AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

Xiangmin Jiao

SUNY Stony Brook
Outline

1. Krylov Subspace Methods for Asymmetric Systems

2. Preconditioned Conjugate Gradient
Minimizing Residual

- CG only works for SPD matrices. It minimizes $\|x - x^*\|_A$ and $\phi(x) = \frac{1}{2}x^TAx - x^Tb$
- There have been many proposed extensions to nonsymmetric matrices, GMRES, BiCG, etc.
- GMRES (Generalized Minimal RESiduals) is one of most well known
- The basic idea of GMRES is to find $x_n \in \mathcal{K}_n$ that minimizes $\|r_n\| = \|b - Ax_n\|$
- This can be viewed as a least squares problem: Find a vector c s.t. $\|AK_n c - b\|$ is minimized, where K_n is the $m \times n$ Krylov matrix composed of basis vectors of \mathcal{K}_n, and

$$K_n = \begin{bmatrix}
b & Ab & \cdots & A^{n-1}b
\end{bmatrix}$$

- Orthogonal basis is often used, produced by Arnoldi iteration
Review: Arnoldi Iteration

- Let $Q_n = [q_1 \ | \ q_2 \ | \ \cdot \ | \ q_n]$ be $m \times n$ matrix with first n columns of Q and \tilde{H}_n be $(n+1) \times n$ upper-left section of H
- Start by picking a random q_1 and then determine q_2 and \tilde{H}_1
- The nth columns of $AQ_n = Q_{n+1}\tilde{H}_n$ can be written as

$$Aq_n = h_{1n}q_1 + \cdots + h_{nn}q_n + h_{n+1,n}q_{n+1}$$

Algorithm: Arnoldi Iteration

given random nonzero b, let $q_1 = b/\|b\|$
for $n = 1, 2, 3, \ldots$

$$v = Aq_n$$

for $j = 1$ to n

$$h_{jn} = q_j^*v$$

$$v = v - h_{jn}q_j$$

$$h_{n+1,n} = \|v\|$$

$$q_{n+1} = v/h_{n+1,n}$$
Minimal Residual with Orthogonal Basis

- Let Q_n be Krylov matrix whose columns q_1, q_2, \ldots span the successive Krylov subspaces.
- Instead of find $x_n = K_n c$, find $x_n = Q_n y$ which minimizes $\|AQ_n y - b\|$
- For Arnoldi iteration, we showed that $AQ_n = Q_{n+1} \tilde{H}_n$, so

\[
\|Q_{n+1} \tilde{H}_n y - b\| = \text{minimum}
\]

- Left multiplication by Q_{n+1}^* does not change the norm, so

\[
\|\tilde{H}_n y - Q_{n+1}^* b\| = \text{minimum}
\]

- Finally, by construction, $Q_{n+1}^* b = \|b\| e_1$, so

\[
\|\tilde{H}_n y - \|b\| e_1\| = \text{minimum}.
\]
The GMRES Algorithm

Algorithm: GMRES

\[q_1 = b / \| b \| \]

\textbf{for} \ n = 1, 2, 3, \ldots

\begin{itemize}
 \item Step \ n \ of \ Arnoldi \ iteration
 \item Find \ \(y \) \ to \ minimize \ \(\| \tilde{H}_n y - b e_1 \| = \| r_n \| \)
 \item \(x_n = Q_n y \)
\end{itemize}

\begin{itemize}
 \item The residual \(\| r_n \| \) \ does \ not \ need \ to \ be \ computed \ explicitly \ from \ \(x_n \)
\end{itemize}
The GMRES Algorithm

- Least squares problem has Hessenberg structure, solved with QR factorization of \tilde{H}_n
- If QR factorization of \tilde{H}_n is constructed from scratch, then it costs $O(n^2)$ flops, due to Hessenberg structure
- However, QR factorization of \tilde{H}_n can be updated from that of \tilde{H}_{n-1}, using Givens rotation within $O(n)$ work
- However, memory and cost grow with n.
- In practice, restart the algorithm by clearing accumulated data. This might stagnate the method.
GMRES and Polynomial Approximation

- GMRES can be interpreted as finding polynomial \(p_n \in P_n \) for \(n = 1, 2, 3, \ldots \) where

\[
P_n = \{ \text{polynomial } p \text{ of degree } \leq n \text{ with } p(0) = 1 \}
\]

such that \(\| p_n(A)b \| \) is minimized

- Note that \(r = b - AK_n c \), where

\[
AK_n c = (c_1 A + c_2 A^2 + \cdots + c_n A^n) b
\]

and \(r = (1 - c_1 A - c_2 A^2 - \cdots - c_n A^n) b \).

