Outline

1 Orthogonal Vectors and Matrices

2 Projectors

3 Linear Least Squares Problems
Orthogonal Vectors

Definition

A pair of vectors are *orthogonal* if \(x^T y = 0 \).

In other words, the angle between them is 90 degrees.
Orthogonal Vectors

Definition

A pair of vectors are *orthogonal* if $x^T y = 0$.

In other words, the angle between them is 90 degrees.

Definition

Two sets of vectors X and Y are orthogonal if every $x \in X$ is orthogonal to every $y \in Y$.
Orthogonal Vectors

Definition
A pair of vectors are *orthogonal* if $x^Ty = 0$.

In other words, the angle between them is 90 degrees.

Definition
Two sets of vectors X and Y are orthogonal if every $x \in X$ is orthogonal to every $y \in Y$.

Definition
A set of nonzero vectors S is *orthogonal* if they are pairwise orthogonal. They are *orthonormal* if it is orthogonal and in addition each vector has unit Euclidean length.
Orthogonal Vectors

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof.

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself.

Question: If the column vectors of an $m \times n$ matrix A are orthogonal, what is the rank of A?

Answer:

$r = \min\{m, n\}$. In other words, A has full rank.
Orthogonal Vectors

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof.

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself.

Question: If the column vectors of an $m \times n$ matrix A are orthogonal, what is the rank of A?
Orthogonal Vectors

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof.

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself.

Question: If the column vectors of an $m \times n$ matrix A are orthogonal, what is the rank of A?

Answer: $n = \min\{m, n\}$. In other words, A has full rank.
Components of Vector

- Given an orthonormal set \(\{q_1, q_2, \ldots, q_m\} \) forming a basis of \(\mathbb{R}^m \), vector \(v \) can be decomposed into orthogonal components as

\[
v = \sum_{i=1}^{m} (q_i^T v) q_i
\]
Components of Vector

- Given an orthonormal set \(\{q_1, q_2, \ldots, q_m\} \) forming a basis of \(\mathbb{R}^m \), vector \(v \) can be decomposed into orthogonal components as
 \[
 v = \sum_{i=1}^{m} (q_i^T v) q_i
 \]

- Another way to express the condition is
 \[
 v = \sum_{i=1}^{m} (q_i q_i^T) v
 \]

- \(q_i q_i^T \) is an orthogonal projection matrix. Note that it is NOT an orthogonal matrix.
Components of Vector

- Given an orthonormal set \(\{q_1, q_2, \ldots, q_m\} \) forming a basis of \(\mathbb{R}^m \), vector \(v \) can be decomposed into orthogonal components as
 \[
 v = \sum_{i=1}^{m} (q_i^T v) q_i
 \]

- Another way to express the condition is
 \[
 v = \sum_{i=1}^{m} (q_i q_i^T) v
 \]

- \(q_i q_i^T \) is an orthogonal projection matrix. Note that it is NOT an orthogonal matrix.

- More generally, given an orthonormal set \(\{q_1, q_2, \ldots, q_n\} \) with \(n \leq m \), we have
 \[
 v = r + \sum_{i=1}^{n} (q_i^T v) q_i = r + \sum_{i=1}^{n} (q_i q_i^T) v \text{ and } r^T q_i = 0, 1 \leq i \leq n
 \]

- Let \(Q \) be composed of column vectors \(\{q_1, q_2, \ldots, q_n\} \).
 \[
 QQ^T = \sum_{i=1}^{n} (q_i q_i^T)
 \] is an orthogonal projection matrix.
Orthogonal Matrices

Definition

A matrix is *orthogonal* if \(Q^T = Q^{-1} \), i.e., if \(Q^T Q = QQ^T = I \).

- In the real case, we say the matrix is *orthogonal*. Its column vectors are *orthonormal*.
- In other words, \(q_i^T q_j = \delta_{ij} \), the *Kronecker delta*.

Note: If \(Q \in \mathbb{C}^{m \times m} \), then \(Q \) is said to be *unitary* (instead of being orthogonal).
Orthogonal Matrices

Definition

A matrix is **orthogonal** if $Q^T = Q^{-1}$, i.e., if $Q^T Q = QQ^T = I$.

- In the real case, we say the matrix is **orthogonal**. Its column vectors are **orthonormal**.
- In other words, $q_i^T q_j = \delta_{ij}$, the Kronecker delta.

