AMS526: Numerical Analysis I
(Numerical Linear Algebra for Computational and Data Sciences)

Lecture 1: Course Overview; Matrix Multiplication

Xiangmin Jiao

Stony Brook University
Outline

1 Course Overview

2 Matrix Notation and Basic Operations (MC §1.1)

3 Range, Null Space and Rank (NLA §1)
Course Description

- What is numerical linear algebra?
 - Solving linear algebra problems using efficient algorithms on computers

- Topics: Direct and iterative methods for solving simultaneous linear equations, least squares problems, computation of eigenvalues and eigenvectors, and singular value decomposition

- Required textbooks

- Additional supplementary material will be provided as needed

- Course webpage:
 http://www.ams.sunysb.edu/~jiao/teaching/ams526
Prerequisite

- **This MUST NOT** be your first course in linear algebra, or you will get lost

- **Prerequisite/Co-requisite:**
 - AMS 510 (linear algebra portion) or equivalent undergraduate-level linear algebra course. Familiarity with following concepts is assumed: Vector spaces, Gaussian elimination, Gram-Schmidt orthogonalization, and eigenvalues/eigenvectors
 - AMS 595 (co-requisite for students without programming experience)

- To review fundamental concepts of linear algebra, see textbook such as
Why Learn Numerical Linear Algebra?

- Foundation of scientific computations and data sciences
- Many problems ultimately reduce to linear algebra concepts or algorithms, either analytical or computational
- Examples: Finite-element analysis, data fitting, PageRank (Google)

Focus: Fundamental concepts, efficiency and stability of algorithms, and programming

New focus: relevance to computational and data sciences
Course Outline

- **Fundamentals** (matrix notation and basic operations; vector spaces; algorithmic considerations; norms and condition numbers; decomposition of matrices)
- **Linear systems** (triangular systems; Gaussian elimination; accuracy and stability; Cholesky factorization; sparse linear systems)
- **QR factorization and least squares** (Gram-Schmidt orthogonalization; QR factorization with Householder reflection; updating QR factorization with Givens rotation; stability; least squares problems; rank-revealing QR; SVD and low-rank approximations)
- **Eigenvalue problems** (eigenvalues and invariant spaces; classical eigenvalue methods; QR algorithms; two-stage methods; Arnoldi and Lanczos iterations)
- **Iterative Methods for linear systems** (basic iterative methods; conjugate gradient methods; minimal residual style methods; bi-Lanczos iterations; preconditioners)
- **Special topics** (multigrid methods; compressed sensing; under-determined systems, etc., if time permits)
Course Policy

- Assignments (written or programming)
 - Assignments are due in class one to two weeks after assigned
 - You can discuss course materials and homework problems with others, but you must write your answers completely independently
 - Do NOT copy solutions from any source. Do NOT share your solutions with others

- Exams and tests
 - All exams are closed-book
 - However, one-page cheat sheet is allowed

- Grading
 - Assignments: 30%
 - Two midterm exams: 40%
 - Final exam: 30%
Outline

1. Course Overview

2. Matrix Notation and Basic Operations (MC §1.1)

3. Range, Null Space and Rank (NLA §1)
Matrices and Vectors

- Denote vector space of all m-by-n real matrices by $\mathbb{R}^{m \times n}$.

$$A \in \mathbb{R}^{m \times n} \iff A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Denote vector space of all real n-vectors by \mathbb{R}^n, or $\mathbb{R}^{n \times 1}$

$$x \in \mathbb{R}^n \iff x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Transposition ($\mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}$): $C = A^T \Rightarrow c_{ij} = a_{ji}$

- Row vectors are transpose of column vectors and are in $\mathbb{R}^{1 \times n}$
Matrix Operations

- **Addition and subtraction** ($\mathbb{R}^{m\times n} \times \mathbb{R}^{m\times n} \rightarrow \mathbb{R}^{m\times n}$):
 \[C = A \pm B \Rightarrow c_{ij} = a_{ij} \pm b_{ij} \]

- **Scalar-matrix multiplication or scaling** ($\mathbb{R} \times \mathbb{R}^{m\times n} \rightarrow \mathbb{R}^{m\times n}$):
 \[C = \alpha A \Rightarrow c_{ij} = \alpha a_{ij} \]