- In other words, \(p_n(z) = 1 - z(c_1 + c_2 z + \cdots + c_{n-1} z^{n-1}) \)

- Invariance of GMRES
 - Scale invariance: If we change \(A \rightarrow \sigma A \) and \(b \rightarrow \sigma b \), then \(r_n \rightarrow \sigma r_n \)
 - Invariance under unitary similarity transformations: If change \(A \rightarrow U A U^* \) for some unitary matrix \(U \) and \(b \rightarrow U b \), then \(r_n \rightarrow U^* r_n \)
Convergence of GMRES

- GMRES converges monotonically and it converges after at most \(m \) steps.
- Based on a polynomial analysis, diagonalizable \(A = V \Lambda V^{-1} \) converges as
 \[
 \frac{\| r_n \|}{\| b \|} \leq \kappa(V) \inf_{p_n \in P_n} \sup_{\lambda_i \in \Lambda(A)} |p_n(\lambda_i)|
 \]
- In other words, if \(A \) is not far from normal (i.e., eigenvectors are nearly orthogonal), and if properly normalized degree \(n \) polynomials can be found whose size on the spectrum \(\Lambda(A) \) decreases quickly with \(n \), then GMRES converges quickly.
Other Krylov Subspace Methods

- CG on the Normal Equations (CGN)
 - Solve $A^*Ax = A^*b$ using Conjugate Gradients
 - Poor convergence due to squared condition number (i.e., $\kappa(A^*A) = \kappa(A)^2$)
 - One advantage is that it applies least squares problems without modification

- BiConjugate Gradients (BCG/BiCG)
 - Makes residuals orthogonal to another Krylov subspace, based on A^*
 - It can be implemented with three-term recurrences, so memory requirements is smaller
 - Convergence sometimes comparable to GMRES, but unpredictable

- Conjugate Gradients Squared (CGS)
 - Avoids multiplication by A^* in BCG, sometimes twice as fast convergence as BCG

- Quasi-Minimal Residuals (QMR) and Stabilized BiCG (Bi-CGSTAB)
 - Variants of BiCG with more regular convergence
MINRES: Minimum residual

- Solve \(Ax = b \) or \((A - sI)x = b \). The matrix \(A - sI \) must be symmetric but it may be definite or indefinite or singular.
- Scalar \(s \) is a shifting parameter – it may be any number.
- The method is based on Lanczos tridiagonalization.
- MINRES is solving one of the least-squares problems minimize \(\|Ax - b\| \) or \(\|(A - sI)x - b\| \).

References
LSQR

- It solves $Ax = b$, or minimizes $\|Ax - b\|^2$ or minimize $\|Ax - b\|^2 + \lambda^2\|x\|^2$
- A may be square or rectangular (over-determined or under-determined), and may have any rank
- The method is based on the Golub-Kahan bidiagonalization process. It is algebraically equivalent to applying MINRES to the normal equation $(A^TA + \lambda^2I)x = A^Tb$, but has better numerical properties, especially if A is ill-conditioned
- LSQR reduces $\|r\|$ monotonically (where $r = b - Ax$ if $\lambda = 0$)
- References:
Outline

1. Krylov Subspace Methods for Asymmetric Systems

2. Preconditioned Conjugate Gradient
Preconditioning

- Motivation: Convergence of iterative methods heavily depends on eigenvalues or singular values of equation.
- Main idea of preconditioning is to introduce a nonsingular matrix M such that $M^{-1}A$ has better properties than A. Thereafter, solve

$$M^{-1}Ax = M^{-1}b,$$

which has the same solution as $Ax = b$.

