AMS527: Numerical Analysis II
Review for Final Exam

Xiangmin Jiao

SUNY Stony Brook
Announcements

- Final exam will be on Mon. 5/14 at 17:15–19:45 in Light Engineering 152
- The exam will be accumulative
  - about 60% on materials after Test 2
  - about 20% on materials after Test 1 and before Test 2
  - about 20% on materials before Test 1
Materials Covered Since Test 2

- Two-point boundary value problems (BVP)
  - Concepts: existence and uniqueness (for linear BVP), conditioning and stability, types of boundary conditions
  - Numerical methods for solving two-point BVPs: shooting method, finite difference, collocation, Galerkin
  - (Not required: eigenvalue problems for ODEs)

- Overview of partial differential equations
  - Classification of PDEs, example equations
  - Time-dependent problems,
    - Concepts: stiffness, Lax Equivalence theorem, stability, CFL condition
    - Numerical methods, semidiscrete methods (method of lines)
  - Finite-difference methods for time-independent PDEs
Materials Covered Since Test 2

- Finite element methods for Poisson equation
  - Concepts: strong form vs. weak form, **Galerkin’s method vs. Rayleigh-Ritz method**, shape functions, general procedure for elemental computation, accuracy and convergence

- Sparse linear systems
  - Concepts: sparsity and their origins, direct methods (fills), iterative methods (mostly relaxation methods), Multigrid methods (motivation, residual equation, restriction, injection, efficiency)

- Fourier transform
  - Concept: trigonometric interpolation, discrete Fourier transform (DFT), inverse discrete Fourier transform, analogy with polynomial interpolation, limitations, applications to convolution
  - Algorithm: **fast Fourier transform** (FFT), inverse fast Fourier transform
Materials Covered Before Test 1

- Approximations in scientific computations
  - Concepts: absolute error, relative error, computational error, propagated data error, truncation error, rounding error, forward error, backward error, condition number, stability, cancellation

- Solutions of nonlinear equations
  - Concepts: multiplicity, sensitivity, convergence rate
  - Basic algorithms: Interval bisection method, fixed-point iteration
  - Newton’s method, secant method, Broyden’s method, and other Newton-like method
Materials Covered Before Test 1

- **Numerical optimization**
  - Concepts: unconstrained optimization, constrained optimization (linear vs. nonlinear programming), global vs. local minimum, coercive, convex, first- and second-order optimality condition, unimodality
  - Algorithms for unconstrained optimization: golden section search, *Newton’s method*, Quasi-Newton methods (basic ideas), steepest descent, conjugate gradient (basic ideas)
  - Lagrange multiplier for constrained optimization, especially equality-constrained optimization

- **Interpolation**
  - Concepts: interpolation vs. approximation, basis functions, orthogonal polynomials, convergence, *Taylor polynomial*
  - **Polynomial interpolation** using monomial, Lagrange, Newton basis functions, comparisons, divided difference
  - Orthogonal polynomial interpolation, properties
Materials Covered Before Test 2

- Numerical Integration
  - Concepts: quadrature rules; degree of quadrature rules; stability of quadrature rules; connections with polynomial interpolation; Newton-Cotes rules; Gaussian quadrature rules; change of interval; composite quadrature rule; multiple integrals
  - Basic algorithms/schemes: method of undetermined coefficients; midpoint rule, trapezoid rule; Simpson’s rule; Gaussian quadrature rules
  - Application to integral equations

- Numerical Differentiation
  - Concepts: Finite difference approximation; connections with polynomial interpolation
  - Basic algorithms/schemes: forward difference, backward difference, centered difference

- Other key concepts: Integral equations and Richardson extrapolation
Materials Covered Before Test 2

Numerical Methods for Initial Value Problems

- Concepts: existence, uniqueness, and stability of solutions of ODEs; order of ODEs; global error vs. local error; growth factor for analysis of stability; stiffness; unconditionally stable; predictor-corrector methods
- Basic algorithms/schemes: Euler’s method; backward Euler; trapezoid method; Heun’s method; fourth-order Runge-Kutta method
- Understand how first- and second-order methods are derived
- Other methods: Taylor series methods; multistep methods; multivalue methods