Note: If $Q \in \mathbb{C}^{m \times m}$, then Q is said to be **unitary** (instead of being orthogonal)

Question: What is the geometric meaning of multiplication by an orthogonal matrix?
Orthogonal Matrices

Definition

A matrix is *orthogonal* if $Q^T = Q^{-1}$, i.e., if $Q^TQ = QQ^T = I$.

- In the real case, we say the matrix is *orthogonal*. Its column vectors are *orthonormal*.
- In other words, $q_i^Tq_j = \delta_{ij}$, the *Kronecker delta*.

Note: If $Q \in \mathbb{C}^{m \times m}$, then Q is said to be *unitary* (instead of being orthogonal).

Question: What is the geometric meaning of multiplication by an orthogonal matrix?

Answer: It preserves angles and Euclidean length. In the real case, multiplication by an orthogonal matrix Q is a rotation (if $\det(Q) = 1$) or reflection (if $\det(Q) = -1$).
Outline

1. Orthogonal Vectors and Matrices
2. Projectors
3. Linear Least Squares Problems
A projector satisfies $P^2 = P$. They are also said to be idempotent.

- Orthogonal projector.
- Oblique projector.

Example:

\[
\begin{bmatrix}
0 & 0 \\
\alpha & 1
\end{bmatrix}
\]

- is an oblique projector if $\alpha \neq 0$,
- is orthogonal projector if $\alpha = 0$.
Projectors

- A projector satisfies $P^2 = P$. They are also said to be *idempotent*.
 - *Orthogonal* projector.
 - *Oblique* projector.

Example:

\[
\begin{bmatrix}
0 & 0 \\
\alpha & 1 \\
\end{bmatrix}
\]

- is an oblique projector if $\alpha \neq 0$,
- is orthogonal projector if $\alpha = 0$.
Complementary Projectors

- Complementary projectors: P vs. $I - P$.
- What space does $I - P$ project?

A projector separates \mathbb{R}^m into two complementary subspaces: range space and null space (i.e., $\text{range}(P) + \text{null}(P) = \mathbb{R}^m$ and $\text{range}(P) \cap \text{null}(P) = \{0\}$ for projector $P \in \mathbb{R}^{m \times m}$). It projects onto range space along null space.

▶ In other words, $x = Px + r$, where $r \in \text{null}(P)$.
Complementary Projectors

- Complementary projectors: P vs. $I - P$.
- What space does $I - P$ project?
 - Answer: $\text{null}(P)$.
 - $\text{range}(I - P) \supseteq \text{null}(P)$ because $Pv = 0 \Rightarrow (I - P)v = v$.
 - $\text{range}(I - P) \subseteq \text{null}(P)$ because for any v $(I - P)v = v - Pv \in \text{null}(P)$.

- A projector separates \mathbb{R}^m into two complementary subspace: range space and null space (i.e., $\text{range}(P) + \text{null}(P) = \mathbb{R}^m$ and $\text{range}(P) \cap \text{null}(P) = \{0\}$ for projector $P \in \mathbb{R}^{m \times m}$).

- It projects onto range space along null space
 - In other words, $x = Px + r$, where $r \in \text{null}(P)$

- Question: Are range space and null space of projector orthogonal to each other?
Orthogonal Projector

- An orthogonal projector is one that projects onto a subspace S_1 along a space S_2, where S_1 and S_2 are orthogonal.

Theorem

A projector P is orthogonal if and only if $P = P^T$.
An orthogonal projector is one that projects onto a subspace S_1 along a space S_2, where S_1 and S_2 are orthogonal.

Theorem

A projector P is orthogonal if and only if $P = P^T$.

Proof.

“If” direction: If $P = P^T$, then $(Px)^T(I - P)y = x^T(P - P^2)y = 0$.

“Only if” direction: Suppose P projects onto S_1 along S_2 where $S_1 \perp S_2$, and S_1 has dimension n. Let $\{q_1, \ldots, q_n\}$ be orthonormal basis of S_1 and $\{q_{n+1}, \ldots, q_m\}$ be a basis for S_2. Let Q be orthogonal matrix whose jth column is q_j, and we have $PQ = (q_1, q_2, \ldots, q_n, 0, \ldots, 0)$, so $Q^TPQ = \text{diag}(1, 1, \ldots, 1, 0, \ldots) = \Sigma$, and $P = Q\Sigma Q^T$.
Orthogonal Projector

- An orthogonal projector is one that projects onto a subspace S_1 along a space S_2, where S_1 and S_2 are orthogonal.

Theorem

A projector P is orthogonal if and only if $P = P^T$.

Proof.

