AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 8: Floating Point Arithmetic;
Accuracy and Stability

Xiangmin Jiao

Stony Brook University
Outline

1. Floating Point Arithmetic
2. Accuracy and Stability
3. Stability of Algorithms
Floating Point Representations

- Computers can only use finite number of bits to represent a real number
 - Numbers cannot be arbitrarily large or small (associated risks of overflow and underflow)
 - There must be gaps between representable numbers (potential round-off errors)

- Commonly used computer-representations are floating point representations, which resemble scientific notation

\[\pm (d_0 + d_1 \beta^{-1} + \cdots + d_{p-1} \beta^{-p+1}) \beta^e, \quad 0 \leq d_i < \beta \]

where \(\beta \) is base, \(p \) is digits of precision, and \(e \) is exponent between \(e_{\text{min}} \) and \(e_{\text{max}} \)

- Normalize if \(d_0 \neq 0 \) (except for 0)
- Gaps between adjacent numbers scale with size of numbers
- Relative resolution given by machine epsilon \(\epsilon_{\text{machine}} = 0.5 \beta^{1-p} \)
- For all \(x \), there exists a floating point \(x' \) such that \(|x - x'| \leq \epsilon_{\text{machine}} |x| \)
IEEE Floating Point Representations

- **Single precision:** 32 bits
 - 1 sign bit (S), 8 exponent bits (E), 23 significant bits (M),
 \((-1)^S \times 1.M \times 2^{E-127}\)
 - \(\epsilon_{\text{machine}}\) is \(2^{-24} \approx 6e-8\)

- **Double precision:** 64 bits
 - 1 sign bit (S), 11 exponent bits (E), 52 significant bits (M),
 \((-1)^S \times 1.M \times 2^{E-1023}\)
 - \(\epsilon_{\text{machine}}\) is \(2^{-53} \approx e - 16\)

- **Special quantities**
 - \(+\infty\) and \(-\infty\) when operation overflows; e.g., \(x/0\) for nonzero \(x\)
 - NaN (Not a Number) is returned when an operation has no well-defined result; e.g., \(0/0\), \(\sqrt{-1}\), \(\arcsin(2)\), NaN
Machine Epsilon

- Define \(\text{fl}(x) \) as closest floating point approximation to \(x \)
- By definition of \(\epsilon_{\text{machine}} \), we have:

 For all \(x \in \mathbb{R} \), there exists \(\epsilon \) with \(|\epsilon| \leq \epsilon_{\text{machine}} \) such that \(\text{fl}(x) = x(1 + \epsilon) \)

- Given operation \(+\), \(-\), \(\times\), and \(/\) (denoted by \(\ast\)), floating point numbers \(x \) and \(y \), and corresponding floating point arithmetic (denoted by \(\odot\)), we require that \(x \odot y = \text{fl}(x \ast y) \)
- This is guaranteed by IEEE floating point arithmetic
- Fundamental axiom of floating point arithmetic:

 For all \(x, y \in \mathbb{F} \), there exists \(\epsilon \) with \(|\epsilon| \leq \epsilon_{\text{machine}} \) such that \(x \odot y = (x \ast y)(1 + \epsilon) \)

- These properties will be the basis of error analysis with rounding errors
Potential “Catastrophic” Error 1: Cancellation

Catastrophic cancellation: If \(x \approx y \) and \(|x - y| \ll |x| + |y| \), then the computed result \(\hat{x} - \hat{y} \) is in general inaccurate.

- This is an issue if intermediate result involves cancellation errors
- This *sometimes* can be avoided by using alternative equations
- Example:
 - Quadratic formula for quadratic roots of \(ax^2 + bx + c = 0 \) can be solved as
 \[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
 \]
 or
 \[
 x = \frac{2c}{-b \mp \sqrt{b^2 - 4ac}}
 \]
 depending on the sign of \(b \)
Potential “Catastrophic” Error 2: Swamping

Swamping: If $|x| \ll |y|$ (more precisely $|x| \lesssim \epsilon_{\text{machine}}|y|$), then $x + y \approx y$ (or $fl(x) \oplus fl(y) = fl(y)$). In other words, the effect of smaller value may be lost.

- This is an issue if there are intermediate large values in the computation.
- It *sometimes* can be avoided by reordering computations.
- Examples:
 - Approximating e with $\sum_{n=0}^{N} \frac{1}{n!}$ versus $\sum_{n=0}^{N} \frac{1}{(N-n)!}$.
 - in Gaussian elimination, using small values as pivoting can lead to large intermediate values.
Potential “Catastrophic” Error 3: Overflow

Overflow: When multiplying two very large numbers x and y, then $|xy|$ can cause unnecessary overflow.