- **Matrix-matrix multiplication/product** ($\mathbb{R}^{m\times p} \times \mathbb{R}^{p\times n} \rightarrow \mathbb{R}^{m\times n}$):
 \[C = A \cdot B \Rightarrow c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} \text{ (denoted by } A \ast B \text{ in MATLAB)} \]

- Each operation also applies to vectors. In particular,
 - **Inner product** is row vector times column vector, i.e., $c = x^T y$
 (it is called *dot product* in vector calculus and denoted as $x \cdot y$)
 - **Outer product** is column vector times row vector, i.e., $C = xy^T$
 (it is a special case of Kronecker product and denoted as $x \otimes y$)

- **Element-wise multiplication and division** ($\mathbb{R}^{m\times n} \times \mathbb{R}^{m\times n} \rightarrow \mathbb{R}^{m\times n}$)
 - $C = A \ast B \Rightarrow c_{ij} = a_{ij} b_{ij}$
 - $C = A/\cdot B \Rightarrow c_{ij} = a_{ij} / b_{ij}$, where $b_{ij} \neq 0$

- **Matrix inversion** (A^{-1}) and **division** (A/B and $A\backslash B$) to be defined later
Notation of Matrices and Vectors

- **Matrix notation**
 - Capital letters (e.g., A, B, Δ, etc.) for matrices
 - Corresponding lower case with subscript \(ij\) (e.g., \(a_{ij}\), \(b_{ij}\), \(\delta_{ij}\)) for \((i,j)\) entry; sometimes with notation \([A]_{ij}\) or \(A(i,j)\)

- **Vector notation**
 - Lowercase letters (e.g., \(x\), \(y\), etc.) for vectors
 - Corresponding lower case with subscript \(i\) for \(i\)th entry (e.g., \(x_i\), \(y_i\))

- Lower-case letters for scalars (e.g., \(c\), \(s\), \(\alpha\), \(\beta\), etc.)

- Some books suggest using boldface lowercase (e.g., \(x\)) for vectors, regular lowercase (e.g., \(c\)) for scalars, and boldface uppercase for matrices

- A matrix is a collection of column vectors or row vectors

\[
A \in \mathbb{R}^{m \times n} \iff A = [c_1 | c_2 | \ldots | c_n], \quad c_k \in \mathbb{R}^m
\]

\[
A \in \mathbb{R}^{m \times n} \iff A = \begin{bmatrix} r_1^T \\ \vdots \\ r_m^T \end{bmatrix}, \quad r_k \in \mathbb{R}^n
\]
Complex Matrices

- Occasionally, complex matrices are involved
- Vector space of m-by-n complex matrices is designated by $\mathbb{C}^{m \times n}$
 - Scaling, addition, multiplication of complex matrices correspond exactly to real case
 - If $A = B + iC \in \mathbb{C}^{m \times n}$, then $\text{Re}(A) = B$, $\text{Im}(A) = C$, and conjugate of A is $\overline{A} = (\overline{a}_{ij})$
 - Conjugate transpose is defined as $A^H = B^T - iC^T$, or
 $$G = A^H \Rightarrow g_{ij} = \overline{a}_{ji}$$
 (also called adjoint, and denoted by $A^*; (AB)^* = B^*A^*$)
- Vector space of complex n-vectors is designated by \mathbb{C}^n
 - Inner product of complex n-vectors x and y is $s = x^H y$
 - Outer product of complex n-vectors x and y is $S = xy^H$
- We will primarily focus on real matrices
Matrix-Vector Product

- Matrix-vector product $b = Ax$ is a special case of matrix-matrix product

$$b_i = \sum_{j=1}^{n} a_{ij}x_j$$

- For $A \in \mathbb{R}^{m \times n}$, Ax is a mapping $x \mapsto Ax$ from \mathbb{R}^n to \mathbb{R}^m

