Binary Space Partitions for Orthogonal Segments and Hyperrectangles

Adrian Dumitrescu
Joe Mitchell
Micha Sharir

State University of New York
Stony Brook, NY 11794–3600
Binary Space Partitions (BSP):
BSP Trees:

Input: set S of n disjoint objects in \mathbb{R}^d

Output: BSP: convex subdivision induced by hyperplanes such that each (open) cell intersects at most one object

GOAL: Small trees (few fragments)

size of BSP = total number of object fragments (leaves)

autopartition – splitting hyperplanes are supporting planes of (polyhedral) objects S

“perfect BSP”: size $= n$ [dBdGO’97]
Background:

Introduced by the computer graphics community

“Painter’s Algorithm” [FuchsKedemNaylor’80]

Other applications: ray shooting, solid modeling, rectangle tiling

Theoretical study initiated by Paterson and Yao, 1989
Prior Results:

$O(n \log n)$ size for n segments in \mathbb{R}^2 [PY]

(algorithm to compute in $O(n \log n)$ time)

Conjecture: $O(n)$ size
Prior Results:

$O(n \log n)$ size for n segments in \mathbb{R}^2 [PY]

(algorithm to compute in $O(n \log n)$ time)

Conjecture: $O(n)$ size

New lower bound of $\Omega(n \frac{\log n}{\log \log n})$ for autopartitions [Toth’00]
Prior Results:

$O(n \log n)$ size for n segments in \mathbb{R}^2 [PY]
(algorithm to compute in $O(n \log n)$ time)

Conjecture: $O(n)$ size

New lower bound of $\Omega(n \frac{\log n}{\log \log n})$ for autopartitions [Toth’00]

$O(n^2)$, $\Omega(n^2)$ for n triangles in \mathbb{R}^3 [PY]

$O(n^{d-1})$ for $(d - 1)$-simplices in \mathbb{R}^d [PY]
Prior Results (cont):

$O(n)$ size for special cases: [dBdGO’97,dBdG’94,dB’00]

- orthogonal segments in \mathbb{R}^2 [PY]
- fat objects
- uncluttered scenes in \mathbb{R}^d
- bounded length ratio segments in \mathbb{R}^2
- homothetic objects
- segments of $O(1)$ orientations [Toth’01]
Size of BSPs of Orthogonal (Axis-Parallel) Objects:

$\leq 3n$ for segments in \mathbb{R}^2 \hspace{1cm} [PY]

Lower bound: $\geq 1.25n$

$\leq 4n$ for rectangles in \mathbb{R}^2 \hspace{1cm} [dAF]

Implicit in d’Amore-Franciosa: $\leq 2n$ for segments

$\leq 3n$ ($\geq 2n$) for rectangles in \mathbb{R}^2 \hspace{1cm} [BDM]

$\leq 2n$ ($\geq 1.5n$) for rectangle tiling in \mathbb{R}^2 \hspace{1cm} [BDM]

$\Theta(n^{d/(d-1)})$ for segments in \mathbb{R}^d \hspace{1cm} [PY]

$\Theta(n^{3/2})$ for rectangles in \mathbb{R}^3 \hspace{1cm} [PY]
Our Results:

Orthogonal (axis-parallel) objects

Tight bounds for segments in \mathbb{R}^2:

- Upper bound $2n - 1$
- Lower bound $2n - o(n)$

Improved lower bound of $\frac{7}{3}n - o(n)$ for rectangles in \mathbb{R}^2

versus $2n$ of [BDM]

New, simpler proofs (and lower constants) for upper bounds in \mathbb{R}^3:

- $O(n^{3/2})$ for segments
- $O(n^{3/2})$ for rectangles

New, simpler proof of $O(n^{d/(d-1)})$ for segments in \mathbb{R}^d
First results for \(k\)-rectangles in \(\mathbb{R}^d, \ d \geq 4\):

- If \(k < d/2\), \(\exists\) BSP of size \(O(n^{d/(d-k)})\)

 tight in the worst case

 This bound subsumes the bound \(\Theta(n^{d/(d-1)})\) for segments

- In fact, upper/lower bounds hold for \(k \leq d - 1\) for
 possibly intersecting rectangles