“If” direction: If $P = P^T$, then $(Px)^T(I - P)y = x^T(P - P^2)y = 0$.

“Only if” direction: Suppose P projects onto S_1 along S_2 where $S_1 \perp S_2$, and S_1 has dimension n. Let $\{q_1, \ldots, q_n\}$ be orthonormal basis of S_1 and $\{q_{n+1}, \ldots, q_m\}$ be a basis for S_2. Let Q be orthogonal matrix whose jth column is q_j, and we have $PQ = (q_1, q_2, \ldots, q_n, 0, \ldots, 0)$, so $Q^T PQ = \text{diag}(1, 1, \ldots, 1, 0, \ldots) = \Sigma$, and $P = Q\Sigma Q^T$.

Question: Are orthogonal projectors orthogonal matrices?
Basis of Projections

- **Projection with orthonormal basis**
 - Given any matrix \(\hat{Q} \in \mathbb{R}^{m \times n} \) whose columns are orthonormal, then \(P = \hat{Q} \hat{Q}^T \) is orthogonal projector, so is \(I - P \)
 - We write \(I - P \) as \(P_\perp \)
 - In particular, if \(\hat{Q} = q \), we write \(P_q = qq^T \) and \(P_{\perp q} = I - P_q \)
 - For arbitrary vector \(a \), we write \(P_a = \frac{aa^T}{a^Ta} \) and \(P_{\perp a} = I - P_a \)
Basis of Projections

- **Projection with orthonormal basis**
 - Given any matrix $\hat{Q} \in \mathbb{R}^{m \times n}$ whose columns are orthonormal, then $P = \hat{Q}\hat{Q}^T$ is orthogonal projector, so is $I - P$
 - We write $I - P$ as P_{\perp}
 - In particular, if $\hat{Q} = q$, we write $P_q = qq^T$ and $P_{\perp q} = I - P_q$
 - For arbitrary vector a, we write $P_a = \frac{aa^T}{a^Ta}$ and $P_{\perp a} = I - P_a$

- **Projection with arbitrary basis**
 - Given any matrix $A \in \mathbb{R}^{m \times n}$ that has full rank and $m \geq n$
 \[
P = A(A^TA)^{-1}A^T\]
 is orthogonal projection
 - What does P project onto?
Basis of Projections

- **Projection with orthonormal basis**
 - Given any matrix \(\hat{Q} \in \mathbb{R}^{m \times n} \) whose columns are orthonormal, then \(P = \hat{Q} \hat{Q}^T \) is orthogonal projector, so is \(I - P \)
 - We write \(I - P \) as \(P_\perp \)
 - In particular, if \(\hat{Q} = q \), we write \(P_q = qq^T \) and \(P_\perp q = I - P_q \)
 - For arbitrary vector \(a \), we write \(P_a = \frac{aa^T}{a^Ta} \) and \(P_\perp a = I - P_a \)

- **Projection with arbitrary basis**
 - Given any matrix \(A \in \mathbb{R}^{m \times n} \) that has full rank and \(m \geq n \)
 \[
P = A(A^T A)^{-1} A^T
 \]
 is orthogonal projection
 - What does \(P \) project onto?
 - \(\text{range}(A) \)
 - \((A^T A)^{-1} A^T \) is called the *pseudo-inverse* of \(A \), denoted as \(A^+ \)
Outline

1. Orthogonal Vectors and Matrices
2. Projectors
3. Linear Least Squares Problems
Linear Least Squares Problems

- Overdetermined system of equations $Ax \approx b$, where A has more rows than columns and has full rank, in general has no solutions
- Example application: Polynomial least squares fitting
- In general, minimize the residual $r = b - Ax$
- In terms of 2-norm, we obtain linear least squares problem: Given $A \in \mathbb{R}^{m \times n}$, $m \geq n$, and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ such that $\|b - Ax\|_2$ is minimized
- If A has full rank, the minimizer x is the solution to the normal equation
 \[A^T Ax = A^T b \]
 or in terms of the pseudoinverse A^+,
 \[x = A^+ b, \quad \text{where } A^+ = (A^T A)^{-1} A^T \in \mathbb{R}^{n \times m} \]
Geometric Interpretation

- Ax is in range(A), and the point in range(A) closest to b is its orthogonal projection onto range(A)
- Residual r is then orthogonal to range(A), and hence $A^T r = A^T (b - Ax) = 0$
- Ax is orthogonal projection of b, where $x = A^+ b$, so $P = AA^+ = A(A^T A)^{-1} A^T$ is orthogonal projection