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tWe introdu
e a new 
lass of s
heduling problems in whi
h the optimization is performed by the worker(single \ma
hine") who performs the tasks. The worker's obje
tive may be to minimize the amount ofwork he does (he is \lazy"). He is subje
t to a 
onstraint that he must be busy when there is work thathe 
an do; we make this notion pre
ise, parti
ularly in the 
ase in whi
h preemption is allowed. Theresulting 
lass of \perverse" s
heduling problems, whi
h we term \Lazy Bureau
rat Problems," gives riseto a ri
h set of new questions that explore the distin
tion between maximization and minimization in
omputing optimal s
hedules.1 Introdu
tionS
heduling problems have been studied extensively from the point of view of the obje
tives of the enterprisethat stands to gain from the 
ompletion of the set of jobs. We take a new look at the problem from thepoint of view of the workers who perform the tasks that earn the 
ompany its pro�ts. In fa
t, it is naturalto expe
t that some employees may la
k the motivation to perform at their peak levels of eÆ
ien
y, eitherbe
ause they have no stake in the 
ompany's pro�ts or be
ause they are simply lazy. The following exampleillustrates the situation fa
ing a \typi
al" oÆ
e worker, who may be one small 
og in a large bureau
ra
y:Example. It is 3:00 p.m., and Dilbert goes home at 5:00 p.m. Dilbert has two tasks that havebeen given to him: one requires 10 minutes, the other requires an hour. If there is a task inhis \in-box," Dilbert must work on it, or risk getting �red. However, if he has multiple tasks,Dilbert has the freedom to 
hoose whi
h one to do �rst. He also knows that at 3:15, another taskwill appear | a 45-minute personnel meeting. If Dilbert begins the 10-minute task �rst, he willbe free to attend the personnel meeting at 3:15 and then work on the hour-long task from 4:00until 5:00. On the other hand, if Dilbert is part way into the hour-long job at 3:15, he may beex
used from the meeting. After �nishing the 10-minute job by 4:10, he will have 50 minutes totwiddle his thumbs, iron his tie, or enjoy engaging in other mindless trivia. Naturally, Dilbertprefers this latter option.There is also an histori
al example of an a
tual situation in whi
h it proved 
ru
ial to s
hedule tasksineÆ
iently, as do
umented in the book/movie S
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management of S
hindler's fa
tory to appear to be busy at all times, in order to stay in operation, but theysimultaneously sought to minimize their 
ontribution to the German war e�ort.These examples illustrate a general and natural type of s
heduling problem, whi
h we term the \LazyBureau
rat Problem" (LBP), in whi
h the goal is to s
hedule jobs as ineÆ
iently (in some sense) as possible.We propose that these problems provide an interesting set of algorithmi
 questions, whi
h may also leadto dis
overy of stru
ture in traditional s
heduling problems. (Several other 
ombinatorial optimizationproblems have been studied \in reverse," leading, e.g., to maximum TSP, maximum 
ut, and longest path;su
h inquiries 
an lead to better understanding of the stru
ture and algorithmi
 
omplexity of the originaloptimization problem.) Our investigations may also be motivated by a \game theoreti
" view of the employee-employer system.1.1 The ModelThere is a vast literature on a variety of s
heduling problems; see, e.g., some of the re
ent surveys [3, 5, 7℄.Here, we 
onsider a set of jobs 1 : : : n having pro
essing times (lengths) t1 : : : tn respe
tively. Job i arrivesat time ai and has its deadline at time di. We assume throughout this paper that ti, ai, and di havenonnegative integral values. The jobs have hard deadlines, meaning that ea
h job i 
an only be exe
utedduring its allowed interval Ii = [ai; di℄; we also 
all Ii the job's window . We let 
i = di� ti denote the 
riti
altime of job i; job i must be started by time 
i if there is going to be any 
han
e of 
ompleting it on time.The jobs are exe
uted on a single pro
essor, the (lazy) bureau
rat . The bureau
rat exe
utes only one jobat a time. (We leave the 
ase of multiple pro
essors for future work.)Greedy Requirement. The bureau
rat 
hooses a subset of jobs to exe
ute. Sin
e his goal is to minimizehis e�ort, he prefers to remain idle all the time and to leave all the jobs unexe
uted. However, this s
enario isforbidden by what we 
all the greedy requirement, whi
h requires that the bureau
rat work on an exe
utablejob, if there are any exe
utable jobs. A job is \exe
utable" if it has arrived, its deadline has not yet passed,and it is not yet fully pro
essed. In the 
ase with preemption, there may be other 
onstraints that governwhether or not a job is exe
utable; see Se
tion 3.Obje
tive Fun
tions. In traditional s
heduling problems, if it is impossible to 
omplete the set of all jobsby their deadlines, one typi
ally tries to optimize a

ording to some obje
tive, e.g., to maximize a weightedsum of on-time jobs, to minimize the maximum lateness of the jobs, or to minimize the number of latejobs. For the LBP we 
onsider three di�erent obje
tive fun
tions, whi
h naturally arise from 
onsidering thebureau
rat's goal of being ineÆ
ient:(1) Minimize the total amount of time spent working. This obje
tive naturally appeals to a \lazy" bureau-
rat.(2) Minimize the weighted sum of 
ompleted jobs. Here, we usually assume that the weight of job i is itslength, ti; however, other weights (e.g., unit weights) are also of interest. This obje
tive appeals to a\spiteful" bureau
rat whose goal it is to minimize the fees that the 
ompany 
olle
ts on the basis ofhis labors, assuming that the fee (in proportion to the task length, or a �xed fee per task) is 
olle
tedonly for those tasks that are a
tually 
ompleted.(3) Minimize the makespan, the maximum 
ompletion time of the jobs. This obje
tive appeals to an \impa-tient" bureau
rat, whose goal it is to go home as early as possible, at the 
ompletion of the last job heis able to 
omplete. He 
ares about the number of hours spent at the oÆ
e, not the number of hoursspent doing work (produ
tive or otherwise) at the oÆ
e.Note that, in 
ontrast with standard s
heduling problems, the makespan in the LBP 
hanges; it is afun
tion of whi
h jobs have passed their deadlines and 
an no longer be exe
uted.Additional Parameters of the Model. As with most s
heduling problems, additional parameters ofthe model must be set. For example, one must expli
itly allow or forbid preemption of jobs. If a job is2