- Size \(O(n^{5/3}), \ \Omega(n^{5/3})\) for 2-rectangles in \(\mathbb{R}^4\)
Summary of Results:

<table>
<thead>
<tr>
<th>d</th>
<th>k</th>
<th>upper bound</th>
<th>lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>$2n - 1$ (\dagger)</td>
<td>$2n - o(n)$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$3n$ (\dagger)</td>
<td>$7n/3 - o(n)$</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>$O(n^{d/(d-1)})$ (\ast)</td>
<td>$\Omega(n^{d/(d-1)})$ (\ast)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$O(n^{3/2})$ (\ast)</td>
<td>$\Omega(n^{3/2})$ (\ast)</td>
</tr>
<tr>
<td>d</td>
<td>$k < d/2$</td>
<td>$O(n^{d/(d-k)})$</td>
<td>$\Omega(n^{d/(d-k)})$</td>
</tr>
<tr>
<td>d</td>
<td>$k \leq d - 1$, intersecting</td>
<td>$O(n^{d/(d-k)})$</td>
<td>$\Omega(n^{d/(d-k)})$</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>$O(n^{5/3})$</td>
<td>$\Omega(n^{5/3})$</td>
</tr>
</tbody>
</table>

(\dagger): known bound

(\ast): known bound, rederived here with simpler proof
BSP for Segments in \mathbb{R}^2:
BSP for Segments in \mathbb{R}^2:

[Diagram showing a binary space partitioning tree for segments in a 2D plane]
BSP for Segments in \mathbb{R}^2:
Lower Bound for Segments in \mathbb{R}^2:

A cycle configuration of thickness $w = 5$.
Lower Bound for Segments in \mathbb{R}^2:

A 4×4 2-grid (double grid).
Lower Bound for Segments in \mathbb{R}^2:

Charging scheme in a 5-grid.
Lower Bound for Rectangles (Squares) in \mathbb{R}^2:
Simple Upper Bound for Segments in \mathbb{R}^3:

n segments parallel to x-, y-, z-axes

For simplicity: general position (no shared coordinates)
Make \(\sqrt{n} \) slices \(\perp \) to \(z \)-axis

\(\leq \sqrt{n} \) red or green segments per slab

Each black (\(z \)-parallel) segment is cut \(\sqrt{n} \) times
Project each slab onto the \((x, y)\)-plane:

\[\leq \sqrt{n} \text{ horizontal/vertical segments} \]

\[\leq n \text{ points} \]
Project each slab onto the \((x, y)\)-plane:

\begin{itemize}
\item \(\leq \sqrt{n}\) horizontal/vertical segments
\item \(\leq n\) points
\end{itemize}

Cut the segments into \(O(n)\) disjoint segments (naive grid)
Project each slab onto the \((x, y)\)-plane:

\[\leq \sqrt{n} \text{ horizontal/vertical segments} \]
\[\leq n \text{ points} \]

Cut the segments into \(O(n)\) disjoint segments (naive grid)

Apply 2D BSP: size \(O(n)\) per slice

\(\sqrt{n}\) slices \(\to\) size \(O(n^{3/2})\) total

(In fact, each segment cut into only \(\sqrt{n}\) pieces)
Segments $E = X \cup Y \cup Z$ parallel to $x-, y-, z$-axes $x = |X|, y = |Y|, z = |Z|$, so that $x + y + z = n$.

Theorem: BSP size $\leq 4\sqrt[3]{xyz} + 2n - z$, for $z \leq x, y$.

$$\leq \frac{4}{3\sqrt[3]{3}} n^{3/2} + \frac{5}{3} n$$

Lower bound:

$$\geq \frac{1}{3\sqrt[3]{3}} n^{3/2} + n$$

OPEN: Close the gap in the constants
Segments in \mathbb{R}^d: Slice and Dice:

Make $n^{1/(d-1)}$ slices \perp to x_d-axis

$\leq n^{(d-2)/(d-1)}$ nonvertical segments per slab

Each vertical (x_d-parallel) segment is cut $n^{1/(d-1)}$ times

Project each slab onto the (x_1, \ldots, x_{d-1})-hyperplane

- $\leq n^{(d-2)/(d-1)}$ segments in \mathbb{R}^{d-1}
- $\leq n$ points

Apply induction to compute BSP in each projected slab:

$$\left[n^{(d-2)/(d-1)}\right]^{(d-1)/(d-2)} = O(n)$$

$n^{1/(d-1)}$ slices \rightarrow size $O(n^{d/(d-1)})$ total

(In fact, each segment cut into only $n^{1/(d-1)}$ pieces)
k-Rectangles in \(\mathbb{R}^d \):

