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Abstract

We introduce a new class of scheduling problems in which the optimization is performed by the worker
(single “machine”) who performs the tasks. The worker’s objective may be to minimize the amount of
work he does (he is “lazy”). He is subject to a constraint that he must be busy when there is work that
he can do; we make this notion precise, particularly in the case in which preemption is allowed. The
resulting class of “perverse” scheduling problems, which we term “Lazy Bureaucrat Problems,” gives rise
to a rich set of new questions that explore the distinction between maximization and minimization in
computing optimal schedules.

1 Introduction

Scheduling problems have been studied extensively from the point of view of the objectives of the enterprise
that stands to gain from the completion of the set of jobs. We take a new look at the problem from the
point of view of the workers who perform the tasks that earn the company its profits. In fact, it is natural
to expect that some employees may lack the motivation to perform at their peak levels of efficiency, either
because they have no stake in the company’s profits or because they are simply lazy. The following example
illustrates the situation facing a “typical” office worker, who may be one small cog in a large bureaucracy:

Ezample. Tt is 3:00 p.m., and Dilbert goes home at 5:00 p.m. Dilbert has two tasks that have
been given to him: one requires 10 minutes, the other requires an hour. If there is a task in
his “in-box,” Dilbert must work on it, or risk getting fired. However, if he has multiple tasks,
Dilbert has the freedom to choose which one to do first. He also knows that at 3:15, another task
will appear  a 45-minute personnel meeting. If Dilbert begins the 10-minute task first, he will
be free to attend the personnel meeting at 3:15 and then work on the hour-long task from 4:00
until 5:00. On the other hand, if Dilbert is part way into the hour-long job at 3:15, he may be
excused from the meeting. After finishing the 10-minute job by 4:10, he will have 50 minutes to
twiddle his thumbs, iron his tie, or enjoy engaging in other mindless trivia. Naturally, Dilbert
prefers this latter option.

There is also an historical example of an actual situation in which it proved crucial to schedule tasks
inefficiently, as documented in the book/movie Schindler’s List [4]. It was essential for the workers and
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management of Schindler’s factory to appear to be busy at all times, in order to stay in operation, but they
simultaneously sought to minimize their contribution to the German war effort.

These examples illustrate a general and natural type of scheduling problem, which we term the “Lazy
Bureaucrat Problem” (LBP), in which the goal is to schedule jobs as inefficiently (in some sense) as possible.
We propose that these problems provide an interesting set of algorithmic questions, which may also lead
to discovery of structure in traditional scheduling problems. (Several other combinatorial optimization
problems have been studied “in reverse,” leading, e.g., to maximum TSP, maximum cut, and longest path;
such inquiries can lead to better understanding of the structure and algorithmic complexity of the original
optimization problem.) Our investigations may also be motivated by a “game theoretic” view of the employee-
employer system.

1.1 The Model

There is a vast literature on a variety of scheduling problems; see, e.g., some of the recent surveys [3, 5, 7).
Here, we consider a set of jobs 1...n having processing times (lengths) ¢ ...#, respectively. Job i arrives
at time a; and has its deadline at time d;. We assume throughout this paper that t;, a;, and d; have
nonnegative integral values. The jobs have hard deadlines, meaning that each job i can only be executed
during its allowed interval I; = [a;, d;]; we also call I; the job’s window. We let ¢; = d; —t; denote the critical
time of job 4; job i must be started by time ¢; if there is going to be any chance of completing it on time.

The jobs are executed on a single processor, the (lazy) bureaucrat. The bureaucrat executes only one job
at a time. (We leave the case of multiple processors for future work.)

Greedy Requirement. The bureaucrat chooses a subset of jobs to execute. Since his goal is to minimize
his effort, he prefers to remain idle all the time and to leave all the jobs unexecuted. However, this scenario is
forbidden by what we call the greedy requirement, which requires that the bureaucrat work on an executable
job, if there are any executable jobs. A job is “executable” if it has arrived, its deadline has not yet passed,
and it is not yet fully processed. In the case with preemption, there may be other constraints that govern
whether or not a job is executable; see Section 3.

Objective Functions. In traditional scheduling problems, if it is impossible to complete the set of all jobs
by their deadlines, one typically tries to optimize according to some objective, e.g., to maximize a weighted
sum of on-time jobs, to minimize the maximum lateness of the jobs, or to minimize the number of late
jobs. For the LBP we consider three different objective functions, which naturally arise from considering the
bureaucrat’s goal of being inefficient:

(1) Minimize the total amount of time spent working. This objective naturally appeals to a “lazy” bureau-
crat.

(2) Minimize the weighted sum of completed jobs. Here, we usually assume that the weight of job i is its
length, ¢;; however, other weights (e.g., unit weights) are also of interest. This objective appeals to a
“spiteful” bureaucrat whose goal it is to minimize the fees that the company collects on the basis of
his labors, assuming that the fee (in proportion to the task length, or a fixed fee per task) is collected
only for those tasks that are actually completed.

(3) Minimize the makespan, the mazimum completion time of the jobs. This objective appeals to an “impa-
tient” bureaucrat, whose goal it is to go home as early as possible, at the completion of the last job he
is able to complete. He cares about the number of hours spent at the office, not the number of hours
spent doing work (productive or otherwise) at the office.

Note that, in contrast with standard scheduling problems, the makespan in the LBP changes; it is a
function of which jobs have passed their deadlines and can no longer be executed.

Additional Parameters of the Model. As with most scheduling problems, additional parameters of
the model must be set. For example, one must explicitly allow or forbid preemption of jobs. If a job is



preempted, it is interrupted and may be resumed later at no additional cost. If preemption is forbidden,
then once a job is begun, it must be completed without interruptions.