preempted, it is interrupted and may be resumed later at no additional 
ost. If preemption is forbidden,then on
e a job is begun, it must be 
ompleted without interruptions.One must also spe
ify whether s
heduling o

urs on-line or o�-line. A s
heduling algorithm is 
onsideredto be o�-line if all the jobs are known to the s
heduler at the outset; it is on-line if the jobs are known to thes
heduler only as they arrive. In this paper we restri
t ourselves to o�-line s
heduling; we leave the on-line
ase as an interesting open problem for future resear
h.1.2 Our ResultsIn this paper, we introdu
e the Lazy Bureau
rat Problem and develop algorithms and hardness results forseveral versions of it. From these results, we derive some general 
hara
teristi
s of this new 
lass of s
hedulingproblems and des
ribe (1) situations in whi
h traditional s
heduling algorithms extend to our problems and(2) situations in whi
h these algorithms no longer apply.No Preemption. We prove that the LBP is NP-
omplete, as is generally the 
ase for traditional s
hedulingproblems. Thus, we fo
us on spe
ial 
ases to study algorithms. When all jobs have unit size, optimals
hedules 
an be found in polynomial time. The following three 
ases have pseudo-polynomial algorithms:(1) when ea
h job i's interval Ii is less than twi
e the length of i; (2) when the ratios of interval length to joblength and longest job to shortest job are both bounded; and (3) when all jobs arrive in the system at thesame time. These last s
heduling problems are solved using dynami
 programming both for Lazy Bureau
ratand traditional metri
s. Thus, in these settings, the Lazy Bureau
rat metri
s and traditional metri
s aresolved using similar te
hniques.From the point of view of approximation, however, the standard and Lazy Bureau
rat metri
s behavedi�erently. Standard metri
s typi
ally allow polynomial-time algorithms having good approximation ratios,whereas we show that the Lazy Bureau
rat metri
s are diÆ
ult to approximate. This hardness derives morefrom the greedy requirement and less from the parti
ular metri
 in question. The greedy requirement appearsto render the problem substantially more diÆ
ult, as we show. (Ironi
ally, even in standard optimizationproblems, the management often tries to impose this requirement, be
ause it naively appears to be desirable.)Preemption. The greedy requirement di
tates that the worker must stay busy while work is in the system.If the model allows preemption we must spe
ify under what 
onditions a job 
an be interrupted or resumed.We distinguish three versions of the preemption rules, whi
h we list from most permissive to most restri
tive.In parti
ular possible 
onstraints on what the worker 
an exe
ute in
lude (I) any job that has arrived andis before its deadline, (II) any job that has arrived and for whi
h there is still time to 
omplete it before itsdeadline, or (III) any job that has arrived, but with the 
onstraint that if it is started, it must eventually be
ompleted.We 
onsider all three metri
s and all three versions of preemption. We show that, for all three metri
s,version I is polynomially solvable, and version III is NP-
omplete. Many of the hardness results for nopreemption 
arry over to version III. However, the question of whether the problem is strongly NP-
ompleteremains open.Our main results are for version II. We show that the general problem is NP-
omplete. Then, we fo
uson minimizing the makespan in two 
omplementary spe
ial 
ases: (1) All jobs have a 
ommon arrival timeand arbitrary deadlines; (2) All jobs have a 
ommon deadline and arbitrary arrival times. We show that the�rst problem is NP-
omplete, whereas the se
ond problem 
an be solved in polynomial time.These last results illustrate a 
urious feature of the LBP. One 
an 
onvert one spe
ial 
ase into the otherby reversing the dire
tion of time. In the LBP, unlike many s
heduling settings, this reversing of time 
hangesthe 
omplexity of the problem.2 LBP: No PreemptionIn this se
tion, we assume that no job 
an be preempted: if a job is started, then it is performed withoutinterruption until it 
ompletes. We show that the Lazy Bureau
rat Problem (LBP) without preemption isstrongly NP-
omplete and is not approximable to within any fa
tor. These hardness results distinguish our3



