AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 22: More on Conjugate Gradient Method; Preconditioned Conjugate Gradient Method

Xiangmin Jiao

Stony Brook University
An Alternative Interpretation of CG

<table>
<thead>
<tr>
<th>Algorithm: CG</th>
<th>Algorithm: A non-standard CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0 = 0$, $r_0 = b$, $p_0 = r_0$</td>
<td>$x_0 = 0$, $r_0 = b$, $p_0 = r_0$</td>
</tr>
<tr>
<td>for $n = 1$ to $1, 2, 3, \ldots$</td>
<td>for $n = 1$ to $1, 2, 3, \ldots$</td>
</tr>
<tr>
<td>$\alpha_n = r_{n-1}^T r_{n-1} / (p_{n-1}^T A p_{n-1})$</td>
<td>$\alpha_n = r_{n-1}^T p_{n-1} / (p_{n-1}^T A p_{n-1})$</td>
</tr>
<tr>
<td>$x_n = x_{n-1} + \alpha_n p_{n-1}$</td>
<td>$x_n = x_{n-1} + \alpha_n p_{n-1}$</td>
</tr>
<tr>
<td>$r_n = r_{n-1} - \alpha_n A p_{n-1}$</td>
<td>$r_n = b - A x_n$</td>
</tr>
<tr>
<td>$\beta_n = r_n^T r_n / (r_{n-1}^T r_{n-1})$</td>
<td>$\beta_n = -r_{n-1}^T A p_{n-1} / (p_{n-1}^T A p_{n-1})$</td>
</tr>
<tr>
<td>$p_n = r_n + \beta_n p_{n-1}$</td>
<td>$p_n = r_n + \beta_n p_{n-1}$</td>
</tr>
</tbody>
</table>

- The non-standard one is less efficient but easier to understand
- It is easy to see $r_n = r_{n-1} - \alpha_n A p_{n-1} = b - A x_n$
- We need to show:
 - α_n minimizes φ along search direction p_n
 - α_n and β_n are equivalent to those in standard CG
 - Minimizing φ along p_n also minimizes φ within Krylov subspace
Optimality of Step Length

- Select step length α_n over vector p_{n-1} to minimize
 \[\varphi(x) = \frac{1}{2} x^T A x - x^T b \]
- Let $x_n = x_{n-1} + \alpha_n p_{n-1}$,
 \[
 \varphi(x_n) = \frac{1}{2} (x_{n-1} + \alpha_n p_{n-1})^T A (x_{n-1} + \alpha_n p_{n-1}) - (x_{n-1} + \alpha_n p_{n-1})^T b
 \]
 \[
 = \frac{1}{2} \alpha_n^2 p_{n-1}^T A p_{n-1} + \alpha_n p_{n-1}^T A x_{n-1} - \alpha_n p_{n-1}^T b + \text{constant}
 \]
 \[
 = \frac{1}{2} \alpha_n^2 p_{n-1}^T A p_{n-1} - \alpha_n p_{n-1}^T r_{n-1} + \text{constant}
 \]

- Therefore,
 \[
 \frac{d\varphi}{d\alpha_n} = 0 \Rightarrow \alpha_n p_{n-1}^T A p_{n-1} - p_{n-1}^T r_{n-1} = 0 \Rightarrow \alpha_n = \frac{p_{n-1}^T r_{n-1}}{p_{n-1}^T A p_{n-1}}.
 \]

- In addition, $p_{n-1}^T r_{n-1} = r_{n-1}^T r_{n-1}$ because $p_{n-1} = r_{n-1} + \beta_n p_{n-2}$ and $r_{n-1}^T p_{n-2} = 0$ due to the following theorem.
Outline

1. Properties of Conjugate Gradient

2. Preconditioned Conjugate Gradient
Properties of Conjugate Gradients

Theorem

If \(r_{n-1} \neq 0 \), spaces spanned by approximate solutions \(x_n \), search directions \(p_n \), and residuals \(r_n \) are all equal to Krylov subspaces

\[
K_n = \langle x_1, x_2, \ldots, x_n \rangle = \langle p_0, p_1, \ldots, p_{n-1} \rangle = \langle r_0, r_1, \ldots, r_{n-1} \rangle = \langle b, Ab, \ldots, A^{n-1}b \rangle
\]

The residuals are orthogonal (i.e., \(r_n^T r_j = 0 \) for \(j < n \)) and search directions are A-conjugate (i.e., \(p_n^T A p_j = 0 \) for \(j < n \)).

