Reeb Graph

“The Reeb graph of \(f \) is obtained by contracting the connected components of the level sets to points....Branching in the Reeb graph occurs only at nodes that correspond to a level set passing through critical points of \(f \).” (Please see K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in Reeb Graphs of 2-Manifolds.)

A Loop is a cycle; the reverse is not necessarily true.

Figure 1: A double torus (with \(f \) equal to the height) and its corresponding Reeb graph. A Loop is a cycle; the reverse is not necessarily true.

Matching

Match the nodes of the Reeb graph according to the following rule:
Each low point is paired with the lowest high point with which it spans a cycle.

Exercise 1. Show that such a matching exists.
Exercise 2. Show that the rule is equivalent to matching each high point to the highest low point with which it spans a cycle.

Exercise 3. Show that such a matching can be found in $O(n \log n)$.

Figure 2: A more interesting example with matching.

Other questions

- Spley trees?
- Reeb graphs and higher dimension manifolds?