problem from traditional s
heduling metri
s, whi
h 
an be approximated in polynomial time, as shown inthe re
ent paper of [1℄. We show, however, that several spe
ial 
ases of the problem have pseudo-polynomialtime algorithms, using appli
ations of dynami
 programming.2.1 Hardness ResultsWe begin by des
ribing the relationship between the three di�erent obje
tive fun
tions in the 
ase of nopreemption. The problem of minimizing the total work is a spe
ial 
ase of the problem of minimizing theweighted sum of 
ompleted jobs, be
ause every job that is exe
uted must be 
ompleted. (The weights be
omethe job lengths.) Furthermore, if all jobs have the same arrival time, say time zero, then the two obje
tives,minimizing total work and minimizing makespan (go home early) are equivalent, sin
e no feasible s
hedulewill have any gaps. Our �rst hardness theorem applies therefore to all three obje
tive fun
tions:Theorem 1 The Lazy Bureau
rat Problem with no preemption is (weakly) NP-
omplete, and is not approx-imable to within any �xed fa
tor, even when arrival times are all the same.Proof. We use a redu
tion from the Subset Sum problem [2℄: Given a set of integers S = fx1; x2; : : : ; xngand a target integer T , does there exist a subset S0 � S, su
h that Pxi2S0 xi = T ?We 
onstru
t an instan
e of the LBP having n + 1 jobs, ea
h having release time zero (ai = 0 for alli). For i = 1 : : : ; n, job i has pro
essing time ti = xi and deadline di = T . Job n + 1 has pro
essing timetn+1 = 1 +Pxi2S xi and deadline dn+1 = T + tn+1 � 1; thus, job n + 1 
an be started at time T � 1 orearlier. Be
ause job n + 1 is so long, the bureau
rat wants to avoid exe
uting it, but 
an do so if and onlyif he sele
ts a subset of jobs from f1; : : : ; ng to exe
ute whose lengths sum to exa
tly T . 2As we show in Se
tion 2.2, the problem from Theorem 1 has a pseudopolynomial-time algorithm. How-ever, if arrival times and deadlines are arbitrary integers, the problem is strongly NP-
omplete. The givenredu
tion applies to all three obje
tive fun
tions.Theorem 2 The Lazy Bureau
rat Problem with no preemption is strongly NP-
omplete, and is not approx-imable to within any �xed fa
tor.Proof. Clearly the problem is in NP, sin
e any solution 
an be represented by an ordered list of jobs, giventheir arrival times. To show hardness, we use a redu
tion from the 3-Partition problem [2℄: Given a setS = fx1; : : : ; x3mg of 3m positive integers and a positive integer bound B su
h that B=4 < xi < B=2, fori = 1; : : : ; 3m and Pi xi = mB, does there exist a partitioning of S into m disjoint sets, S1; : : : ; Sm, su
hthat for i = 1; :::;m,Pxj2Si xj = B? (Note that, by the assumption that B=4 < xi < B=2, ea
h set Si must
ontain exa
tly 3 elements.)We 
onstru
t an instan
e of the LBP 
ontaining three 
lasses of jobs:Element jobs: We de�ne one \element job" 
orresponding to ea
h element xi 2 S, having arrival time 0,deadline di = (m� 1) +mB, and pro
essing time xi.Unit jobs: We de�ne m�1 \unit" jobs, ea
h of length 1. The i-th unit job (for i = 1; : : : ;m�1) has arrivaltime i(B + 1) � 1 and deadline i(B + 1). Note that for these unit-length jobs we have dj � aj = 1;thus, these jobs must be pro
essed immediately upon their arrival, or not at all.Large job: We de�ne one \large" job of length L > (m� 1) +mB, arrival time 0, and deadline L+ (m�2) +mB. Note that in order to 
omplete this job, it must be started at time (m� 2) +mB or before.As in the proof of Theorem 1, the lazy bureau
rat wants to avoid exe
uting the long job, but 
an do soif and only if all other jobs are a
tually exe
uted. Otherwise, there will be a time when the large job is theonly job in the system and the lazy bureau
rat will be for
ed to exe
ute it. Thus, the unit jobs must be doneimmediately upon their arrival, and the element jobs must �t in the intervals between the unit jobs. Ea
hsu
h interval between 
onse
utive unit jobs is of length exa
tly B. Refer to Figure 1. In summary, the longjob is not pro
essed if and only if all of the element and unit jobs 
an be pro
essed before their deadlines,whi
h happens if and only if the 
orresponding instan
e of 3-Partition is a \yes" instan
e. Note that sin
eL 
an be as large as we want, this also implies that no polynomial-time approximation algorithm with any�xed approximation bound 
an exist, unless P=NP. 24



Element jobs:Unit jobs:Long job:
0 B 2B + 2 . . . (m� 1) +mBB + 1 B

L(very long)2B + 1 (m � 1)(B + 1)Figure 1: Proof of hardness of LBP with no preemption and arbitrary arrival times.2.2 Algorithms for Spe
ial CasesUnit-Length Jobs. Consider the spe
ial 
ase of the LBP in whi
h all jobs have unit pro
essing times.(Re
all that all inputs are assumed to be integral.) The Latest Deadline First (LDF) s
heduling poli
ysele
ts the job in the system having the latest deadline.Theorem 3 The Latest Deadline First (LDF) s
heduling poli
y minimizes the amount of exe
uted work.Proof. Assume by 
ontradi
tion that no optimal s
hedule is LDF. We use an ex
hange argument. Consideran optimal (non-LDF) s
hedule that has the fewest pairs of jobs exe
uted in non-LDF order. The s
hedulemust have two neighboring jobs i; j su
h that i < j in the s
hedule but Di < Dj , and j is in the systemwhen i starts its exe
ution. Consider the �rst su
h pair of jobs. There are two 
ases:(1) The new s
hedule with i and j swit
hed, is feasible. It exe
utes no more work than the optimals
hedules, and is therefore also optimal.(2) The s
hedule with i and j swit
hed is not feasible. This happens if i's deadline has passed. If nojob is in the system to repla
e i, then we obtain a better s
hedule than the optimal s
hedule and rea
h a
ontradi
tion. Otherwise, we repla
e i with the other job and repeat the swit
hing pro
ess.We ultimately obtain a s
hedule exe
uting no more work than an optimal s
hedule, with fewer pairs ofjobs in non-LDF order, a 
ontradi
tion. 2Narrow Windows. Consider now the version in whi
h jobs are large in 
omparison with their intervals,that is, the intervals are \narrow." Let R be a bound on the ratio of window length to job length; i.e., forea
h job i, di � ai < R � ti. We show that a pseudo-polynomial algorithm exists for the 
ase of suÆ
ientlynarrow windows, that is, when R � 2.Lemma 4 Assume that for ea
h job i, di � ai < 2ti. Then, if job i 
an be s
heduled before job j, then job j
annot be s
heduled before job i.Proof. We rewrite the assumption: for ea
h i, di� ti < ti+ ai. The fa
t that job i 
an be s
heduled beforejob j is equivalent to the statement that ai + ti � dj � tj , sin
e the earliest that job i 
an be 
ompleted isat time ai + ti and the latest that job j 
an be started is at time dj � tj . Combining these inequalities, weobtain aj + tj > dj � tj � ai + ti > di � ti;whi
h implies that job j 
annot be s
heduled before job i. 2Corollary 5 Under the assumption that di � ai < 2ti for ea
h i, the ordering of any subset of jobs in as
hedule is uniquely determined.Theorem 6 Suppose that for ea
h job i, di � ai < 2ti. Let K = maxi di. Then the LBP 
an be solved inO(nKmax(n;K)) time. 5



