1 Overview

In this lecture, Prof. Matthew J.Katz presented the work on “Parametric Searching”, Megiddo 1983. He defined the problem, gave various solutions with analyses of them.

2 Introduction

Consider, e.g., the 2-center problem:

Let \(P \) be a set of \(n \) points in the plane. Find the minimum radius \(r^* \) such that \(P \) can be covered by two disks of radius \(r^* \).

Observation: \(r^* \) is determined by either 2 or 3 points in \(P \).

The corresponding decision problem: For a given value \(r \), determine whether \(P \) can be covered by two disks of radius \(r \). If yes then \(r^* \leq r \), and if no then \(r^* > r \).
Assuming we have an efficient solution to the decision problem, we would like to use it to find \(r^* \) in the set of all potential values. But this set is too large to generate explicitly !!!!

We present the parametric searching technique through an example.

Problem: Let \(Y_1, \ldots, Y_n \) be \(n \) lines in the plane, where \(Y_i = Y_i(\delta) = a_i \delta + b_i \), and \(a_i > 0 \), for \(i = 1, \ldots, n \). Define \(F(\delta) = \text{median} \{ Y_1(\delta), \ldots, Y_n(\delta) \} \), for \(\delta \in IR \). \(F \) is a piece-wise linear, increasing function with \(O(n^2) \) turns. Find the value \(\delta^* \), for which \(F(\delta) = 0 \), i.e., find the root of the equation \(F(\delta) = 0 \).

3 Different Solutions

3.1 A trivial solution

Find the median among the roots of the \(n \) functions \(Y_1, \ldots, Y_n \).

We shall find the function \(Y \) (among \(Y_1, \ldots, Y_n \)) that determines \(F \) at \(\delta^* \). Once we know \(Y \), we compute its root to obtain \(\delta^* \). There is a “slight” problem—\(\delta^* \) is unknown, so we do not have the values \(Y_1(\delta^*), \ldots, Y_n(\delta^*) \).
3.2 A first solution

We apply the algorithm of Blum et al. for finding the median number in a set of numbers (in our case \(\{ Y_1(\delta), ..., Y_n(\delta) \} \)). This algorithm is based on comparisons between pairs of numbers from the underlying set.

In order to compare between \(Y_i(\delta^*) \) and \(Y_j(\delta^*) \), i.e., to decide which of them is greater, we only need to determine the location of \(\delta^* \) with respect to the intersection point between the lines \(Y_i \) and \(Y_j \).

Assuming \(a_i > a_j \). If \(\delta^* \) lies to the left (resp. to the right) of \(\delta_{i,j} \), then \(Y_i(\delta^*) < Y_j(\delta^*) \) (resp. \(Y_i(\delta^*) > Y_j(\delta^*) \)).

But, how do we determine the location of \(\delta^* \) with respect to the intersection point \(\delta_{i,j} \)?

We compute \(F(\delta_{i,j}) \) by applying the median finding algorithm to the set \(\{ Y_1(\delta_{i,j}), ..., Y_n(\delta_{i,j}) \} \).

Now, since \(F \) is a monotone increasing function, if \(F(\delta_{i,j}) > 0 \), then \(\delta^* \) lies to the left of \(\delta_{i,j} \), and, if \(F(\delta_{i,j}) < 0 \), then \(\delta^* \) lies to the right of \(\delta_{i,j} \).

Analysis: The median finding algorithm performs \(O(n) \) comparisons (of the form \(Y_i(\delta^*) : Y_j(\delta^*) \)), and each of these comparisons is resolved by a call to the median finding algorithm with a concrete set of values (i.e., \(\{ Y_1(\delta_{i,j}), ..., Y_n(\delta_{i,j}) \} \)). Thus the total running time is \(O(n^2) \).
3.3 An improved solution

We replace the main median finding algorithm (that attempts to find the median line at \(\delta^* \)) with a parallel version of this algorithm.

Actually we apply a parallel sorting algorithm (to sort the lines at \(\delta^* \)), that uses \(n \) processors and sorts in \(O(\log n) \) (parallel) time.

In the first (parallel) step of this algorithm each of the \(n \) processors performs a comparison (of the form \(Y_i(\delta^*) : Y_j(\delta^*) \)).