This theorem implies that

\[
\alpha_n = \frac{(r_{n-1}^T r_{n-1})}{(p_{n-1}^T A p_{n-1})} = r_{n-1}^T p_{n-1}/(p_{n-1}^T A p_{n-1})
\]

and

\[
\beta_n = \frac{r_n^T r_n}{r_{n-1}^T r_{n-1}} = \frac{r_n^T (r_{n-1} - \alpha_n A p_{n-1})}{r_{n-1}^T r_{n-1}} = -\frac{r_n^T A p_{n-1}}{p_{n-1}^T A p_{n-1}}.
\]
Proof of Properties of CG

Prove based on notation of standard CG.

- Proof of equality of subspaces by simple induction.
- To prove $r_n^T r_j = 0$, note that $r_n = r_{n-1} - \alpha_n A p_{n-1}$ and $(A p_{n-1})^T = p_{n-1}^T A$, so

 $$r_n^T r_j = (r_{n-1} - \alpha_n A p_{n-1})^T r_j = r_{n-1}^T r_j - \alpha_n p_{n-1}^T A r_j.$$

 - If $j < n - 1$, then both terms on right are zero by induction.
 - If $j = n - 1$, plug in $\alpha_n = (r_{n-1}^T r_{n-1})/(p_{n-1}^T A p_{n-1})$

 $$r_{n-1}^T r_j - \alpha_n p_{n-1}^T A r_j = r_{n-1}^T r_{n-1} - r_{n-1}^T r_{n-1} \frac{p_{n-1}^T A r_{n-1}}{p_{n-1}^T A p_{n-1}},$$

 which is zero because

 $$p_{n-1}^T A p_{n-1} = p_{n-1}^T A (r_{n-1} + \beta_n p_{n-2}) = p_{n-1}^T A r_{n-1}$$

 by induction hypothesis.
To prove $p_n^T A p_j = 0$, note that $p_n = r_n + \beta_n p_{n-1}$, so

$$p_n^T A p_j = r_n^T A p_j + \beta_n p_{n-1}^T A p_j.$$

- If $j < n - 1$, then both terms on right are zero by induction.
- If $j = n - 1$, plug in $\beta_n = (r_n^T r_n)/(r_{n-1}^T r_{n-1})$,

$$r_n^T A p_j + \beta_n p_{n-1}^T A p_j = r_n^T A p_{n-1} + \frac{1}{\alpha_n} r_n^T r_n$$

$$= \frac{1}{\alpha_n} r_n^T (r_n + \alpha_n A p_{n-1})$$

$$= \frac{1}{\alpha_n} r_n^T r_{n-1}$$

$$= 0.$$
Optimality of Conjugate Gradients

Theorem

If \(r_{n-1} \neq 0 \), then error \(e_n = x_\ast - x_n \) are minimized in A-norm in \(\mathcal{K}_n \).

Proof.

Consider arbitrary point \(x = x_n - \Delta x \in \mathcal{K}_n \) with error \(e = x_\ast - x = e_n + \Delta x \). So

\[
\|e\|^2_A = (e_n + \Delta x)^T A (e_n + \Delta x) = e_n^T A e_n + \Delta x^T A \Delta x + 2 e_n^T A \Delta x,
\]

where \(e_n^T A \Delta x = r_n^T \Delta x = 0 \) because \(r_n \perp \mathcal{K}_n \). Since \(A \) is SPD, \(\|e\|^2_A \geq \|e_n\|^2_A \) and equality holds iff \(\Delta x = 0 \).

Because \(\mathcal{K}_n \) grows monotonically, error decreases monotonically.
Relationship with Lanczos Iteration

- In conjugate gradient,

\[\mathcal{K}_n = \langle x_1, x_2, \ldots, x_n \rangle = \langle p_0, p_1, \ldots, p_{n-1} \rangle = \langle r_0, r_1, \ldots, r_{n-1} \rangle = \langle b, Ab, \ldots, A^{n-1}b \rangle, \]

where \(b \) is right-hand side of \(Ax = b \)

- In Lanczos Iteration (Arnoldi algorithm for symmetric matrices),

\[\mathcal{K}_n = \langle b, Ab, \ldots, A^{n-1}b \rangle = \langle q_1, q_2, \ldots, q_n \rangle \]

where \(b \) is chosen arbitrarily

- If \(q_1 \) is a multiple of \(r_0 \) then \(q_i \) will be proportional to \(r_{i-1} \)

Therefore, conjugate gradient and Lanczos iteration are essentially the same process, so it is possible to obtain information about spectrum of \(A \) within CG algorithm
Rate of Convergence

- In addition, CG can be studied in terms of polynomial approximation
 - It finds optimal polynomial $p_n \in P_n$ of degree n with $p(0) = 1$, minimizing $\|p_n(A)e_0\|_A$ with initial error $e_0 = x^*$
 - Convergence results can be obtained from this polynomial approximation

- Some important convergence results
 - If A has n distinct eigenvalues, CG converges in at most n steps
 - If A has 2-norm condition number κ, the errors are
 \[
 \frac{\|e_n\|_A}{\|e_0\|_A} \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^n
 \]
 which is $\approx 2 \left(1 - \frac{2}{\sqrt{\kappa}} \right)^n$ as $\kappa \to \infty$. So convergence is expected in $O(\sqrt{\kappa})$ iterations.

