Geometric Observation

- The image of unit sphere under any $m \times n$ matrix is a \textit{hyperellipse}.
- Give a unit sphere S in \mathbb{R}^n, let AS denote the shape after transformation.
- SVD is

$$A = U\Sigma V^*$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ is unitary and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

- \textit{Singular values} are diagonal entries of Σ, correspond to the principal semiaxes, with entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

- \textit{Left singular vectors} of A are column vectors of U and are oriented in the directions of the principal semiaxes of AS.

- \textit{Right singular vectors} of A are column vectors of V and are the preimages of the principal semiaxes of AS.

- $Av_j = \sigma_j u_j$ for $1 \leq j \leq n$.
Two Different Types of SVD

- **Full SVD:** $U \in \mathbb{C}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{C}^{n \times n}$ is

\[
A = U \Sigma V^* \]

- **Reduced SVD:** $\hat{U} \in \mathbb{C}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \geq n$)

Furthermore, notice that $A = \min\{m, n\} \sum_{i=1}^{\min\{m, n\}} \sigma_i u_i v_i^*$ so we can keep only entries of U and V corresponding to nonzero σ_i.
Two Different Types of SVD

- **Full SVD**: \(U \in \mathbb{C}^{m \times m}, \Sigma \in \mathbb{R}^{m \times n}, \) and \(V \in \mathbb{C}^{n \times n} \) is
 \[
 A = U \Sigma V^*
 \]

- **Reduced SVD**: \(\hat{U} \in \mathbb{C}^{m \times n}, \hat{\Sigma} \in \mathbb{R}^{n \times n} \) (assume \(m \geq n \))
 \[
 A = \hat{U} \hat{\Sigma} V^*
 \]
Two Different Types of SVD

- **Full SVD**: $U \in \mathbb{C}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{C}^{n \times n}$ is
 \[
 A = U \Sigma V^* \]

- **Reduced SVD**: $\hat{U} \in \mathbb{C}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \geq n$)
 \[
 A = \hat{U} \hat{\Sigma} V^* \]

- Furthermore, notice that
 \[
 A = \sum_{i=1}^{\min\{m,n\}} \sigma_i u_i v_i^* \]

so we can keep only entries of U and V corresponding to nonzero σ_i.
Existence of SVD

(Existence) Every matrix \(A \in \mathbb{C}^{m \times n} \) has an SVD.

Proof: Let \(\sigma_1 = \|A\|_2 \). There exists \(v_1 \in \mathbb{C}^n \) with \(\|v_1\|_2 = 1 \) and \(\|Av_1\|_2 = \sigma_1 \). Let \(U_1 \) and \(V_1 \) be unitary matrices whose first columns are \(u_1 = Av_1/\sigma_1 \) (or any unit-length vector if \(\sigma_1 = 0 \)) and \(v_1 \), respectively. Note that

\[
U_1^*AV_1 = S = \begin{bmatrix}
\sigma_1 & \omega^* \\
0 & B
\end{bmatrix}. \tag{1}
\]

Furthermore, \(\omega = 0 \) because \(\|S\|_2 = \sigma_1 \), and

\[
\left\| \begin{bmatrix}
\sigma_1 & \omega^* \\
0 & B
\end{bmatrix} \begin{bmatrix}
\sigma_1 \\
\omega
\end{bmatrix} \right\|_2 \geq \sigma_1^2 + \omega^*\omega = \sqrt{\sigma_1^2 + \omega^*\omega} \left\| \begin{bmatrix}
\sigma_1 \\
\omega
\end{bmatrix} \right\|_2,
\]

implying that \(\sigma_1 \geq \sqrt{\sigma_1^2 + \omega^*\omega} \) and \(\omega = 0 \).
Existence of SVD Cont’d

We then prove by induction using (1). If \(m = 1 \) or \(n = 1 \), then \(B \) is empty and we have \(A = U_1 S V_1^* \). Otherwise, suppose \(B = U_2 \Sigma_2 V_2^* \), and then

\[
A = U_1 \begin{bmatrix} 1 & 0^* \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0^* \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} 1 & 0^* \\ 0 & V_2^* \end{bmatrix} V_1^*,
\]

where \(U \) and \(V \) are unitary.
Uniqueness of SVD

Theorem

(Uniqueness) The singular values \(\{\sigma_j\} \) are uniquely determined. If \(A \) is square and the \(\sigma_j \) are distinct, the left and right singular vectors are uniquely determined \textbf{up to complex signs} (i.e., complex scalar factors of absolute value 1).

Geometric argument: If the lengths of semiaxes of a hyperellipse are distinct, then the semiaxes themselves are determined by the geometry up to signs.
Uniqueness of SVD Cont’d

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1. If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once σ_1, u_1, and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1. Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.
Uniqueness of SVD Cont’d

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1. If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once σ_1, u_1, and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1. Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

● Question: What if we change the sign of a singular vector?
Uniqueness of SVD Cont’d

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1. If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once σ_1, u_1, and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1. Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

- Question: What if we change the sign of a singular vector?

- Question: What if σ_i is not distinct?
SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix A is $A = X\Lambda X^{-1}$
SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix A is $A = X \Lambda X^{-1}$

- Differences between SVD and Eigenvalue Decomposition
 - Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

Similarities
- Singular values of A are square roots of eigenvalues of A^*A and AA^*, and their eigenvectors are left and right singular vectors, respectively
- Singular values of hermitian matrices are absolute values of eigenvalues, and eigenvectors are singular vectors (up to complex signs)
- This relationship can be used to compute singular values by hand
SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix A is $A = X\Lambda X^{-1}$

- Differences between SVD and Eigenvalue Decomposition
 - Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

- Similarities
 - Singular values of A are square roots of eigenvalues of AA^* and A^*A, and their eigenvectors are left and right singular vectors, respectively
 - Singular values of hermitian matrices are absolute values of eigenvalues, and eigenvectors are singular vectors (up to complex signs)
 - This relationship can be used to compute singular values by hand
Matrix Properties via SVD

- Let r be number of nonzero singular values of $A \in \mathbb{C}^{m \times n}$
 - $\text{rank}(A)$ is r
 - $\text{range}(A) = \langle u_1, u_2, \ldots, u_r \rangle$
 - $\text{null}(A) = \langle v_{r+1}, v_{r+2}, \ldots, v_n \rangle$

- 2-norm and Frobenius norm
 - $\|A\|_2 = \sigma_1$ and $\|A\|_F = \sqrt{\sum_i \sigma_i^2}$

- Determinant of matrix
 - For $A \in \mathbb{C}^{m \times m}$, $|\det(A)| = \prod_{i=1}^m \sigma_i$
Matrix Properties via SVD

- Let \(r \) be number of nonzero singular values of \(A \in \mathbb{C}^{m \times n} \)
 - \(\text{rank}(A) \) is \(r \)
 - \(\text{range}(A) = \langle u_1, u_2, \ldots, u_r \rangle \)
 - \(\text{null}(A) = \langle v_{r+1}, v_{r+2}, \ldots, v_n \rangle \)

- 2-norm and Frobenius norm
 - \(\|A\|_2 = \sigma_1 \) and \(\|A\|_F = \sqrt{\sum_i \sigma_i^2} \)

- Determinant of matrix
 - For \(A \in \mathbb{C}^{m \times m} \), \(|\det(A)| = \prod_{i=1}^{m} \sigma_i \)

- However, SVD may not be the most efficient way in solving problems
- Algorithms for SVD are similar to those for eigenvalue decomposition and we will discuss them later in the semester