Proof. We use dynami
 programming to �nd the shortest path in a dire
ted a
y
li
 graph (DAG). Thereare O(nK2) states the system 
an enter. Let (i; j; �) denote the state of the system when the pro
essorbegins exe
uting the j-th unit of work of job i at time � . Thus, i = 1; :::; n, j = 1; :::; ti, and � = 0; :::;K.Transitions from state to state are de�ned a

ording to the following rules:1. No preemption: on
e a job is begun, it must be 
ompleted without interruptions.2. When a job is 
ompleted at time � , another job must begin immediately. if one exists in the system.(By Lemma 4, we know this job has not yet been exe
uted.) Otherwise, the system is idle and beginsexe
uting a job as soon as one arrives.3. State (i; ti; �) is an end state if and only if when job i 
ompletes at time � , no jobs 
an be exe
utedsubsequently.4. The start state has transitions to the jobs (i; 1; 0) that arrive �rst.The goal of the dynami
 program is to �nd the length of a shortest path from the start state to anend state. To 
omplete the time analysis, note that only nK of the nK2 states have more than 
onstantoutdegree, and these states ea
h have outdegree bounded by n. 2Note that for R > 2 we know of no eÆ
ient algorithm without additional 
onditions. Let W be a boundon the ratio of longest window to shortest window, and let � be a bound on the ratio of the longest job tothe shortest job. Note that bounds on R and � imply a bound on W , and bounds on R and W imply abound on �. However, a bound on � alone is not suÆ
ient for a pseudopolynomial time algorithm.Theorem 7 Even with a bound on the ratio �, the LBP with no preemption is strongly NP-
omplete. It
annot be approximated to within a fa
tor of �� �, for any � > 0, unless P=NP.Proof. Modify the redu
tion from 3-partition of Theorem 2, by 
hanging all the �xed \unit" jobs to havelength B=3, and adjust the arrival times and deadlines a

ordingly.Instead of one very long job as in the proof from Theorem 2, we 
reate a sequen
e of bounded-length jobsthat serve the same purpose. One unit before the deadline of the \element" jobs (see Theorem 2) a sequen
eof long jobs `1; : : : ; `m arrives. Ea
h job `i entirely �lls its window and so 
an only be exe
uted dire
tlywhen it arrives. Job `i+1 arrives at the deadline of job `i. In addition, a sequen
e of small jobs s1; : : : ; smarrives, where ea
h small job si also entirely �lls its window and 
an only be exe
uted when it arrives. Smalljob si overlaps `i and `i+1; it arrives one unit before the deadline of job `i. Jobs si have length B=4 andjobs `i have length � � B=4. Thus, if all the jobs 
omprising the 3-partition problem 
an be exe
uted, jobs`1; : : : ; `m will be avoided by exe
uting jobs s1; : : : ; sm. Otherwise, jobs `1; : : : ; `m must be exe
uted. Theindex of m 
an be adjusted to any �. 2Bounds on both � and R are suÆ
ient to yield a pseudo-polynomial algorithm:Theorem 8 Let K = maxi di. Given bounds on R and �, the Lazy Bureau
rat Problem with no preemption
an be solved in O(K � n4R lg�).Proof. We modify the dynami
 programming algorithm of Theorem 6 for this more 
omplex situation. Theset of jobs potentially available to work on in a given s
hedule at time i are the jobs j that have not yetbeen exe
uted, for whi
h dj � tj < i. Our state spa
e will en
ode the 
omplement of this set for ea
h timei, spe
i�
ally, the set of jobs that were exe
uted earlier but 
ould otherwise have been exe
uted at i.The bounds on R and � together imply an upper bound on the number of subsets of jobs a
tive at ithat 
ould have been exe
uted prior to time i. Let dmin be the length of the shortest job potentially a
tiveat time i. We 
an partition all potentially a
tive jobs into lg� 
lasses, where the jth 
lass 
onsists of thejobs of size � 2j�1dmin and < 2jdmin. The earliest possible arrival time of any 
lass-j job is i � 2jdminR,sin
e ea
h job has an R-bounded window. Only 2jdminR=2j�1dmin = 2R jobs from 
lass j 
an be exe
utedwithin this window. Summing over all the 
lasses implies that at most 2R lg� jobs potentially a
tive attime i 
ould have been exe
uted in a non-preemptive s
hedule by time i.The time bound follows by observing that ea
h of the Kn(2R lg�) states has outdegree at most 2R lg�.2 6