- This map is **linear**, which means that for any $x, y \in \mathbb{R}^n$ and any $\alpha \in \mathbb{R}$

$$A(x + y) = Ax + Ay$$
$$A(\alpha x) = \alpha Ax$$
Linear Combination

- Let a_j denote jth column of matrix A
 - Alternative notation is colon notation: $A(:,j)$ or $a::j$
 - Use $A(i,:)$ or $a_{i,:}$ to denote ith row of A

- b is a linear combination of column vectors of A, i.e.,

$$b = Ax = \sum_{j=1}^{n} x_j a_j = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1m} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

- In summary, two different views of matrix-vector products:
 1. Scalar operations: $b_i = \sum_{j=1}^{n} a_{ij} x_j$: A acts on x to produce b
 2. Vector operations: $b = \sum_{j=1}^{n} x_j a_j$: x acts on A to produce b
Matrix-Matrix Multiplication

- Computes $C = AB$, where $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{r \times n}$, and $C \in \mathbb{R}^{m \times n}$
- Element-wise, each entry of C is
 \[c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj} \]
- Column-wise, each column of C is
 \[c_j = Ab_j = \sum_{k=1}^{r} b_{kj} a_k; \]
 in other words, jth column of C is A times jth column of B
Outline

1. Course Overview
2. Matrix Notation and Basic Operations (MC §1.1)
3. Range, Null Space and Rank (NLA §1)
Terminology of Vector Space

- **Vector space** is closed under addition and scalar multiplication, with zero vector as a member.
- Vector space *spanned* by a set of vectors \(\{a_j\} \) is

\[
\text{span}\{a_1, \ldots, a_n\} = \left\{ \sum_{j=1}^{n} \beta_j a_j \mid \beta_j \in \mathbb{R} \right\}
\]

- Space spanned by \(n \)-vectors is a *subspace* of \(\mathbb{R}^n \).
- If \(\{a_1, \ldots, a_n\} \) is *linearly independent*, then the \(a_j \) are the *basis* of \(S = \text{span}\{a_1, \ldots, a_n\} \), *dimension* of \(S \) is \(\dim(S) = n \), and each \(b \in S \) is unique linear combination of the \(a_j \).
- If \(S_1 \) and \(S_2 \) are two subspaces, then \(S_1 \cap S_2 \) is a subspace, so is \(S_1 + S_2 = \{b_1 + b_2 \mid b_1 \in S_1, b_2 \in S_2\} \).
 - Note: \(S_1 + S_2 \) is different from \(S_1 \cup S_2 \); latter may not be a subspace.
- Two subspaces \(S_1 \) and \(S_2 \) of \(\mathbb{R}^n \) are *complementary subspaces* of each other if \(S_1 + S_2 = \mathbb{R}^n \) and \(S_1 \cap S_2 = \{0\} \).
 - In other words, \(\dim(S_1) + \dim(S_2) = n \) and \(S_1 \cap S_2 = \{0\} \).
Definition

The *range* of a matrix A, written as range(A) or ran(A), is the set of vectors that can be expressed as Ax for some x

\[
\{ y \in \mathbb{R}^m | y = Ax \text{ for some } x \in \mathbb{R}^n \}.
\]
Range and Null Space

Definition

The *range* of a matrix A, written as $\text{range}(A)$ or $\text{ran}(A)$, is the set of vectors that can be expressed as Ax for some x

$$\{ y \in \mathbb{R}^m | y = Ax \text{ for some } x \in \mathbb{R}^n \}.$$

Theorem

$\text{range}(A)$ is the space spanned by the columns of A.

Therefore, *range* of A is also called the *column space* of A.

Range and Null Space

Definition

The *range* of a matrix A, written as $\text{range}(A)$ or $\text{ran}(A)$, is the set of vectors that can be expressed as Ax for some x

$$\{ y \in \mathbb{R}^m | y = Ax \text{ for some } x \in \mathbb{R}^n \}.$$

Theorem

$\text{range}(A)$ is the space spanned by the columns of A.
Therefore, range of A is also called the *column space* of A.

Definition

The *null space* of $A \in \mathbb{R}^{m\times n}$, written as $\text{null}(A)$, is the set of vectors x that satisfy $Ax = 0$.

