AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 11: Conditioning of Least Squares Problems;
Stability of Least Squares Algorithms

Xiangmin Jiao

SUNY Stony Brook
Outline

1. Conditioning of Least Squares Problems

2. Stability of Least Squares Algorithms
Four Conditioning Problems

- Least squares problem: Given $A \in \mathbb{C}^{m \times n}$ with full rank and $b \in \mathbb{C}^m$,

 $$\min_{x \in \mathbb{C}^n} \| b - Ax \|$$

 Its solution is $x = A^+ b$. Another quantity is $y = Ax = Pb$, where $P = AA^+$

- Consider A and b as input data, and x and y as output. We then have four conditioning problems:

<table>
<thead>
<tr>
<th>Input \ Output</th>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>$\kappa b \rightarrow y$</td>
<td>$\kappa b \rightarrow x$</td>
</tr>
<tr>
<td>A</td>
<td>$\kappa A \rightarrow y$</td>
<td>$\kappa A \rightarrow x$</td>
</tr>
</tbody>
</table>

- These conditioning problems are important and subtle.
Some Prerequisites

- We focus on the second column, namely $\kappa b \rightarrow x$ and $\kappa A \rightarrow x$
- However, understanding $\kappa b \rightarrow y$ and $\kappa A \rightarrow y$ is prerequisite

- Three quantities: (All in 2-norms)
 - Condition number of A:
 \[\kappa(A) = \|A\| \|A^+\| = \sigma_1/\sigma_n \]
 - Angle between b and y:
 \[\theta = \arccos \frac{\|y\|}{\|b\|}. \quad (0 \leq \theta \leq \pi/2) \]
 - Orientation of y with range(A):
 \[\eta = \frac{\|A\| \|x\|}{\|y\|}. \quad (1 \leq \eta \leq \kappa(A)) \]
Sensitivity of \mathbf{y} to Perturbations in \mathbf{b}

- Intuition: The larger θ is, the more sensitive \mathbf{y} is in terms of relative error
- Analysis: $\mathbf{y} = \mathbf{Pb}$, so

$$
\kappa_{\mathbf{b} \rightarrow \mathbf{y}} = \frac{\| \mathbf{P} \|}{\| \mathbf{y} \|/\| \mathbf{b} \|} = \frac{\| \mathbf{b} \|}{\| \mathbf{y} \|} = \frac{1}{\cos \theta},
$$

where $\| \mathbf{P} \| = 1$

<table>
<thead>
<tr>
<th>Input \ Output</th>
<th>\mathbf{y}</th>
<th>\mathbf{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbf{b}</td>
<td>$\frac{1}{\cos \theta}$</td>
<td></td>
</tr>
<tr>
<td>\mathbf{A}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?
Sensitivity of y to Perturbations in b

- **Intuition:** The larger θ is, the more sensitive y is in terms of relative error.
- **Analysis:** $y = Pb$, so

$$
\kappa_{b \rightarrow y} = \frac{\|P\|}{\|y\|/\|b\|} = \frac{\|b\|}{\|y\|} = \frac{1}{\cos \theta},
$$

where $\|P\| = 1$

<table>
<thead>
<tr>
<th>Input \ Output</th>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>$\frac{1}{\cos \theta}$</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Question:** When the maximum is attained for perturbation δb?
- **Answer:** When δb is in range(A)
Sensitivity of x to Perturbations in b

- **Intuition:** It depends on how sensitive y is to b, and how y lies within $\text{range}(A)$
- **Analysis:** $x = A^+ b$, so

$$
\kappa_{b \rightarrow x} = \frac{\|A^+\|}{\|x\|/\|b\|} = \|A^+\| \frac{\|b\|}{\|y\|} \frac{\|y\|}{\|x\|} = \|A^+\| \frac{1}{\cos \theta} \frac{\|A\|}{\eta} = \frac{\kappa(A)}{\eta \cos \theta},
$$

where $\eta = \|A\| \|x\|/\|y\|$

<table>
<thead>
<tr>
<th>Input \ Output</th>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>$\frac{1}{\cos \theta}$</td>
<td>$\frac{\kappa(A)}{\eta \cos \theta}$</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity of x to Perturbations in b

- Assume $\cos \theta = O(1)$, $\kappa_{b \rightarrow x} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))$!
- Question: When the maximum is attained for perturbation δb?
Sensitivity of \mathbf{x} to Perturbations in \mathbf{b}

- Assume $\cos \theta = O(1)$, $\kappa_{b \rightarrow \mathbf{x}} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))$!
- Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?
- Answer: When $\delta \mathbf{b}$ is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if \mathbf{A} is a nonsingular matrix?
Sensitivity of \(x \) to Perturbations in \(b \)

- Assume \(\cos \theta = O(1) \), \(\kappa_{b\mapsto x} = \frac{\kappa(A)}{\eta \cos \theta} \) can lie anywhere between 1 and \(O(\kappa(A)) \)!