- This is an issue, for example, when computing squares before taking squared root, but it can often be addressed by rescaling.
- Analogously, unnecessary underflow can occur when multiplying two small numbers, but underflow is typically less harmful.
- Examples:
 - In finding roots of $ax^2 + bx + c = 0$, it is advisable to rescale the problem by dividing it by $\max\{|a|, |b|, |c|\}$ (this avoids unnecessary overflow and underflow).
 - When computing $\|x\|_2$, rescale the problem to compute $\|x\|_\infty \left\| \frac{x}{\|x\|_\infty} \right\|_2$ (i.e., first dividing x by $\max\{|x_i|\}$ and multiplying it back. This can avoid unnecessary overflow and underflow).
Outline

1. Floating Point Arithmetic
2. Accuracy and Stability
3. Stability of Algorithms
Accuracy

• Roughly speaking, accuracy means that “error” is small in an asymptotic sense, say $O(\epsilon_{\text{machine}})$

• Notation $\varphi(t) = O(\psi(t))$ means $\exists C \text{ s.t. } |\varphi(t)| \leq C|\psi(t)|$ as t approaches 0 (or ∞)

 ▶ Example: $\sin^2 t = O(t^2)$ as $t \to 0$

• If φ depends on s and t, then $\varphi(s, t) = O(\psi(t))$ means $\exists C \text{ s.t. } |\varphi(s, t)| \leq C|\psi(t)|$ for any s as t approaches 0 (or ∞)

 ▶ Example: $\sin^2 t \sin^2 s = O(t^2)$ as $t \to 0$

• When we say $O(\epsilon_{\text{machine}})$, we are thinking of a series of idealized machines for which $\epsilon_{\text{machine}} \to 0$
More on Accuracy

- An algorithm \(\tilde{f} \) is *accurate* if relative error is in the order of machine precision, i.e.,

\[
\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = O(\epsilon_{\text{machine}}),
\]

i.e., \(\leq C_1 \epsilon_{\text{machine}} \) as \(\epsilon_{\text{machine}} \to 0 \), where constant \(C_1 \) may depend on the condition number and the algorithm itself.

- In most cases, we expect

\[
\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = O(\kappa \epsilon_{\text{machine}}),
\]

i.e., \(\leq C \kappa \epsilon_{\text{machine}} \) as \(\epsilon_{\text{machine}} \to 0 \), where constant \(C \) should be independent of \(\kappa \) and value of \(x \) (although it may depend on the dimension of \(x \)).

- How do we determine whether an algorithm is accurate or not?
 - It turns out to be an extremely subtle question
 - A forward error analysis (operation by operation) is often too difficult and impractical, and cannot capture dependence on condition number
 - An effective solution is *backward error analysis*
Outline

1. Floating Point Arithmetic
2. Accuracy and Stability
3. Stability of Algorithms
Stability

- We say an algorithm is *stable* if it gives “nearly the right answer to nearly the right question”
- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *stable* if (for all \(x \))
 \[\frac{\|\tilde{f}(x) - f(\tilde{x})\|}{\|f(\tilde{x})\|} = O(\varepsilon_{\text{machine}}) \]
 for some \(\tilde{x} \) with \(\|\tilde{x} - x\|/\|x\| = O(\varepsilon_{\text{machine}}) \)

Is stability or backward stability stronger?
- Backward stability is stronger.

Does (backward) stability depend on condition number of \(f(x) \)?
- No.
Stability

- We say an algorithm is *stable* if it gives “nearly the right answer to nearly the right question”

- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *stable* if (for all \(x \))

\[
\frac{\| \tilde{f}(x) - f(\tilde{x}) \|}{\| f(\tilde{x}) \|} = O(\epsilon_{\text{machine}})
\]

for some \(\tilde{x} \) with \(\|\tilde{x} - x\|/\|x\| = O(\epsilon_{\text{machine}}) \)

- We say an algorithm is *backward stable* if it gives “exactly the right answer to nearly the right question”

- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *backward stable* if (for all \(x \))

\[
\tilde{f}(x) = f(\tilde{x})
\]

for some \(\tilde{x} \) with \(\|\tilde{x} - x\|/\|x\| = O(\epsilon_{\text{machine}}) \)
Stability

- We say an algorithm is *stable* if it gives “nearly the right answer to nearly the right question”
- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *stable* if (for all \(x \))
 \[
 \frac{\| \tilde{f}(x) - f(\tilde{x}) \|}{\| f(\tilde{x}) \|} = O(\epsilon_{\text{machine}})
 \]
 for some \(\tilde{x} \) with \(\| \tilde{x} - x \| / \| x \| = O(\epsilon_{\text{machine}}) \)

- We say an algorithm is *backward stable* if it gives “exactly the right answer to nearly the right question”
- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *backward stable* if (for all \(x \))
 \[
 \tilde{f}(x) = f(\tilde{x})
 \]
 for some \(\tilde{x} \) with \(\| \tilde{x} - x \| / \| x \| = O(\epsilon_{\text{machine}}) \)

- Is stability or backward stability stronger?