- In general, CG performs well with clustered eigenvalues
Outline

1. Properties of Conjugate Gradient

2. Preconditioned Conjugate Gradient
Preconditioning

- Motivation: Convergence of iterative methods heavily depends on eigenvalues or singular values of equation
- Main idea of preconditioning is to introduce a nonsingular matrix M such that $M^{-1}A$ has better properties than A. Thereafter, solve

$$M^{-1}Ax = M^{-1}b,$$

which has the same solution as $Ax = b$

- Criteria of M
 - “Good” approximation of A, depending on iterative solvers
 - Ease of inversion

- Typically, a precondition M is good if $M^{-1}A$ is not too far from normal and its eigenvalues are clustered
Left, Right, and Hermitian Preconditioners

- Left preconditioner: Left multiply M^{-1} and solve $M^{-1}Ax = M^{-1}b$
- Right preconditioner: Right multiply M^{-1} and solve $AM^{-1}y = b$ with $x = M^{-1}y$
- However, if A is Hermitian, $M^{-1}A$ or AM^{-1} breaks symmetry
- How to resolve this problem?
Left, Right, and Hermitian Preconditioners

- Left preconditioner: Left multiply M^{-1} and solve $M^{-1}Ax = M^{-1}b$
- Right preconditioner: Right multiply M^{-1} and solve $AM^{-1}y = b$ with $x = M^{-1}y$
- However, if A is Hermitian, $M^{-1}A$ or AM^{-1} breaks symmetry
- How to resolve this problem?

- Suppose M is Hermitian positive definite, with $M = CC^*$ for some C, then $Ax = b$ is equivalent to

$$\begin{bmatrix} C^{-1}AC^{-*} \end{bmatrix} (C^*x) = C^{-1}b,$$

where $C^{-1}AC^{-*}$ is Hermitian positive definite, and it is similar to $C^{-*}C^{-1}A = M^{-1}A$ and has same eigenvalues as $M^{-1}A$
- Example of $M = CC^*$ is Cholesky factorization $M = RR^*$, where R is upper triangular
Preconditioned Conjugate Gradient

- When preconditioning a symmetric matrix, use SPD matrix M, and $M = RR^T$
- In practice, algorithm can be organized so that only M^{-1} (instead of R^{-1}) appears

Algorithm: Preconditioned Conjugate Gradient Method

\[
x_0 = 0, \quad r_0 = b, \quad p_0 = M^{-1}r_0, \quad z_0 = p_0
\]

for $n = 1, 2, 3, \ldots$

$\alpha_n = (r_{n-1}^Tz_{n-1})/(p_{n-1}^TAp_{n-1})$
step length

$x_n = x_{n-1} + \alpha_n p_{n-1}$
approximate solution

$r_n = r_{n-1} - \alpha_n Ap_{n-1}$
residual

$z_n = M^{-1}r_n$
preconditioning

$\beta_n = (r_n^Tz_n)/(r_{n-1}^Tz_{n-1})$
improvement this step

$p_n = z_n + \beta_n p_{n-1}$
search direction
Effective Preconditioners for CG

- **SSOR Preconditioner**
 - Simpler form: use matrix splitting of form $A = L + D + L^T$ and take

 \[M = (D + L)D^{-1}(D + L)^T \]
 - More generally, introduce SSOR relaxation parameter ω, and take

 \[M = \frac{1}{2 - \omega} \left(\frac{1}{\omega} D + L \right) \left(\frac{1}{\omega} D \right)^{-1} \left(\frac{1}{\omega} D + L \right)^T. \]

 With optimal ω, $\text{cond}(M^{-1}A) = O(\sqrt{\text{cond}(A)})$, but determining optimal ω is impractical

- **Incomplete factorization**
 - If $A = LL^T$ were used as preconditioner, then $\text{cond}(M^{-1}A) = 1$, but impractical
 - Instead, compute approximate factorization $A \approx \tilde{L}\tilde{L}^T$, which omit all fills or omit small fills and use $M = \tilde{L}\tilde{L}^T$ as preconditioner
Other Commonly Used Preconditioners

- **Jacobi preconditioning**: $M = \text{diag}(A)$. Very simple and cheap, might improve certain problems but usually insufficient.

- **Block-Jacobi preconditioning**: Let M be composed of block-diagonal instead of diagonal.

- **Multigrid (coarse-grid approximations)**: For a PDE discretized on a grid, a preconditioner can be formed by transferring the solution to a coarser grid, solving a smaller problem, then transferring back. This is sometimes the most efficient approach if applicable.