Jobs Having a Common Release Time. In the next version of the problem all jobs are released at timezero, i.e., ai = 0 for all i. This problem 
an be solved in polynomial time by dynami
 programming. Thedynami
 programming works be
ause of the following stru
tural result: There exists an optimal s
hedulethat exe
utes the jobs Earliest Due Date (EDD).In fa
t this problem is a spe
ial 
ase of the following general problem: Minimizing the weighted sum ofjobs not 
ompleted by their deadlines. This problem was solved by [6℄, using the same stru
tural result.Theorem 9 The LBP 
an be solved in pseudo-polynomial time when all jobs have a 
ommon release time.3 LBP: PreemptionIn this se
tion we 
onsider the Lazy Bureau
rat Problem in whi
h jobs may be preempted: a job in progress
an be set aside, while another job is pro
essed, and then possibly resumed later. It is important to distinguishamong di�erent 
onstraints that spe
ify whi
h jobs are available to be pro
essed. We 
onsider three natural
hoi
es of su
h 
onstraints:Constraint I: In order to work on job i at time � , we require only that the 
urrent time � lies within thejob's interval Ii: ai � � � di.Constraint II: In order to work on job i at time � , we require not only that the 
urrent time � lies withinthe job's interval Ii, but also that the job has a 
han
e to be 
ompleted, e.g., if it is pro
essed withoutinterruption until 
ompletion.This 
ondition is equivalent to requiring that � � 
0i, where 
0i = di � ti + yi is the adjusted 
riti
altime of job i: 
0i is the latest possible time to start job i, in order to meet its deadline di, given thatan amount yi of the job has already been 
ompleted.Constraint III: In order to work on job i, we require that � 2 Ii. Further, we require that any job that isstarted is eventually 
ompleted.As before, we 
onsider the three obje
tive fun
tions (1){(3), in whi
h the goal is to minimize the totaltime working (regardless of whi
h jobs are 
ompleted), the weighted sum of 
ompleted jobs, or the makespanof the s
hedule (the \go home" time).The third 
onstraint makes the problem with preemption quite similar to the one with no preemption.In fa
t, if all jobs arrive at the same time (ai = 0 for all i), then the three obje
tive fun
tions are equivalent,and the problem is hard:Theorem 10 The LBP with preemption, under 
onstraint III (one must 
omplete any job that is begun), isNP-
omplete and hard to approximate.Proof. We use the same redu
tion as the one given in the proof of Theorem 1. Note that any s
hedulefor an instan
e given by the redu
tion, in whi
h all jobs pro
essed must be 
ompleted eventually, 
an betransformed into an equivalent s
hedule with no preemptions. This makes the problem of �nding an optimals
hedule with no preemption equivalent to the problem of �nding an optimal s
hedule in the preemptive
ase under 
onstraint III. Note that we 
annot use a proof similar to that of Theorem 2 to show that thisproblem is strongly NP-
omplete, sin
e preemption 
an lead to improved s
hedules in that instan
e. 23.1 Minimizing Total Time WorkingTheorem 11 The LBP with preemption, under 
onstraint I (one 
an work on any job in its interval) andobje
tive (1) (minimize total time working), is polynomially solvable.Proof. The algorithm s
hedules jobs a

ording to latest deadline �rst (LDF), in whi
h at all times the jobin the system with the latest deadline is being pro
essed, with ties broken arbitrarily. An ex
hange argumentshows that this is optimal. Suppose there is an optimal s
hedule that is not LDF. Consider the �rst timein whi
h an optimal s
hedule di�ers from LDF, and let OPT be an optimal s
hedule in whi
h this time is7



as late as possible. Let OPT be exe
uting a pie
e of job i, pi and LDF exe
utes a pie
e of job j, pj . Weknow that di < dj . We want to show that we 
an repla
e the �rst unit of pi by one unit of pj , 
ontradi
tingthe 
hoi
e of OPT, and thereby proving the 
laim. If in OPT, job j is not 
ompletely pro
essed, then thisswap is feasible, and we are done. On the other hand, if all of j is pro
essed in OPT, su
h a swap 
auses aunit of job j later on to be removed, leaving a gap of one unit. If this gap 
annot be �lled by any other jobpie
e, we get a s
hedule with less work than OPT, whi
h is a 
ontradi
tion. Therefore assume the gap 
anbe �lled, possibly 
ausing a later unit gap. Continue this pro
ess, and at its 
on
lusion, either a unit gapremains 
ontradi
ting the optimality of OPT, or no gaps remain, 
ontradi
ting the 
hoi
e of OPT. 2Theorem 12 The LBP with preemption, under 
onstraint II (one 
an only work on jobs that 
an be 
om-pleted) and obje
tive (1) (minimize total time working), is (weakly) NP-
omplete.Proof. If all arrival times are the same, then this problem is equivalent to the one in whi
h the obje
tivefun
tion is minimize the makespan, whi
h is shown to be NP-
omplete in Theorem 16. 23.2 Minimizing Weighted Sum of Completed JobsTheorem 13 The LBP with preemption, under 
onstraint I (one 
an work on any job in its interval) andobje
tive (2) (minimize the weighted sum of 
ompleted jobs), is polynomially solvable.Proof. Without loss of generality, assume that jobs 1; : : : ; n are indexed in order of in
reasing deadlines.We show how to de
ompose the jobs into separate 
omponents that 
an be treated independently. S
hedulethe jobs a