\[\text{Backward stability is stronger.}\]
Stability

- We say an algorithm is *stable* if it gives “nearly the right answer to nearly the right question.”
- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *stable* if (for all \(x \))
 \[
 \frac{\| \tilde{f}(x) - f(\tilde{x}) \|}{\| f(\tilde{x}) \|} = O(\epsilon_{\text{machine}})
 \]
 for some \(\tilde{x} \) with \(\| \tilde{x} - x \| / \| x \| = O(\epsilon_{\text{machine}}) \).
- We say an algorithm is *backward stable* if it gives “exactly the right answer to nearly the right question.”
- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *backward stable* if (for all \(x \))
 \[
 \tilde{f}(x) = f(\tilde{x})
 \]
 for some \(\tilde{x} \) with \(\| \tilde{x} - x \| / \| x \| = O(\epsilon_{\text{machine}}) \).
- Is stability or backward stability stronger?
 - Backward stability is stronger.
- Does (backward) stability depend on condition number of \(f(x) \)?
Stability

- We say an algorithm is *stable* if it gives “nearly the right answer to nearly the right question”
- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *stable* if (for all \(x \))
 \[
 \frac{\| \tilde{f}(x) - f(\tilde{x}) \|}{\| f(\tilde{x}) \|} = O(\epsilon_{\text{machine}})
 \]
 for some \(\tilde{x} \) with \(\| \tilde{x} - x \|/\| x \| = O(\epsilon_{\text{machine}}) \)
- We say an algorithm is *backward stable* if it gives “exactly the right answer to nearly the right question”
- More formally, an algorithm \(\tilde{f} \) for problem \(f \) is *backward stable* if (for all \(x \))
 \[
 \tilde{f}(x) = f(\tilde{x})
 \]
 for some \(\tilde{x} \) with \(\| \tilde{x} - x \|/\| x \| = O(\epsilon_{\text{machine}}) \)
- Is stability or backward stability stronger?
 ▶ Backward stability is stronger.
- Does (backward) stability depend on condition number of \(f(x) \)?
 ▶ No.
Stability of Floating Point Arithmetic

- Backward stability of floating point operations is implied by these two floating point axioms:
 1. \(\forall x \in \mathbb{R}, \exists \epsilon, |\epsilon| \leq \epsilon_{\text{machine}} \) s.t. \(\text{fl}(x) = x(1 + \epsilon) \)
 2. For floating-point numbers \(x, y \), \(\exists \epsilon, |\epsilon| \leq \epsilon_{\text{machine}} \) s.t. \(x \odot y = (x \times y)(1 + \epsilon) \)

- Example: Subtraction \(f(x_1, x_2) = x_1 - x_2 \) with floating-point operation \(\tilde{f}(x_1, x_2) = \text{fl}(x_1) \ominus \text{fl}(x_2) \)
 - Axiom 1 implies \(\text{fl}(x_1) = x_1(1 + \epsilon_1), \text{fl}(x_2) = x_2(1 + \epsilon_2) \), for some \(|\epsilon_1|, |\epsilon_2| \leq \epsilon_{\text{machine}} \)
 - Axiom 2 implies \(\text{fl}(x_1) \ominus \text{fl}(x_2) = (\text{fl}(x_1) - \text{fl}(x_2))(1 + \epsilon_3) \) for some \(|\epsilon_3| \leq \epsilon_{\text{machine}} \)
 - Therefore,
 \[
 \text{fl}(x_1) \ominus \text{fl}(x_2) = (x_1(1 + \epsilon_1) - x_2(1 + \epsilon_2))(1 + \epsilon_3) \\
 = x_1(1 + \epsilon_1)(1 + \epsilon_3) - x_2(1 + \epsilon_2)(1 + \epsilon_3) \\
 = x_1(1 + \epsilon_4) - x_2(1 + \epsilon_5) \\
 \]
 where \(|\epsilon_4|, |\epsilon_5| \leq 2\epsilon_{\text{machine}} + O(\epsilon_{\text{machine}}^2) \)
Example: Inner product $f(x, y) = x^T y$ using floating-point operations \otimes and \oplus is backward stable.

Example: Outer product $f(x, y) = xy^T$ using \otimes and \oplus is not backward stable.

Example: $f(x) = x + 1$ computed as $\tilde{f}(x) = \text{fl}(x) \oplus 1$ is not backward stable.

Example: $f(x, y) = x + y$ computed as $\tilde{f}(x, y) = \text{fl}(x) \oplus \text{fl}(y)$ is backward stable.
Accuracy of Backward Stable Algorithm

Theorem

If a backward stable algorithm \tilde{f} is used to solve a problem f with condition number κ using floating-point numbers satisfying the two axioms, then

$$\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = O(\kappa(x)\epsilon_{machine})$$
Theorem

If a backward stable algorithm \tilde{f} is used to solve a problem f with condition number κ using floating-point numbers satisfying the two axioms, then

$$\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = O(\kappa(x)\epsilon_{\text{machine}})$$

Proof: Backward stability means $\tilde{f}(x) = f(\tilde{x})$ for \tilde{x} such that

$$\|\tilde{x} - x\|/\|x\| = O(\epsilon_{\text{machine}})$$

Definition of condition number gives

$$\frac{\|f(\tilde{x}) - f(x)\|}{\|f(x)\|} \leq (\kappa(x) + o(1))\|\tilde{x} - x\|/\|x\|$$

where $o(1) \to 0$ as $\epsilon_{\text{machine}} \to 0$.

Combining the two gives desired result.