AMS526: Numerical Analysis I
(Numerical Linear Algebra for Computational and Data Sciences)
Lecture 3: Matrix Norms; Singular Value Decomposition

Xiangmin Jiao

SUNY Stony Brook
Outline

1 Matrix Norms (NLA §3)

2 Singular Value Decomposition (NLA§4-5)
Frobenius Norm

- One can define a norm by viewing $m \times n$ matrix as vectors in \mathbb{R}^{mn}
- One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

\[
\|A\|_F = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}|^2} = \sqrt{\sum_{j=1}^{n} \|a_j\|_2^2}
\]

i.e., 2-norm of (mn)-vector

- Furthermore,

\[
\|A\|_F = \sqrt{\text{tr}(A^T A)}
\]

where $\text{tr}(B)$ denotes trace of B, the sum of its diagonal entries

- Note that for $A \in \mathbb{R}^{n \times \ell}$ and $B \in \mathbb{R}^{\ell \times m}$,

\[
\|AB\|_F \leq \|A\|_F \|B\|_F
\]

because

\[
\|AB\|_F^2 = \sum_{i=1}^{n} \sum_{j=1}^{m} |a_i^T b_j|^2 \leq \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\|a_i^T\|_2 \|b_j\|_2\right)^2 = \|A\|_F^2 \|B\|_F^2
\]

Xiangmin Jiao
General Definition of Matrix Norms

- However, viewing $m \times n$ matrix as vectors in \mathbb{R}^{mn} is not always useful, because matrix operations do not behave this way.
- Similar to vector norms, general matrix norms has the following properties (for $A, B \in \mathbb{R}^{m \times n}$)

 1. $\|A\| \geq 0$, and $\|A\| = 0$ only if $A = 0$,
 2. $\|A + B\| \leq \|A\| + \|B\|$,
 3. $\|\alpha A\| = |\alpha| \|A\|$.

- In addition, a matrix norm for $A, B \in \mathbb{R}^{n \times n}$ typically satisfies

 $\|AB\| \leq \|A\| \|B\|$, (submultiplicativity)

 which is a generalization of Cauchy-Schwarz inequality.
Norms Induced by Vector Norms

- Matrix norms can be *induced* from vector norms, which can better capture behaviors of matrix-vector multiplications.

Definition

Given vector norms $\| \cdot \|_n$ and $\| \cdot \|_m$ on domain and range of $A \in \mathbb{R}^{m \times n}$, respectively, the induced matrix norm $\| A \|_{(m,n)}$ is the smallest number $C \in \mathbb{R}$ for which the following inequality holds for all $x \in \mathbb{R}^n$:

$$\| Ax \|_m \leq C \| x \|_n.$$

- In other words, it is supremum of $\| Ax \|_m / \| x \|_n$ for all $x \in \mathbb{R}^n \setminus \{0\}$.
- Maximum factor by which A can “stretch” $x \in \mathbb{R}^n$

$$\| A \|_{(m,n)} = \sup_{x \in \mathbb{R}^n, x \neq 0} \| Ax \|_m / \| x \|_n = \sup_{x \in \mathbb{R}^n, \| x \|_n = 1} \| Ax \|_m.$$

- Is vector norm consistent with matrix norm of $m \times 1$-matrix?
1-norm

- By definition

\[\|A\|_1 = \sup_{x \in \mathbb{R}^n, \|x\|_1 = 1} \|Ax\|_1 \]

- What is it equal to?

Maximum of 1-norm of column vectors of \(A\)
Or maximum of column sum of absolute values of \(A\), "column-sum norm"
1-norm

- By definition
 \[\|A\|_1 = \sup_{x \in \mathbb{R}^n, \|x\|_1 = 1} \|Ax\|_1 \]

- What is it equal to?
 - Maximum of 1-norm of column vectors of \(A \)
 - Or maximum of column sum of absolute values of \(A \), “column-sum norm”

- To show it, note that for \(x \in \mathbb{R}^n \) and \(\|x\|_1 = 1 \)
 \[\|Ax\|_1 = \left\| \sum_{j=1}^n x_j a_j \right\|_1 \leq \sum_{j=1}^n |x_j| \|a_j\|_1 \leq \max_{1 \leq j \leq n} \|a_j\|_1 \|x\|_1 \]

- Let \(k = \arg \max_{1 \leq j \leq n} \|a_j\|_1 \), then \(\|Ae_k\|_1 = \|a_k\|_1 \), so \(\max_{1 \leq j \leq n} \|a_j\|_1 \) is tight upper bound
By definition

$$\|A\|_\infty = \sup_{x \in \mathbb{R}^n, \|x\|_\infty = 1} \|Ax\|_\infty$$

What is $\|A\|_\infty$ equal to?
By definition
\[\| A \|_\infty = \sup_{x \in \mathbb{R}^n, \| x \|_\infty = 1} \| Ax \|_\infty \]

What is \(\| A \|_\infty \) equal to?
- Maximum of 1-norm of column vectors of \(A^T \)
- Or maximum of row sum of absolute values of \(A \), “row-sum norm”

to show it, note that for \(x \in \mathbb{R}^n \) and \(\| x \|_\infty = 1 \)

\[\| Ax \|_\infty = \max_{1 \leq i \leq m} |a_{i,:}x| \leq \max_{1 \leq i \leq m} \| a_{i,:} \|_1 \| x \|_\infty \]

where \(a_{i,:} \) denotes \(i \)th row vector of \(A \) and \(\| a_{i,:} \|_1 = \sum_{j=1}^n |a_{ij}| \)

Furthermore, \(\| a_{i,:} \|_1 \) is a tight bound.

Which vector can we choose for \(x \) for equality to hold?
What is 2-norm of a matrix?