ording to EDD (if a job is exe
uting and its deadline passes, preempt and exe
ute the next job).Whenever there is a gap (potentially of size zero), where no jobs are in the system, the jobs are divided intoseparate 
omponents that 
an be s
heduled independently and their weights summed. Now we fo
us on onesu
h set of jobs (having no gaps). We modify the EDD s
hedule by preempting a job � units of time beforeit 
ompletes. Then we move the rest of the jobs of the s
hedule forward by � time units and 
ontinue topro
ess. At the end of the s
hedule, there are two possibilities. (1) the last job is interrupted be
ause itsdeadline passes; in this 
ase we obtain a s
hedule in whi
h no jobs are 
ompleted; (2) the last job 
ompletesand in addition all other jobs whose deadlines have not passed are also for
ed to 
omplete.The proof is 
ompleted by noting that:(a). There is an optimal s
hedule that 
ompletes all of its jobs at the end; and(b). The above s
hedule exe
utes the maximum amount of work possible. (In other words, EDD (\minus�") allows one to exe
ute the maximum amount of work on jobs 1 through i without 
ompleting anyof them.)2Theorem 14 The LBP with preemption, under 
onstraint II (one 
an only work on jobs that 
an be 
om-pleted) and obje
tive (2) (minimize the weighted sum of 
ompleted jobs), is (weakly) NP-
omplete.Proof. If every job pro
essed is also 
ompleted, then this problem is equivalent to the one whi
h is shownto be NP-
omplete in Theorem 16. The redu
tion in that proof has this property. 23.3 Minimizing Makespan: Going Home EarlyWe assume now that the bureau
rat's goal is to go home as soon as possible.We begin by noting that if the arrival times are all the same (ai = 0, for all i), then the obje
tive (3)(go home as soon as possible) is in fa
t equivalent to the obje
tive (1) (minimize total time working), sin
e,under any of the three 
onstraints I{III, the bureau
rat will be busy nonstop until he 
an go home.We note, however, that if the deadlines are all the same (di = D, for all i), then the obje
tives (1) and(3) are quite di�erent. Consider the following example. Job 1 arrives at time a1 = 0 and is of length t1 = 2,8



job 2 arrives at time a2 = 0 and is of length t2 = 9, job 3 arrives at time a3 = 8 and is of length t3 = 2, andall jobs have deadline d1 = d2 = d3 = 10. Then, in order to minimize total time working, the bureau
ratwill do jobs 1 and 3, a total of 4 units of work, and will go home at time 10. However, in order to go homeas soon as possible, the bureau
rat will do job 2, performing 9 units of work, and go home at time 9 (sin
ethere is not enough time to do either job 1 or job 3).Theorem 15 The LBP with preemption, under 
onstraint I (one 
an do any job in its interval) and obje
-tive (3) (go home as early as possible), is polynomially solvable.Proof. The algorithm is to s
hedule by latest deadline �rst (LDF). The proof is similar to the one given inTheorem 11. 2If instead of 
onstraint I we impose 
onstraint II, the problem be
omes hard:Theorem 16 The LBP with preemption, under 
onstraint II (one 
an only work on jobs that 
an be 
om-pleted) and obje
tive (3) (go home as early as possible), is (weakly) NP-
omplete, even if all arrival timesare the same.Proof. We give a redu
tion from Subset Sum. Consider an instan
e of Subset Sum given by a set S of npositive integers, x1, x2; : : : ; xn, and target sum T . We 
onstru
t an instan
e of the required version of theLBP as follows. For ea
h integer xi, we have a job i that arrives at time ai = 0, has length ti = xi, and is dueat time di = T + xi � �, where � is a small 
onstant (it suÆ
es to use � = n3 ). In addition, we have a \long"job n + 1, with length tn+1 > T , that arrives at time an+1 = 0 and is due at time dn+1 = T � 2� + tn+1.We 
laim that it is possible for the bureau
rat to go home by time T if and only if there exists a subset offx1; : : : ; xng that sums to exa
tly T .If there is a subset of fx1; : : : ; xng that sums to exa
tly T , then the bureau
rat 
an perform the 
orre-sponding subset of jobs (of total length T ) and go home at time T ; he is able to avoid doing any of the otherjobs, sin
e their 
riti
al times fall at an earlier time (T � � or T � 2�), making it infeasible to begin them attime T , by our assumption.If, on the other hand, the bureau
rat is able to go home at time T , then we know the following:(a) He must have just 
ompleted a job at time T .He 
annot quit a job and go home in the middle of a job, sin
e the job must have been 
ompletable atthe instant he started (or restarted) working on it, and it remains 
ompletable at the moment that hewould like to quit and go home.(b) He must have been busy the entire time from 0 until time T .He is not allowed to be idle for any period of time, sin
e he 
ould always have been working on someavailable job, e.g., job Jn+1.(
) If he starts a job, then he must �nish it.First, we note that if he starts job Ji and does at least � of it, then he must �nish it, sin
e at time Tless than xi� � remains to be done of the job, and it is not due until time T � �+xi, making it feasibleto return to the job at time T (so that he 
annot go home at time T ).Se
ond, we must 
onsider the possibility that he may perform very small amounts (less than �) ofsome jobs without �nishing them. However, in this 
ase, the total amount that he 
ompletes of thesebarely started jobs is at most n� � 13 . This is a 
ontradi
tion, sin
e his total work time 
onsists ofthis fra
tional length of time, plus the sum of the integral lengths of the jobs that he 
ompleted, whi
h
annot add up to the integer T . Thus, in order for him to go home at exa
tly time T , he must have
ompleted every job that he started.Finally, note that he 
annot use job Jn+1 as \�ller", and do part of it before going home at time T ,sin
e, if he starts it and works at least time 2� on it, then, by the same reasoning as above, he will befor
ed to stay and 
omplete it. Thus, he will not start it at all, sin
e he 
annot 
omplete it before timeT (re
all that tn+1 > T ). 9