- Criteria of M
 - “Good” approximation of A, depending on iterative solvers
 - Ease of inversion

- Typically, a precondition M is good if $M^{-1}A$ is not too far from normal and its eigenvalues are clustered.
Left, Right, and Hermitian Preconditioners

- Left preconditioner: Left multiply M^{-1} and solve $M^{-1}Ax = M^{-1}b$
- Right preconditioner: Right multiply M^{-1} and solve $AM^{-1}y = b$ with $x = M^{-1}y$
- However, if A is Hermitian, $M^{-1}A$ or AM^{-1} breaks symmetry
- How to resolve this problem?
Left, Right, and Hermitian Preconditioners

- **Left preconditioner:** Left multiply M^{-1} and solve $M^{-1}Ax = M^{-1}b$
- **Right preconditioner:** Right multiply M^{-1} and solve $AM^{-1}y = b$ with $x = M^{-1}y$
- However, if A is Hermitian, $M^{-1}A$ or AM^{-1} breaks symmetry
- How to resolve this problem?

Suppose M is Hermitian positive definite, with $M = CC^*$ for some C, then $Ax = b$ is equivalent to

$$[C^{-1}AC^{-*}] (C^*x) = C^{-1}b,$$

where $C^{-1}AC^{-*}$ is Hermitian positive definite, and it is similar to $C^{-*}C^{-1}A = M^{-1}A$ and has same eigenvalues as $M^{-1}A$

- Example of $M = CC^*$ is Cholesky factorization $M = RR^*$, where R is upper triangular
Preconditioned Conjugate Gradient

- When preconditioning a symmetric matrix, use SPD matrix M, and
 $M = RR^T$
- In practice, algorithm can be organized so that only M^{-1} (instead of R^{-1}) appears

Algorithm: Preconditioned Conjugate Gradient Method

$$x_0 = 0, \ r_0 = b, \ p_0 = M^{-1}r_0, \ z_0 = p_0$$

for $n = 1, 2, 3, \ldots$

$$\alpha_n = (r_{n-1}^T z_{n-1})/(p_{n-1}^T A p_{n-1})$$

step length

$$x_n = x_{n-1} + \alpha_n p_{n-1}$$

approximate solution

$$r_n = r_{n-1} - \alpha_n A p_{n-1}$$

residual

$$z_n = M^{-1} r_n$$

preconditioning

$$\beta_n = (r_n^T z_n)/(r_{n-1}^T z_{n-1})$$

improvement this step

$$p_n = z_n + \beta_n p_{n-1}$$

search direction
Effective Preconditioners for CG

- SSOR Preconditioner
 - Simpler form: use matrix splitting of form $A = L + D + L^T$ and take

 $$M = (D + L)D^{-1}(D + L)^T$$

 - More generally, introduce SSOR relaxation parameter ω, and take

 $$M = \frac{1}{2 - \omega}(\frac{1}{\omega}D + L)\left(\frac{1}{\omega}D\right)^{-1}\left(\frac{1}{\omega}D + L\right)^T.$$

 With optimal ω, $\text{cond}(M^{-1}A) = O(\sqrt{\text{cond}(A)})$, but determining optimal ω is impractical

- Incomplete factorization
 - If $A = LL^T$ were used as preconditioner, then $\text{cond}(M^{-1}A) = 1$, but impractical

 - Instead, compute approximate factorization $A \approx \tilde{L}\tilde{L}^T$, which omit all fills or omit small fills and use $M = \tilde{L}\tilde{L}^T$ as preconditioner
Other Commonly Used Preconditioners

- **Jacobi preconditioning**: \(M = \text{diag}(A) \). Very simple and cheap, might improve certain problems but usually insufficient.

- **Block-Jacobi preconditioning**: Let \(M \) be composed of block-diagonal instead of diagonal.

- **Multigrid (coarse-grid approximations)**: For a PDE discretized on a grid, a preconditioner can be formed by transferring the solution to a coarser grid, solving a smaller problem, then transferring back. This is sometimes the most efficient approach if applicable.