-grid residual rh = f h − Ahvh and restrict it
to the coarse grid by r2h = Rrh.

We restrict the residual onto Ω2h

Restriction operator can be chosen as injection v2h
j = vh2j or

full-weighting v2h
j = 1

4(v
h
2j−1 + 2vh2j + vh2j+1)

Figure: Restriction by full weighting
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Solving on coarse level

Coarse Grid Solving: either solve A2he2h = r2h or relax µ3 times with
initial guess 0 on Ω2h.

We obtain A2h by rediscretizing the PDE on Ω2h

A2he2h = r2h is an approximation of Aheh = rh on Ω2h

Iterative methods are effective as e2h becomes oscillatory
Iterations are also cheaper as there are less grid points
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Prolongation

Prolongation: interpolate the coarse-grid error to the fine grid by
eh = Pe2h and correct the fine-grid approximation by vh ← vh + eh.

After e2h is obtained, we interpolate it back to Ωh and update error.
Prolongation operator can be chosen as linear interpolation
vh2j = v2h

j , vh2j+1 = 1
2(v

2h
j + v2h

j+1)

Figure: Prolongation by linear interpolation
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Postsmoothing

Postsmoothing: relax µ2 times on Ahuh = f h on Ωh with initial guess vh.

We apply µ2 steps of iterations on the original linear system
This step is known as the postmoothing step
Errors will be further reduced
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Two-Grid Correction Scheme

Iteration on fine grid leaves smooth errors eh and they appear to be
oscillatory on coarse grid as e2h.
Iteration on coarse grid then solve e2h effectively and e2h will become
a good approximation of eh after interpolation.
Finally with the correction step vh ← vh + eh, we will obtain a
solution very close to u.
Errors which cannot be eliminated effectively by iterations are removed
by coarse grid correction.
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Toward Multigrids

In our description, we assume e2h on coarse level is solved accurately
Practically a few steps of iterations can not guarantee sufficient
accuracy of e2h

We may apply two-grid idea recursively on subsequent levels
We can recursively solve problems on coarser levels and use them as
initial guesses on fine levels
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V-cycle and Full Multigrid scheme

Figure: V-cycle and FMG scheme
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Classical Algebraic Multigrid Method

Smooth errors are defined algebraically as ek+1 ≈ ek which leads us to
Ae ≈ 0
Define interpolation operator P
Coarsening is performed by a greedy maximum independent set
algorithm on weighted graph
Restriction is chosen as the transpose of interpolation and
A2h = PTAhP

Current AMG development focuses on improving coarsening strategy
and interpolation formula
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Numerical Results: Poisson Equation

Poisson equation discretized using third-order generalized finite
difference method. The resulting matrix is asymmetric
Comparison of algebraic multigrid method, MATLAB’s built in direct
solver and GMRES to problems of various sizes

AMG
(
TOL = 10−10) Direct Solver GMRES(10)

10× 10× 10 0.0081 seconds 0.0093 seconds 0.020 seconds
20× 20× 20 0.081 seconds 0.21 seconds 0.28 seconds
40× 40× 40 0.95 seconds 8.14 seconds 7.15 seconds
80× 80× 80 11.79 seconds out of memory 470.88 seconds
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Multigrid Software

hypre: A library of high-performance preconditioners with a focus on
multigrid methods. Developed by Lawrence Livermore National
Laboratory. [Website: https://computing.llnl.gov/projects/
hypre-scalable-linear-solvers-multigrid-methods]
ML (Multi-Level): Part of the Trilinos project, ML is a scalable
preconditioning library for solving large sparse linear systems, with a
focus on algebraic multigrid methods. [Website:
https://trilinos.github.io/ml.html]
PyAMG (Python Algebraic Multigrid): A Python library
implementing various algebraic multigrid solvers and tools. Great for
integration with Python-based scientific computing stacks. [Website:
https://github.com/pyamg/pyamg]
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Further Reading

Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A
Multigrid Tutorial (2nd ed.). SIAM. [An excellent resource for
understanding multigrid methods in detail.]
Trottenberg, U., Oosterlee, C. W., & Schüller, A. (2001). Multigrid.
Academic Press. [Provides a comprehensive overview of multigrid
techniques.]
Hackbusch, W. (2013). Multi-Grid Methods and Applications.
Springer-Verlag. [Focuses on both the practical and theoretical
aspects of multigrid methods.]
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