We simulate this step sequentially. But, instead of calling the median finding algorithm for each of the \(n \) comparisons, we proceed as follows.

We first compute the \(n \) intersection points \(\delta_{i,j} \) corresponding to the \(n \) comparisons. Let \(\delta_1 < \delta_2 < \ldots < \delta_n \) be these intersection points.

We now (binary) search for \(\delta^* \) in the sorted list \(\delta_1, \delta_2 \ldots \delta_n \). Each comparison of the form \(\delta^* : \delta_i \) is resolved by a call to the median finding algorithm.

Once we have located \(\delta^* \) in the sorted list \(\delta_1, \delta_2 \ldots \delta_n \), we can easily resolve all \(n \) comparisons assigned to the \(n \) processors, and proceed to the next parallel step.

Notice that in each step we further restrict the range in which \(\delta^* \) is known to lie.

At the end we obtain the lines sorted by their value at \(\delta^* \); we compute the root of the median line in this list to obtain \(\delta^* \).

Analysis: For each parallel step we perform \(O(\log n) \) “expensive” (i.e., linear-time) comparisons. Since there are \(O(\log n) \) parallel steps, the total time required for all “expensive” comparisons is \(O(n\log^2 n) \). The additional time required for the simulation of the parallel algorithm is \(O(n\log n) \).

4 Other Problems

4.1 A formal description of parametric searching

A problem that receives as input \(n \) data items and a real-valued parameter \(\delta \). (\(P(\delta) \equiv F(\delta) \)).

We need to find a value \(\delta \) for which \(P(\delta) \) is “special”. E.g., the output of \(P(\delta) \) is a real
number and \(P(\delta) = 0 \) or \(P(\delta) \) is an extreme value.

Assume we have an efficient sequential algorithm \(A_s \) for solving \(P(\delta) \) when given \(\delta \). Further assume that \(A_s \) can determine whether a given \(\delta \) is smaller than, larger than, or equal to \(\delta^* \). \((A_s \equiv \text{the median finding algorithm applied to } \{Y_1(\delta), \ldots, Y_n(\delta)\}.) \)

We also assume that the flow of \(A_s \) depends on comparisons, and that each such comparison can be resolved by checking the sign of a small-degree polynomial in the data items and \(\delta \).

\(\text{(The comparison } Y_i(\delta) : Y_j(\delta) \text{ is resolved by checking the sign of the polynomial } a_i\delta + b_i - (a_j\delta + b_j).) \)

Let \(A_p \) denote a parallel version of \(A_s \) (or more generally a parallel algorithm that solves \(P(\delta) \)), and let \(P \) denote the number of processors used by \(A_p \). \((A_p \equiv \text{parallel sorting algorithm}) \)

Then \(\delta^* \) can be found in time \(O(T_p(P + T_s\log P)) \), where \(T_s \) is the running time of \(A_s \) and \(T_p \) is the (parallel) running time of \(T_p \).

Remark: Notice that the final algorithm is sequential. We use a parallel version of \(A_s \) only to ensure a small number of batches of independent comparisons.

4.2 Slope selection

Problem: Given a set \(H \) of \(n \) lines in the plane, and a number \(1 \leq k \leq (\binom{n}{2}) \), find the \(k \)th vertex (from the left) of the arrangement \(A(H) \).

Let \(t_1 < t_2 < \ldots < t_{\binom{n}{2}} \) be the \(x \)-coordinates of the vertices of the arrangement \(A(H) \).

We shall use a parallel sorting algorithm \(A_p \) to sort the lines along a vertical line just to the right of \(t_k \).

In order to resolve a comparison between two lines, we first compute the \(x \)-coord \(x \) of their intersection point, and then compute the index of \(x \) (so that we know whether \(t_k \) lies to the left or to the right of \(x \)). The latter step is done in \(O(n\log n) \) time by counting the number of inversions in the permutation obtained by sorting the lines along a vertical line just to the right of \(x \).

The overall running time is therefore \(O(n\log^3 n) \). Can be improved to \(O(n\log n) \) using several tricks.
4.3 Alternative techniques

Randomized halving described by Matousek.

The technique of Frederickson and Johnson uses **sorted matrices**.

An **expander-based** technique (Katz and Sharir).