- Question: When the maximum is attained for perturbation \(\delta b \)?

- Answer: When \(\delta b \) is in subspace spanned by left singular vectors corresponding to smallest singular values

- Question: What if \(A \) is a nonsingular matrix?

- Answer: \(\kappa_{b\mapsto x} \) can lie anywhere between 1 and \(\kappa(A) \)!
Sensitivity of \(y \) and \(x \) to Perturbations in \(A \)

- The relationship are nonlinear, because \(\text{range}(A) \) changes due to \(\delta A \)
- Intuitions:
 - The larger \(\theta \) is, the more sensitive \(y \) is in terms of relative error.
 - Tilting of range(\(A \)) depends on \(\kappa(A) \).
 - For \(x \), it depends where \(y \) lies within range(\(A \))

<table>
<thead>
<tr>
<th>Input (b)</th>
<th>Output (\kappa(A))</th>
<th>(\eta) cos (\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{\cos \theta})</td>
<td>(\frac{\kappa(A)}{\eta \cos \theta})</td>
<td></td>
</tr>
</tbody>
</table>

For second row, bounds are not necessarily tight
- Assume \(\cos \theta = O(1) \), \(\kappa_{A \rightarrow x} \) can lie anywhere between \(\kappa(A) \) and \(O(\kappa(A)^2) \)
Condition Numbers of Linear Systems

- Linear system $Ax = b$ for nonsingular $A \in \mathbb{C}^{m \times m}$ is a special case of least squares problems, where $y = b$
- If $m = n$, then $\theta = 0$, so $\cos \theta = 1$ and $\tan \theta = 0$.

<table>
<thead>
<tr>
<th>Input \ Output</th>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1</td>
<td>$\frac{\kappa(A)}{\eta}$</td>
</tr>
<tr>
<td>A</td>
<td>$\leq \kappa(A)$</td>
<td>$\leq \kappa(A)$</td>
</tr>
</tbody>
</table>
Outline

1. Conditioning of Least Squares Problems

2. Stability of Least Squares Algorithms
Algorithms for Solving Least Squares Problems

- There are many variants of algorithms for solving least squares problems
 - Householder QR (with/without pivoting, explicit or implicit Q): **Backward stable**
 - Classical Gram-Schmidt: **Unstable**
 - Modified Gram-Schmidt with explicit Q: **Unstable**
 - Modified Gram-Schmidt with augmented system of equations with implicit Q: **Backward stable**
 - Normal equations (solve $A^T Ax = A^T b$): **Very unstable**
 - Singular value decomposition: **Stable and most accurate**

- Note that in general, only SVD is robust for solving rank deficient least squares problems
Theorem

Let the full-rank least squares problem be solved using Householder triangularization on a computer satisfying the two axioms of floating point numbers. The algorithm is backward stable in the sense that the computed solution \tilde{x} has the property

$$\|(A + \delta A)\tilde{x} - b\| = \min, \quad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{machine}})$$

for some $\delta A \in \mathbb{C}^{m \times n}$.

- Backward stability of the algorithm is true whether $\hat{Q}^* b$ is computed via explicit formation of \hat{Q} or computed implicitly.
- Backward stability also holds for Householder triangularization with arbitrary column pivoting $AP = \hat{Q}\hat{R}$.
Gram-Schmidt Orthogonalization

- Note that Gram-Schmidt orthogonalization in general is unstable, due to loss of orthogonality.
- However, Gram-Schmidt can be stabilized using an augmented system of equations:
 1. Compute QR factorization of augmented matrix: \([Q,R1]=\text{mgs}([A,b])\)
 2. Extract \(R\) and \(\hat{Q}^*b\) from \(R1\): \(R=R1(1:n,1:n); \ Qb=R1(1:n,n+1)\)
 3. Back solve: \(x=R\backslash Qb\)

Theorem

The solution of the full-rank least squares problem by Gram-Schmidt orthogonality is backward stable in the sense that the computed solution \(\tilde{x}\) has the property

\[
\|(A + \delta A)\tilde{x} - b\| = \min, \quad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{machine}})
\]

for some \(\delta A \in \mathbb{C}^{m \times n}\), provided that \(\hat{Q}^* b\) is formed implicitly.
Other Methods

- The method of *normal equation* solves \(x = (A^T A)^{-1} A^T b \)

Theorem

The solution of the full-rank least squares problem via normal equation is unstable. Stability can be achieved, however, by restriction to a class of problems in which \(\kappa(A) \) is uniformly bounded above or \((\tan \theta / \eta) \) is uniformly bounded below.

- Solution using SVD: \(A = \hat{U} \hat{\Sigma} \hat{V}^*, \ x = \hat{V} \hat{\Sigma}^{-1} \hat{U}^* b \)

Theorem

The solution of the full-rank least squares problem by the SVD is backward stable.