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Announcement: Final Exam

Final exam will be accumulative, covering all the material from the
semester
About 50–60% will be on material after Test 2 (i.e., eigenvalue
problems and iterative methods, which are closely connected with
earlier materials, especially QR and SVD)
As usual, you can have a single-sided, one-page, letter-size
(8.5inx11in) cheat sheet
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Topics Covered in The Course

Fundamental concepts: norms, orthogonality, conditioning, stability
Least squares problems using direct methods (QR factorization)
Singular value decomposition, properties, and relationship with
eigenvalue problems
Eigenvalue problems, properties, and algorithms (QR algorithm and
Lanczos iterations)
Solving linear systems using direct (Gaussian elimination) and iterative
(Krylov subspace) methods
Conditioning of problems, stability and backward stability of algorithms
Efficiency of algorithms, convergence rate of iterative methods
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Matrix Properties and Transformations

Properties
▶ Hermitian (symmetric), skew symmetry, positive definite
▶ unitary (orthogonal), normal, (orthogonal and oblique) projection

matrix
▶ singular/nonsingular, defective/nondefective
▶ triangular, Hessenberg, tridiagonal, diagonal, Jordan-form, sparse

Transformations
▶ orthogonalization (Gram-Schmidt)
▶ triangularization (Gaussian elimination, Cholesky factorization,

Householder QR)
▶ reduction to Hessenberg or tridiagonal form
▶ similarity transformation and unitary similarity transformation (Schur

factorization)
▶ congruence transformation (preserves symmetry and inertia)
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Fundamental Algorithms

QR factorization using classical and modified Gram-Schmidt
QR factorization using Householder triangularization
Gaussian elimination with partial pivoting and Cholesky factorization
Reduction to Hessenberg/tridiagonal form for eigenvalue problems
QR algorithm with or without shifts for eigenvalue problems
Lanczos iterations and conjugate gradients
Do not need to memorize the details of the algorithms
Understand when they work, how they work, why they work, and how
well they work
Understand relationships among each other: how one transforms into
another, and to make an intelligent choice
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Eigenvalue Problem

Eigenvalue problem of m ×m matrix A is Ax = λx

Characteristic polynomial is det(A− λI )

Eigenvalue decomposition of A is A = XΛX−1 (does not always exist)
Geometric multiplicity of λ is dim(null(A− λI )), and algebraic
multiplicity of λ is its multiplicity as a root of pA, where algebraic
multiplicity ≥ geometric multiplicity
Similar matrices have the same eigenvalues, and algebraic and
geometric multiplicities
Schur decomposition A = QTQ∗ uses unitary similarity
transformations
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Eigenvalue Algorithms

Underlying concepts: power iterations, Rayleigh quotient, inverse
iterations, convergence rate
Schur decomposition is typically done in two steps

▶ Reduction to Hessenberg form for nonhermitian matrices or reduction
to tridiagonal form for hermitian matrices by unitary similarity
transformation

▶ Finding eigenvalues of Hessenberg or tridiagonal form

Finding eigenvalue of tridiagonal forms
▶ QR algorithm with shifts, and their interpretations as (inverse)

simultaneous iterations
▶ Others: Bisection and divide-and-conquer

Alternative method is Jacobi method for symmetric matrices using
Jacobi rotations
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Relationship between SVD and Eigenvalue Decomposition

SVD works for all matrices (even rectangular matrices), but eigenvalue
decomposition (i.e., diagonalization) works only for nondefective
square matrices
Singular vectors are always orthonormal and singular values are always
real, while eigenvectors may not be orthogonal and eigenvalues may be
complex numbers
For normal matrices, singular values and eigenvalues are particularly
closely related, which make them particularly powerful analytical tools

Xiangmin Jiao (SUNY Stony Brook) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)8 / 9



Iterative Methods

Advantages and disadvantages of iterative methods vs. direct methods
We focus on Krylov subspace methods for symmetric matrices
Given A and b, Krylov subspace is {b,Ab,A2b, · · ·Akb}
Key observation: QR factorization of leading vectors of Krylov
subspace leads to Hessenberg form for nonsymmetric matrices and
tridiagonal form for symmetric matrices
Lanczos iterations take advantage of the tridiagonal form to get
three-term recurrence version of Arnoldi iterations
Conjugate gradient methods for solving SPD linear systems: solution
as quadratic optimization problem, finite-termination properties with
exact arithmetic, and convergence with floating-point arithmetic
GMRES, Bi-CG, Bi-CGSTAB for nonsymmetric matrices
Concepts of preconditioners, and multigrid method
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