\(\mathcal{R} = \) set of \(n \) axis-parallel \(k \)-dimensional hyperrectangles

Assume \(k < d/2 \), **general position**

(Thus, no pair of rectangles intersect)

Each rectangle \(r \in \mathcal{R} \) has \(k \) **extent coordinates** (project to an interval)

and \(d - k \) **fixed coordinates** (project to a point)

Rectangle \(r \) is \(x_i \)-**pass-through** in box \(K \) if \(r, K \) have same \(x_i \) projection

\(\text{pt}(r, K) = \) tuple of coordinates for which \(r \) is a pass-through in \(K \)

Theorem \(\text{BSP of size } O(n^{d/(d-k)}) \)
Proof – Slice and Dice:

Let \(t = cn^{1/(d-k)} \)

BSP construction in \(d \) phases:

- \(j \)-th phase: slice each cell by \(t \) hyperplanes \(\perp x_j \)-axis

Phase 1: \(t \) slices \(\perp \) to \(x_1 \)

 Result: \(t \) slabs, each with \(\leq n \) 1-PT; \(\leq n/t \) non-PT

Phase 2: \(t \) slices \(\perp \) to \(x_2 \)

 Result: \(t^2 \) subslabs, each with \(\leq n \) (1,2)-PT; \(\leq n/t \) 1-PT;

 \(\leq n/t \) 2-PT; \(\leq n/t^2 \) non-PT
Phase \(j \):

\[\sigma = \text{a cell (subslab) produced by previous phases} \]

Induction Hypothesis: \(\forall M \subseteq \{1, \ldots, j - 1\} \text{ with } |M| \leq k, \sigma \text{ has } \leq n/t^{j-1-|M|} \text{ rectangles PT in exactly coordinates } M \)

Cut \(\sigma \) with \(O(t) \) cuts \(\perp x_j \)-axis

Ensure that \(\forall M \text{ subslab } \sigma' \) has \(\leq n/t^{j-1-|M|} \) rectangles that were in \(\sigma \) PT in exactly coordinates \(M \) and are not \(x_j \)-PT in \(\sigma' \)

(By IH, \(\sigma \) has \(\leq n/t^{j-1-|M|} \) such rectangles, so we can cut down by factor \(t \) for each \(\sigma' \))

Also, \(\forall M \subseteq \{1, \ldots, j\} \text{ with } |M| \leq k, j \in M, \sigma' \) has \(\leq n/t^{j-1-|M|} \) rectangles PT in exactly coordinates \(M \)

Claim: None of the final cells contains a rectangle in its interior

Number of cells: \(O(t^d) = O(n^{d/(d-k)}) \)
Theorem For any n, d and $k < d/2$, there are instances for which any
BSP has size $\Omega(n^{d/(d-k)})$
2-Rectangles in \mathbb{R}^4:

Apply round-robin slicing, as before, with $t = cn^{1/6}$

Result: $O(n^{2/3})$ subcells σ with

- $\leq n/t^2 = O(n^{2/3})$ rectangles PT in 2 coord
- $\leq n/t^3 = O(n^{1/2})$ rectangles PT in exactly 1 coord
- $\leq n/t^4 = O(n^{1/3})$ rectangles not PT

Lemma σ cannot contain rectangles r, r' such that r is PT in 2 coords and r' is PT in 2 complementary coords.