job n + 10 T T � �+ tiT � �T � 2� job i
Figure 2: Proof of hardness of LBP with preemption, assuming that all arrival times are at time 0.We 
on
lude that the bureau
rat must 
omplete a set of jobs whose lengths sum exa
tly to T .Thus, we have redu
ed Subset Sum to our problem, showing that it is (weakly) NP-
omplete. 2Remark. The above theorem leaves open the problem of �nding a pseudo-polynomial time algorithm forthe problem. It is also open to obtain an approximation algorithm for this 
ase of the problem.We 
ome now to one of our main results, whi
h utilizes a rather sophisti
ated algorithm and analysis inorder to show that, in 
ontrast with the 
ase of identi
al arrival times, the LBP with identi
al deadlines ispolynomially solvable. The remainder of this se
tion is devoted to proving the following theorem:Theorem 17 The LBP with preemption, under 
onstraint II (one 
an only work on jobs that 
an be 
om-pleted) and obje
tive (3) (go home as early as possible), is solvable in polynomial time if all jobs have thesame deadlines (di = D, for all i).We begin with a de�nition a \for
ed gap:" There is a for
ed gap starting at time � if � is the earliesttime su
h that the total work arriving by time � is less than � . This (�rst) for
ed gap ends at the arrivaltime, � 0, of the next job. Subsequently, there may be more for
ed gaps, ea
h determined by 
onsidering thes
heduling problem that starts at the end, � 0, of the previous for
ed gap. We note that a for
ed gap 
anhave length zero.Under the \go home early" obje
tive, we 
an assume, without loss of generality, that there are no for
edgaps, sin
e our problem really begins only at the time � 0 that the last for
ed gap ends. (The bureau
rat is
ertainly not allowed to go home before the end � 0 of the last for
ed gap, sin
e more jobs arrive after � 0 that
an be pro
essed before their deadlines.) While an optimal s
hedule may 
ontain gaps that are not for
ed,the next lemma implies that there exists an optimal s
hedule having no unfor
ed gaps.Lemma 18 Consider the LBP of Theorem 17, and assume that there are no for
ed gaps. If there is as
hedule having makespan T , then there is a s
hedule with no gaps, also having makespan T .Proof. Consider the �rst gap in the s
hedule, whi
h begins at time g. Be
ause the gap is not for
ed, thereis some job j that is not 
ompleted, and whose 
riti
al time is at time g0 � g. This is be
ause there mustbe a job that arrived before g that is not 
ompleted in the s
hedule, and at time g it is no longer feasibleto 
omplete it. Therefore its 
riti
al time is before g. The interval of time between g0 and T may 
onsist of(1) gaps, (2) work on 
ompleted jobs, and (3) work on jobs that are never 
ompleted. Consider a reviseds
hedule in whi
h, after time g0, jobs of type 3 are removed, and jobs of type 2 are deferred to the end ofthe s
hedule. (Sin
e a job of type 2 is 
ompleted, we know that it is possible to move it later in the s
hedulewithout passing its 
riti
al time. It may not be possible to move a (pie
e of a) job of type 3 later in thes
hedule, sin
e its 
riti
al time may have passed.) In the revised s
hedule, extend job j to �ll the emptyspa
e. Note that there is enough work in job j to �ll the spa
e, sin
e a 
riti
al time of g0 means that the jobmust be exe
uted 
ontinuously until deadline D in order to 
omplete it. 2Lemma 19 Consider an LBP of Theorem 17 in whi
h there are no for
ed gaps. Any feasible s
hedule 
anbe rearranged so that all 
ompleted jobs are ordered by their arrival times, and all in
omplete jobs are orderedby their arrival times. 10



Proof. The proof uses a simple ex
hange argument as in the standard proof of optimality for the EDD(Earliest Due Date) poli
y in traditional s
heduling problems. 2Our algorithm 
he
ks if there exists a s
hedule having no gaps that 
ompletes exa
tly at time T . Assumethat the jobs 1; : : : ; n are labeled so that a1 � a2 � � � � an. The main steps of the algorithm are as follows:The Algorithm:1. Determine the for
ed gaps. This allows us to redu
e to a problem having no for
ed gaps, whi
h startsat the end of the last for
ed gap.The for
ed gaps are readily determined by 
omputing the partial sums, �j =Pji=1 ti, for j = 0; 1; : : : ; n,and 
omparing them to the arrival times. (We de�ne �0 = 0.) The �rst for
ed gap, then, begins atthe time � = �j� = minf�j : �j < aj+1g and ends at time aj�+1. (� = 0 if a1 > 0; � = 1 if there areno for
ed gaps.) Subsequent for
ed gaps, if any, are 
omputed similarly, just by re-zeroing time at � 0,and pro
eeding as with the �rst for
ed gap.2. Let x = D � T be the length of time between the 
ommon deadline D and our target makespan T . Ajob i for whi
h ti � x is 
alled short ; jobs for whi
h ti > x are 
alled long .If it is not possible to s
hedule the set of short jobs, so that ea
h is 
ompleted and they are all doneby time T , then our algorithm stops and returns \NO," 
on
luding that going home by time T isimpossible. Otherwise, we 
ontinue with the next step of the algorithm.The rationale for this step is the observation that any job of length at most x must be 
ompleted inany s
hedule that permits the bureau
rat to go home by time T , sin
e its 
riti
al time o

urs at orafter time T .3. Create a s
hedule S of all of the jobs, ordered by their arrival times, in whi
h the amount of time spenton job i is ti if the job is short (so it is done 
ompletely) and is ti � x if the job is long.For a long job i, ti�x is the maximum amount of time that 
an be spent on this job without 
ommittingthe bureau
rat to 
ompleting the job, i.e., without 
ausing the adjusted 
riti
al time of the job to o

urafter time T .If this s
hedule S has no gaps and ends at a time after T , then our algorithm stops and returns\YES." A feasible s
hedule that allows the bureau
rat to go home by time T is readily 
onstru
ted by\squishing" the s
hedule that we just 
onstru
ted: We redu
e the amount of time spent on the longjobs, starting with the latest long jobs and working ba
kwards in time, until the 
ompletion time ofthe last short job exa
tly equals T . This s
hedule 
ompletes all short jobs (as it should), and doespartial work on long jobs, leaving all of them with adjusted 
riti
al times that fall before time T (andare therefore not possible to resume at time T , so they 
an be avoided).4. If the above s
hedule S has gaps or ends before time T , then S is not a feasible s
hedule for the lazybureau
rat, so we must 
ontinue the algorithm, in order to de
ide whi
h long jobs to 
omplete, if it ispossible to go home by time T .We use a dynami
 programming algorithm S
hedule-by-T , whi
h we des
ribe in detail below.Pro
edure S
hedule-by-T . Let Gi be the sum of the gap lengths that o

