Consider, e.g., the 2-center problem:

Let \mathcal{P} be a set of n points in the plane. Find the minimum radius r^* such that \mathcal{P} can be covered by 2 disks of radius r^*.

Observation: r^* is determined by either 2 or 3 points in \mathcal{P}.
The corresponding decision problem: For a given value r, determine whether \mathcal{P} can be covered by two disks of radius r. If yes then $r^* \leq r$, and if no then $r^* > r$.

Assuming we have an efficient solution to the decision problem, we would like to use it to find r^* in the set of all potential values.

But this set is too large to generate explicitly !!!
We present the parametric searching technique through an example.

Problem: Let Y_1, \ldots, Y_n be n lines in the plane, where $Y_i = Y_i(\delta) = a_i \delta + b_i$, and $a_i > 0$, for $i = 1, \ldots, n$. Define $F(\delta) = \text{median}\{Y_1(\delta), \ldots, Y_n(\delta)\}$, for $\delta \in \mathbb{R}$. F is a piece-wise linear, increasing function with $O(n^2)$ turns. Find the value δ^* for which $F(\delta) = 0$, i.e., find the root of the equation $F(\delta) = 0$.

A trivial solution: Find the median among the roots of the n functions Y_1, \ldots, Y_n.
We shall find the function Y (among Y_1, \ldots, Y_n) that determines F at δ^*. Once we know Y, we compute its root to obtain δ^*.

There is a “slight” problem — δ^* is unknown, so we do not have the values $Y_1(\delta^*), \ldots, Y_n(\delta^*)$.
A first solution

We apply the algorithm of Blum et al. for finding the median number in a set of numbers (in our case \(\{Y_1(\delta^*), \ldots, Y_n(\delta^*)\} \)). This algorithm is based on comparisons between pairs of numbers from the underlying set.

In order to compare between \(Y_i(\delta^*) \) and \(Y_j(\delta^*) \), i.e., to decide which of them is greater, we only need to determine the location of \(\delta^* \) with respect to the intersection point between the lines \(Y_i \) and \(Y_j \).

Assuming \(a_i > a_j \). If \(\delta^* \) lies to the left (resp. to the right) of \(\delta_{i,j} \), then \(Y_i(\delta^*) < Y_j(\delta^*) \) (resp. \(Y_i(\delta^*) > Y_j(\delta^*) \)).
But how do we determine the location of δ^* with respect to the intersection point $\delta_{i,j}$?

We compute $F(\delta_{i,j})$ by applying the median finding algorithm to the set $\{Y_1(\delta_{i,j}), \ldots, Y_n(\delta_{i,j})\}$. Now, since F is a monotone increasing function, if $F(\delta_{i,j}) > 0$, then δ^* lies to the left of $\delta_{i,j}$, and, if $F(\delta_{i,j}) < 0$, then δ^* lies to the right of $\delta_{i,j}$.

Analysis: The median finding algorithm performs $O(n)$ comparisons (of the form $Y_i(\delta^*) : Y_j(\delta^*)$), and each of these comparisons is resolved by a call to the median finding algorithm with a concrete set of values (i.e., $\{Y_1(\delta_{i,j}), \ldots, Y_n(\delta_{i,j})\}$). Thus the total running time is $O(n^2)$.
An improved solution

We replace the main median finding algorithm (that attempts to find the median line at δ^*) with a parallel version of this algorithm.

Actually we apply a parallel sorting algorithm (to sort the lines at δ^*), that uses n processors and sorts in $O(\log n)$ (parallel) time.

In the first (parallel) step of this algorithm each of the n processors performs a comparison (of the form $Y_i(\delta^*) : Y_j(\delta^*)$).

We simulate this step sequentially. But, instead of calling the median finding algorithm for each of the n comparisons, we proceed as follows.
We first compute the n intersection points $\delta_{i,j}$ corresponding to the n comparisons. Let $\delta_1 < \delta_2 < \cdots < \delta_n$ be these intersection points.

We now (binary) search for δ^* in the sorted list $\delta_1, \ldots, \delta_n$. Each comparison of the form $\delta^* : \delta_i$ is resolved by a call to the median finding algorithm.

Once we have located δ^* in the sorted list $\delta_1, \ldots, \delta_n$, we can easily resolve all n comparisons assigned to the n processors, and proceed to the next parallel step.

Notice that in each step we further restrict the range in which δ^* is known to lie.
At the end we obtain the lines sorted by their value at δ^*; we compute the root of the median line in this list to obtain δ^*.

Analysis: For each parallel step we perform $O(\log n)$ “expensive” (i.e., linear-time) comparisons. Since there are $O(\log n)$ parallel steps, the total time required for all “expensive” comparisons is $O(n \log^2 n)$. The additional time required for the simulation of the parallel algorithm is $O(n \log n)$.
A formal description of parametric searching

\(\mathcal{P}(\delta) \) — A problem that receives as input \(n \) data items and a real-valued parameter \(\delta \). \((\mathcal{P}(\delta) \equiv F(\delta)) \)

We need to find a value \(\delta^* \) for which \(\mathcal{P}(\delta) \) is “special”. E.g., the output of \(\mathcal{P}(\delta) \) is a real number and \(\mathcal{P}(\delta^*) = 0 \) or \(\mathcal{P}(\delta^*) \) is an extreme value.

Assume we have an efficient sequential algorithm \(A_s \) for solving \(\mathcal{P}(\delta) \) when given \(\delta \). Further assume that \(A_s \) can determine whether a given \(\delta \) is smaller than, larger than, or equal to \(\delta^* \).
(\(A_s \equiv \text{the median finding algorithm applied to } \{Y_1(\delta), \ldots, Y_n(\delta)\} \).

We also assume that the flow of \(A_s \) depends on comparisons, and that each such comparison can be resolved by checking the sign of a small-degree polynomial in the data items and \(\delta \).
(The comparison \(Y_i(\delta) : Y_j(\delta) \) is resolved by checking the sign of the polynomial \(a_i\delta + b_i - (a_j\delta + b_j) \).)

Let A_p denote a parallel version of A_s (or more generally a parallel algorithm that solves $\mathcal{P}(\delta)$), and let P denote the number of processors used by A_p. ($A_p \equiv$ parallel sorting algorithm.)

Then δ^* can be found in time $O(T_p(P + T_s \log P))$, where T_s is the running time of A_s and T_p is the (parallel) running time of T_p.

Remark: Notice that the final algorithm is sequential. We use a parallel version of A_s only to ensure a small number of batches of independent comparisons.
Slope selection

Problem: Given a set H of n lines in the plane, and a number $1 \leq k \leq \binom{n}{2}$, find the k’th vertex (from the left) of the arrangement $\mathcal{A}(H)$.

Let $t_1 < t_2 < \cdots < t_{\binom{n}{2}}$ be the x-coordinates of the vertices of the arrangement $\mathcal{A}(H)$.

We shall use a parallel sorting algorithm A_p to sort the lines along a vertical line just to the right of t_k.
In order to resolve a comparison between two lines, we first compute the x-coord x of their intersection point, and then compute the index of x (so that we know whether t_k lies to the left or to the right of x). The latter step is done in $O(n \log n)$ time by counting the number of inversions in the permutation obtained by sorting the lines along a vertical line just to the right of x.

The overall running time is therefore $O(n \log^3 n)$. Can be improved to $O(n \log n)$ using several tricks.
Alternative techniques

Randomized halving described by Matoušek.

The technique of Frederickson and Johnson uses **sorted matrices**.

An **expander-based** technique (Katz and Sharir).