Thus, only two possible values for the set

$$pt(\sigma) \equiv \{ pt(r) \mid r \text{ is a rectangle that is PT in } \sigma \text{ in 2 coords} \},$$

up to a permutation of the coordinates; namely:

(i) $pt(\sigma) = \{(1, 2), (1, 3), (2, 3)\}$

(ii) $pt(\sigma) = \{(1, 4), (2, 4), (3, 4)\}.$
Case (i): $\text{pt}(\sigma) = \{(1, 2), (1, 3), (2, 3)\}$:

All rectangles PT in σ in 2 coords are $\perp x_4$-axis, at different heights
Cut σ by $O(n^{1/6})$ cuts $\perp x_4$-axis so that
each subcell has $\leq n^{1/2}$ (portions of) rectangles
Continue BSP recursively in each subcell.
Let $F(n) = \text{max size of BSP the algorithm constructs}$
Overall: $O(n^{5/6})F(n^{1/2})$ cells
Case (ii): \(\text{pt}(\sigma) = \{(1, 4), (2, 4), (3, 4)\} : \\
Round-robin: \(t = O(n^{1/6}) \) cuts \(\perp x_1, x_2, \) and \(x_3 \)-axes \nEach of the \(O(n^{2/3}) \) cells cut into \(O(n^{1/2}) \) subcells \nTotal: \(O(n^{7/6}) \) subcells \nDo this so that each subcell \(\sigma \) contains at most
\begin{itemize}
 \item \(n^{2/3}/t^2 = n^{1/3} \) rect PT in 2 coords (one being \(x_4 \))
 \item \(n^{1/2}/t = n^{1/3} \) rect PT in 2 coords \textit{none} being \(x_4 \)
 \item \(n^{1/2}/t^2 = n^{1/6} \) rect PT in exactly one coord
 \item and \textbf{no} other rectangles.
\end{itemize}
Lemma → the existence of 2-coord PTs of second type annihilates those PTs of first type with complementary extent coords

Thus, the extent coords of 2-coord PTs in σ again fall into case (i) or case (ii) (with a possible permutation of the coordinates).

Case (i): proceed in a manner similar to above:
- cut σ by $O(n^{1/6})$ cuts $\perp x_4$-axis, to get $O(n^{1/6})$ subcells, each with $\leq n^{1/6}$ rect.

Overall recursive bound:

$$O(n^{4/3}) \cdot F(n^{1/6})$$
Case (ii): with, say, \(\text{pt}(\sigma) = \{(1, 4), (2, 4), (3, 4)\} \)

Again proceed as above:

- cut \(\sigma \) in round-robin by \(t = O(n^{1/6}) \) cuts \(\perp x_1, x_2, \text{and } x_3 \)-axes

Do this to eliminate

- the \(\leq n^{1/6} \) rect that are PT in 1 coord, \textit{and}
- the \(\leq n^{1/3} \) 2-coord PTs

Hence, get BSP of size \(O(n^{1/2}) \)

Total: \(O(n^{7/6} \cdot n^{1/2}) = O(n^{5/3}) \)
Putting everything together:

\[F(n) = O(n^{5/3}) + O(n^{4/3}) \cdot F(n^{1/6}) + O(n^{5/6}) \cdot F(n^{1/2}) \]

Solution to recurrence

\[F(n) = O(n^{5/3} \log^c n) \]

for some appropriate constant \(c > 0 \)
Lower Bound:

Theorem There exist sets of 2-rectangles in \mathbb{R}^4 for which any BSP has size $\Omega(n^{5/3})$
Summary of Results:

<table>
<thead>
<tr>
<th>d</th>
<th>k</th>
<th>upper bound</th>
<th>lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>$2n - 1$ (†)</td>
<td>$2n - o(n)$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$3n$ (†)</td>
<td>$7n/3 - o(n)$</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>$O(n^{d/(d-1)})$ (*)</td>
<td>$\Omega(n^{d/(d-1)})$ (*)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$O(n^{3/2})$ (*)</td>
<td>$\Omega(n^{3/2})$ (*)</td>
</tr>
<tr>
<td>d</td>
<td>$k < d/2$</td>
<td>$O(n^{d/(d-k)})$</td>
<td>$\Omega(n^{d/(d-k)})$</td>
</tr>
<tr>
<td>d</td>
<td>$k \leq d - 1$, intersecting</td>
<td>$O(n^{d/(d-k)})$</td>
<td>$\Omega(n^{d/(d-k)})$</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>$O(n^{5/3} \log^c n)$</td>
<td>$\Omega(n^{5/3})$</td>
</tr>
</tbody>
</table>

(†): known bound
(*) known bound, rederived here with simpler proof