ur before time ai in s
heduleS. Then, we know that in order to 
onstru
t a gapless s
hedule, at least dGi=xe long jobs (in addition tothe short jobs) from 1; : : : ; i� 1 must be 
ompleted. For ea
h i we have su
h a 
onstraint; 
olle
tively, we
all these the gap 
onstraints .Claim 20 If for ea
h gap in s
hedule S, there are enough long jobs to be 
ompleted in order to �ll the gap,then a feasible s
hedule ending at T exists.We devise a dynami
 programming algorithm as follows. Let T (m; k) be the earliest 
ompletion time ofa s
hedule that satis�es the following: 11



(1) It 
ompletes by time T ;(2) It uses jobs from the set f1; : : : ; kg;(3) It 
ompletes exa
tly m jobs and does no other work (so it may have gaps, making it an infeasibles
hedule);(4) It satis�es the gap 
onstraints; and(5) It 
ompletes all short jobs (of size � x).The boundary 
onditions on T (m; k) are given by:T (0; 0) = 0;T (0; n) =1, whi
h implies that at least one of the jobs must be 
ompleted;T (m; 0) =1 for m > 0;T (m; k) =1 if there exist 
onstraints su
h that at least m+1 jobs from 1; : : : ; k must be 
ompleted, someof the jobs from 1; : : : ; k must be 
ompleted be
ause they are short, and some additional jobs may needto be 
ompleted be
ause of the gap 
onstraints. Note that this implies that T (0; k) is equal to zero orin�nity, depending on whether gap 
onstraints are disobeyed.In general, T (m; k) is given by sele
ting the better of two options:T (m; k) = minf�; �g;where � is the earliest 
ompletion time if we 
hoose not to exe
ute job k (whi
h is a legal option only if jobk is long), giving � = �T (m; k � 1) if tk > x1 otherwise,and � is the earliest 
ompletion time if we 
hoose to exe
ute job k (whi
h is a legal option only if the resulting
ompletion time is by time T ), giving� = nmax(ak + tk; T (m� 1; k � 1) + tk) if this quantity is � T1 otherwise.Lemma 21 There exists a feasible s
hedule 
ompleting at time T if and only if there exists an m for whi
hT (m;n) <1.Proof. If T (m;n) =1 for all m, then, sin
e the gap 
onstraints apply to any feasible s
hedule, and it isnot possible to �nd su
h a s
hedule for any number of jobs m, there is no feasible s
hedule that 
ompleteson or before T .If there exists an m for whi
h T (m;n) < 1, let m� be the smallest su
h m. Then, by de�nition,T (m�; n) � T . We show that the s
hedule S� obtained by the dynami
 program 
an be made into a feasibles
hedule ending at T . Consider jobs that are not 
ompleted in the s
hedule S�; we wish to use some of themto \�ll in" the s
hedule to make it feasible, as follows.Ordered by arrival times of in
omplete jobs, and doing up to ti � x of ea
h in
omplete job, �ll in thegaps. Note that by the gap 
onstraints, there is enough work to �ll in all gaps. There are two things thatmay make this s
hedule infeasible: (i) Some jobs are worked on beyond their 
riti
al times, and (ii) the lastjob to be done must be a 
ompleted one.(i). Fixing the 
riti
al time problem: Consider a job i that is pro
essed at some time, beginning at � ,after its 
riti
al time, 
i. We move all 
ompleted job pie
es that fall between 
i and T to the end of thes
hedule, lining them up to end at T ; then, we do job i from time 
i up until this bat
h of 
ompleted jobs.This is legal be
ause all 
ompleted jobs 
an be pushed to the end of the s
hedule, and job i 
annot 
ompleteon
e it stops pro
essing. 12



(ii). Fixing the last job to be a 
omplete one: Move a \sliver" of the last 
ompleted job to just beforetime T . If this is not possible (be
ause the job would have to be done before it arrives), then it means thatwe must 
omplete one additional job, so we 
onsider m� + 1, and repeat the pro
ess.Note that a te
hni
al diÆ
ulty arises in the 
ase in whi
h the sum of the gap lengths is an exa
t multipleof x: Do we have to 
omplete an additional job or not? This depends on whether we 
an put a sliver ofa 
ompleted job at T . There are several ways to deal with this issue, in
luding 
onditioning on the last
ompleted job, modifying the gap 
onstraint, or ignoring the problem and �xing it if it o

urs (that is if we
annot put a sliver, then add another job whi
h must be 
ompleted to the gap 
onstraint). 2This 
ompletes the proof of our main theorem, Theorem 17.Remark. Even if all arrival times are the same, and deadlines are the same, and data is integer, an optimalsolution may not be integer. In fa
t, there may not be an optimal solution, only a limiting one, as thefollowing example shows: Let ai = 0 and di = 100, for all i. Jobs 1; : : : ; n have length 51, while job n + 1has length tn+1 = 48. A feasible s
hedule exe
utes � of ea
h of the �rst n jobs, where � > 1=(n� 1), and allof job n+1, so the total work done is n�+48 > n=(n�1)+48. Note that ea
h of the �rst n jobs have 51� �remaining to do, while there is only time 52�n� left before the deadline. Now, by making � arbitrarily 
loseto zero, we 
an make the s
hedule better and better.Referen
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