Entries of $x \in \text{null}(A)$ give coefficient of $\sum x_i a_i = 0$.
Note: The null space of A is in general *not* a complementary subspace of $\text{range}(A)$.
For real matrices $A \in \mathbb{R}^{m \times n}$
- $\text{null}(A)$ and range(A^T) are complementary subspaces
- For symmetric matrices ($A = A^T$), $\text{null}(A)$ and range(A) are complementary subspaces

For complex matrices $A \in \mathbb{C}^{m \times n}$
- $\text{null}(A)$ and range(A^H) are complementary subspaces
- For Hermitian matrices ($A = A^H$), $\text{null}(A)$ and range(A) are complementary subspaces
Rank

Definition

The *column rank* of a matrix is the dimension of its column space. The *row rank* is the dimension of the space spanned by its rows.

Question: Can the column rank and the row rank be different?

Answer: No. We will give a proof in later lectures. We therefore simply say the *rank* of a matrix.
Definition

The column rank of a matrix is the dimension of its column space. The row rank is the dimension of the space spanned by its rows.

Question: Can the column rank and the row rank be different?
Answer: No. We will give a proof in later lectures.

- We therefore simply say the rank of a matrix.

Question: Given $A \in \mathbb{R}^{m \times n}$, what is dim(null($A$)) + rank($A$) equal to?
Definition

The *column rank* of a matrix is the dimension of its column space. The *row rank* is the dimension of the space spanned by its rows.

Question: Can the column rank and the row rank be different?

Answer: No. We will give a proof in later lectures.

- We therefore simply say the *rank* of a matrix.

Question: Given $A \in \mathbb{R}^{m \times n}$, what is $\dim(\text{null}(A)) + \text{rank}(A)$ equal to?

Answer: n.

- A real matrix A is rank-1 if it can be written as $A = uv^T$, where u and v are nonzero vectors.
Full Rank

Definition

A matrix has *full rank* if it has the maximal possible rank, i.e., \(\min\{m, n\} \).

Otherwise, it is called *rank deficient*.
Full Rank

Definition
A matrix has full rank if it has the maximal possible rank, i.e., \(\min\{m, n\} \).
Otherwise, it is called rank deficient.

Theorem
A matrix \(A \in \mathbb{R}^{m \times n} \) with \(m \geq n \) has full rank if and only if it maps no two distinct vectors to the same vector.

In other word, the linear mapping defined by \(Ax \) for \(x \in \mathbb{R}^n \) is one-to-one.
Full Rank

Definition

A matrix has *full rank* if it has the maximal possible rank, i.e., \(\min\{m, n\} \).

Otherwise, it is called *rank deficient*.

Theorem

A matrix \(A \in \mathbb{R}^{m \times n} \) with \(m \geq n \) has full rank if and only if it maps no two distinct vectors to the same vector.

In other word, the linear mapping defined by \(Ax \) for \(x \in R^n \) is one-to-one.

Proof.

(\(\Rightarrow \)) Column vectors of \(A \) forms a basis of \(\text{range}(A) \), so every \(b \in \text{range}(A) \) has a unique linear expansion in terms of the columns of \(A \).

(\(\Leftarrow \)) If \(A \) does not have full rank, then its column vectors are linear dependent, so its vectors do not have a unique linear combination.
Full Rank vs. Non-singularity

- If $A \in \mathbb{R}^{n \times n}$ and $AX = I$, then X is the inverse of A, denoted by A^{-1}
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1} = A^{-T}$
 - $(A + UV^T)^{-1} = A^{-1} - A^{-1}U(I + V^T A^{-1} U)^{-1}V^T A^{-1}$
 for $U, V \in \mathbb{R}^{n \times k}$ (Sherman-Morrison-Woodbury formula)

- If A^{-1} exists, A is nonsingular. A is square and has full rank.

- In A is nonsingular, linear system $Ax = b$ results in $x = A^{-1}b$, and it is the inverse problem of matrix-vector multiplication

- If $A \in \mathbb{R}^{m \times n}$ where $n \neq m$ and A has full rank, what is the inverse problem of matrix-vector multiplication?

- If A is rank deficient, what is the inverse problem of matrix-vector multiplication?

- We will need progressively more advanced linear algebra concepts to answer these questions in later part of this semester.