What is 2-norm of a diagonal matrix D?

What is 2-norm of rank-one matrix uv^T? Hint: Use Cauchy-Schwarz inequality.
2-norm

- What is 2-norm of a matrix?
 Answer: Its largest singular value, which we will explain in later lectures
- What is 2-norm of a diagonal matrix D?

\[\|D\|_2 = \max_{n} \{\|d_{ii}\|\} \]
What is 2-norm of a matrix?
Answer: Its largest singular value, which we will explain in later lectures

What is 2-norm of a diagonal matrix D?
Answer: $\|D\|_2 = \max_{i=1}^n \{|d_{ii}|\}$

What is 2-norm of rank-one matrix uv^T? Hint: Use Cauchy-Schwarz inequality.
2-norm

- What is 2-norm of a matrix?
 Answer: Its largest singular value, which we will explain in later lectures

- What is 2-norm of a diagonal matrix D?
 Answer: $\|D\|_2 = \max_{i=1}^{n} \{|d_{ii}|\}$

- What is 2-norm of rank-one matrix uv^T? Hint: Use Cauchy-Schwarz inequality.
 Answer: $\|uv^T\|_2 = \|u\|_2 \|v\|_2$.
Bounding Matrix-Matrix Multiplication

- Let A be an $l \times m$ matrix and B an $m \times n$ matrix, then
 \[\|AB\|_{(l,n)} \leq \|A\|_{(l,m)} \|B\|_{(m,n)} \]

- To show it, note for $x \in \mathbb{R}^n$
 \[\|ABx\|_{(l)} \leq \|A\|_{(l,m)} \|Bx\|_{(m)} \leq \|A\|_{(l,m)} \|B\|_{(m,n)} \|x\|_{(n)}, \]

- In general, this inequality is not an equality
- In particular, $\|A^p\| \leq \|A\|^p$ but $\|A^p\| \neq \|A\|^p$ in general for $p \geq 2$
Invariance under Orthogonal Transformation

- Given matrix $Q \in \mathbb{R}^{\ell \times m}$ with $\ell \geq m$. If $Q^T Q = I$, then Qx for $x \in \mathbb{R}^m$ corresponds to orthogonal transformation to coordinate system in \mathbb{R}^ℓ.
- If $Q \in \mathbb{R}^{m \times m}$, then Q is said to be an orthogonal matrix.

Theorem

For any $A \in \mathbb{R}^{m \times n}$ and $Q \in \mathbb{R}^{\ell \times m}$ with $Q^T Q = I$ and $\ell \geq m$, we have

$$\|QA\|_2 = \|A\|_2 \text{ and } \|QA\|_F = \|A\|_F.$$

In other words, 2-norm and Frobenius norms are invariant under orthogonal transformation.

Proof for 2-norm: $\|Qy\|_2 = \|y\|_2$ for $y \in \mathbb{R}^m$ and therefore $\|QAx\|_2 = \|Ax\|_2$ for $x \in \mathbb{R}^n$. It then follows from definition of 2-norm.

Proof for Frobenius norm:

$$\|QA\|^2_F = \text{tr} \left((QA)^T QA \right) = \text{tr} \left(A^T Q^T QA \right) = \text{tr} \left(A^T A \right) = \|A\|^2_F.$$
Outline

1. Matrix Norms (NLA §3)

2. Singular Value Decomposition (NLA§4-5)
Singular Value Decomposition (SVD)

- Given $A \in \mathbb{R}^{m \times n}$, its SVD is
 \[A = U \Sigma V^T \]
 where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal
- If $A \in \mathbb{C}^{m \times n}$, then its SVD is $A = U \Sigma V^H$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal
- **Singular values** are diagonal entries of Σ, with entries
 \[\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0 \]
- **Left singular vectors** of A are column vectors of U
- **Right singular vectors** of A are column vectors of V and are the preimages of the principal semiaxes of AS
- SVD plays prominent role in data analysis and matrix analysis
Geometric Observation

- Image of unit sphere under any $m \times n$ matrix is a *hyperellipse*
- Give unit sphere S in \mathbb{R}^n, AS denotes shape after transformation
- *Singular values* correspond to the principal semiaxes of hyperellipse
- *Left singular vectors* are oriented in directions of principal semiaxes of AS
- *Right singular vectors* are preimages of principal semiaxes of AS
- $Av_j = \sigma_j u_j$ for $1 \leq j \leq n$
Two Different Types of SVD

- **Full SVD**: \(U \in \mathbb{R}^{m \times m}, \Sigma \in \mathbb{R}^{m \times n}, \) and \(V \in \mathbb{R}^{n \times n} \) is

\[
A = U \Sigma V^T
\]
Two Different Types of SVD

- **Full SVD**: \(U \in \mathbb{R}^{m \times m}, \Sigma \in \mathbb{R}^{m \times n}, \) and \(V \in \mathbb{R}^{n \times n} \) is
 \[
 A = U \Sigma V^T
 \]

- **Thin SVD (Reduced SVD)**: \(\hat{U} \in \mathbb{R}^{m \times n}, \hat{\Sigma} \in \mathbb{R}^{n \times n} \) (assume \(m \geq n \))
 \[
 A = \hat{U} \hat{\Sigma} V^T
 \]
Two Different Types of SVD

- **Full SVD**: $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ is
 \[A = U\Sigma V^T \]

- **Thin SVD (Reduced SVD)**: $\hat{U} \in \mathbb{R}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \geq n$)
 \[A = \hat{U}\hat{\Sigma}V^T \]

- Furthermore, notice that
 \[A = \sum_{i=1}^{\min\{m,n\}} \sigma_i u_i v_i^T \]
 so we can keep only entries of U and V corresponding to nonzero σ_i.