AMS526: Numerical Analysis I
(Numerical Linear Algebra for Computational and Data Sciences)
Lecture 9: Positive-Definite Systems; Cholesky Factorization

Xiangmin Jiao

Stony Brook University
Outline

1. Positive-Definite Systems (MC§4.2)

2. Cholesky Factorization (NLA§23)
Symmetric Positive-Definite Matrices

- Symmetric matrix $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite (SPD) if $x^T Ax > 0$ for $x \in \mathbb{R}^n \setminus \{0\}$

- Hermitian matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (HPD) if $x^* Ax > 0$ for $x \in \mathbb{C}^n \setminus \{0\}$

- SPD matrices have positive real eigenvalues and orthogonal eigenvectors

- Note: A positive-definite matrix does not need to be symmetric or Hermitian! A real matrix A is positive definite iff $A + A^T$ is SPD

- If $x^T Ax \geq 0$ for $x \in \mathbb{R}^n \setminus \{0\}$, then A is said to be positive semidefinite
Properties of Symmetric Positive-Definite Matrices

- SPD matrix often arises as Hessian matrix of some convex functional
 - E.g., least squares problems; partial differential equations
- If A is SPD, then A is nonsingular
- Let X be any $n \times m$ matrix with full rank and $n \geq m$. Then
 - X^TX is symmetric positive definite, and
 - XX^T is symmetric positive semidefinite
- If A is $n \times n$ SPD and $X \in \mathbb{R}^{n \times m}$ has full rank and $n \geq m$, then X^TAX is SPD
- Any principal submatrix (picking some rows and corresponding columns) of A is SPD and $a_{ii} > 0$
Outline

1. Positive-Definite Systems (MC§4.2)

2. Cholesky Factorization (NLA§23)
Cholesky Factorization

- If A is symmetric positive definite, then there is factorization of A

$$A = R^T R$$

where R is upper triangular, and all its diagonal entries are positive.

- Key idea: take advantage and preserve symmetry and positive-definiteness during factorization.

- Eliminate below diagonal and to the right of diagonal.

$$A = \begin{bmatrix} a_{11} & b^T \\ b & K \end{bmatrix} = \begin{bmatrix} r_{11} & 0 \\ b/r_{11} & I \end{bmatrix} \begin{bmatrix} r_{11} & b^T/r_{11} \\ 0 & K - bb^T/a_{11} \end{bmatrix}$$

$$= \begin{bmatrix} r_{11} & 0 \\ b/r_{11} & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - bb^T/a_{11} \end{bmatrix} \begin{bmatrix} r_{11} & b^T/r_{11} \\ 0 & I \end{bmatrix} = R_1^T A_1 R_1$$

where $r_{11} = \sqrt{a_{11}}$, where $a_{11} > 0$.

- $K - bb^T/a_{11}$ is principal submatrix of SPD $A_1 = R_1^{-T} A R_1^{-1}$ and therefore is SPD, with positive diagonal entries.
Cholesky Factorization

- Apply recursively to obtain

\[A = \begin{pmatrix} R_1^T & R_2^T & \cdots & R_n^T \end{pmatrix} (R_n \cdots R_2 R_1) = R^T R, \quad r_{jj} > 0 \]

which is known as *Cholesky factorization*

- How to obtain \(R \) from \(R_n, \ldots, R_2, R_1 \)? Recursively:

\[
A = \begin{bmatrix} r_{11} & 0 \\ s & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & A_1 \end{bmatrix} \begin{bmatrix} r_{11} & s^T \\ 0 & I \end{bmatrix} = \begin{bmatrix} r_{11} & 0 \\ s & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \tilde{R}^T \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \tilde{R} \end{bmatrix} \begin{bmatrix} r_{11} & s^T \\ 0 & I \end{bmatrix} = \begin{bmatrix} r_{11} & 0 \\ s & \tilde{R}^T \end{bmatrix} \begin{bmatrix} r_{11} & s^T \\ 0 & \tilde{R} \end{bmatrix} = R^T R
\]

- \(R \) is “union” of \(k \)th rows of \(R_k \) (\(R^T \) is “union” of columns of \(R_k^T \))
- Matrix \(A_1 \) is called the *Schur complement* of \(a_{11} \) in \(A \)
Existence and Uniqueness

- Every SPD matrix has a unique Cholesky factorization
 - It exists because algorithm for Cholesky factorization always works for SPD matrices
 - Unique because once $\alpha = \sqrt{a_{11}}$ is determined at each step, entire column w/α is determined

- Question: How to check whether a symmetric matrix is positive definite?

- Answer: Run Cholesky factorization and it succeeds iff the matrix is positive definite.
Algorithm of Cholesky Factorization

- Factorize SPD matrix \(A \in \mathbb{R}^{n \times n} \) into \(A = R^T R \)

```
Algorithm: Cholesky factorization

\[ R = A \]

```
```
\textbf{for} \( k = 1 : n \)
```
```
\textbf{for} \( j = k + 1 : n \)
```
```
\[ r_{j,j:n} \leftarrow r_{j,j:n} - \left( \frac{r_{kj}}{r_{kk}} \right) r_{k,j:n} \]
```
```
\[ r_{k,k:n} \leftarrow r_{k,k:n}/\sqrt{r_{kk}} \]
```

- Note: \(r_{j,j:n} \) denotes subvector of \(j \)th row with columns \(j, j + 1, \ldots, n \)

- Operation count

\[
\sum_{k=1}^{n} \sum_{j=k+1}^{n} 2(n - j) \approx 2 \sum_{k=1}^{n} \sum_{j=1}^{k} j \approx \sum_{k=1}^{n} k^2 \approx \frac{n^3}{3}
\]

- In practice, \(R \) overwrites \(A \), and only upper-triangular part is stored.
Notes on Cholesky Factorization

- Stability of Cholesky factorization
 - Cholesky factorization is backward stable
 - This is because $\| R \|_2^2 = \| A \|_2$, so entries in R are well bounded

- Cholesky factorization $A = R^* R$ exists for HPD matrices, where R is upper-triangular and its diagonal entries are positive real values

- Implementations
 - Different versions of Cholesky factorization can all use block-matrix operators to achieve better performance, and actual performance depends on sizes of blocks
 - Different versions may have different amount of parallelism
LDL^T Factorization

- What happens if A is symmetric but not positive definite?
- Cholesky factorization is sometimes given by $A = LDL^T$ where D is diagonal matrix and L is unit lower triangular matrix.
- This avoids computing square roots.
- Symmetric indefinite systems can be factorized with $PAP^T = LDL^T$, where
 - P is a permutation matrix
 - D is diagonal (if A is complex, D is block diagonal with 1×1 and 2×2 blocks)
 - its cost is similar to Cholesky factorization
A matrix A is \textit{banded} if there is a narrow band around the main diagonal such that all of the entries of A outside of the band are zero.

If A is $n \times n$, and there is an $s \ll n$ such that $a_{ij} = 0$ whenever $|i - j| > s$, then we say A is banded with bandwidth $2s + 1$.

For symmetric matrices, only half of band is stored. We say that A has semi-bandwidth s.

\textbf{Theorem}

\textit{Let A be a banded, symmetric positive definite matrix with semi-bandwidth s. Then its Cholesky factor R also has semi-bandwidth s.}

- This is easy to prove using bordered form of Cholesky factorization.
- Total flop count of Cholesky factorization is only $\sim ns^2$.
- However, A^{-1} of a banded matrix may be dense, so it is not economical to compute A^{-1}.