One must also specify whether scheduling occurs on-line or off-line. A scheduling algorithm is considered
to be off-line if all the jobs are known to the scheduler at the outset; it is on-line if the jobs are known to the
scheduler only as they arrive. In this paper we restrict ourselves to off-line scheduling; we leave the on-line
case as an interesting open problem for future research.

1.2 Owur Results

In this paper, we introduce the Lazy Bureaucrat Problem and develop algorithms and hardness results for
several versions of it. From these results, we derive some general characteristics of this new class of scheduling
problems and describe (1) situations in which traditional scheduling algorithms extend to our problems and
(2) situations in which these algorithms no longer apply.

No Preemption. We prove that the LBP is NP-complete, as is generally the case for traditional scheduling
problems. Thus, we focus on special cases to study algorithms. When all jobs have unit size, optimal
schedules can be found in polynomial time. The following three cases have pseudo-polynomial algorithms:
(1) when each job i’s interval I; is less than twice the length of i; (2) when the ratios of interval length to job
length and longest job to shortest job are both bounded; and (3) when all jobs arrive in the system at the
same time. These last scheduling problems are solved using dynamic programming both for Lazy Bureaucrat
and traditional metrics. Thus, in these settings, the Lazy Bureaucrat metrics and traditional metrics are
solved using similar techniques.

From the point of view of approximation, however, the standard and Lazy Bureaucrat metrics behave
differently. Standard metrics typically allow polynomial-time algorithms having good approximation ratios,
whereas we show that the Lazy Bureaucrat metrics are difficult to approximate. This hardness derives more
from the greedy requirement and less from the particular metric in question. The greedy requirement appears
to render the problem substantially more difficult, as we show. (Ironically, even in standard optimization
problems, the management often tries to impose this requirement, because it naively appears to be desirable.)

Preemption. The greedy requirement dictates that the worker must stay busy while work is in the system.
If the model allows preemption we must specify under what conditions a job can be interrupted or resumed.
We distinguish three versions of the preemption rules, which we list from most permissive to most restrictive.
In particular possible constraints on what the worker can execute include (I) any job that has arrived and
is before its deadline, (IT) any job that has arrived and for which there is still time to complete it before its
deadline, or (IIT) any job that has arrived, but with the constraint that if it is started, it must eventually be
completed.

We consider all three metrics and all three versions of preemption. We show that, for all three metrics,
version I is polynomially solvable, and version III is NP-complete. Many of the hardness results for no
preemption carry over to version III. However, the question of whether the problem is strongly NP-complete
remains open.

Our main results are for version II. We show that the general problem is NP-complete. Then, we focus
on minimizing the makespan in two complementary special cases: (1) All jobs have a common arrival time
and arbitrary deadlines; (2) All jobs have a common deadline and arbitrary arrival times. We show that the
first problem is NP-complete, whereas the second problem can be solved in polynomial time.

These last results illustrate a curious feature of the LBP. One can convert one special case into the other
by reversing the direction of time. In the LBP, unlike many scheduling settings, this reversing of time changes
the complexity of the problem.

2 LBP: No Preemption

In this section, we assume that no job can be preempted: if a job is started, then it is performed without
interruption until it completes. We show that the Lazy Bureaucrat Problem (LBP) without preemption is
strongly NP-complete and is not approximable to within any factor. These hardness results distinguish our



problem from traditional scheduling metrics, which can be approximated in polynomial time, as shown in
the recent paper of [1]. We show, however, that several special cases of the problem have pseudo-polynomial
time algorithms, using applications of dynamic programming.

2.1 Hardness Results

We begin by describing the relationship between the three different objective functions in the case of no
preemption. The problem of minimizing the total work is a special case of the problem of minimizing the
weighted sum of completed jobs, because every job that is executed must be completed. (The weights become
the job lengths.) Furthermore, if all jobs have the same arrival time, say time zero, then the two objectives,
minimizing total work and minimizing makespan (go home early) are equivalent, since no feasible schedule
will have any gaps. Our first hardness theorem applies therefore to all three objective functions:

Theorem 1 The Lazy Bureaucrat Problem with no preemption is (weakly) NP-complete, and is not approx-
imable to within any fized factor, even when arrival times are all the same.

Proof. We use a reduction from the SUBSET SUM problem [2]: Given a set of integers S = {z1,x2,...,2,}
and a target integer T', does there exist a subset S’ C S, such that ZmiES’ x; =T7?

We construct an instance of the LBP having n + 1 jobs, each having release time zero (a; = 0 for all
i). For i = 1...,n, job i has processing time ¢; = z; and deadline d; = T'. Job n + 1 has processing time
thy1 = 1+ ZziGS z; and deadline d,+1 = T + t,4+1 — 1; thus, job n 4+ 1 can be started at time 7' — 1 or
earlier. Because job n + 1 is so long, the bureaucrat wants to avoid executing it, but can do so if and only
if he selects a subset of jobs from {1,...,n} to execute whose lengths sum to exactly 7. O

As we show in Section 2.2, the problem from Theorem 1 has a pseudopolynomial-time algorithm. How-
ever, if arrival times and deadlines are arbitrary integers, the problem is strongly NP-complete. The given
reduction applies to all three objective functions.

Theorem 2 The Lazy Bureaucrat Problem with no preemption is strongly NP-complete, and is not approx-
imable to within any fized factor.

Proof. Clearly the problem is in NP, since any solution can be represented by an ordered list of jobs, given
their arrival times. To show hardness, we use a reduction from the 3-PARTITION problem [2]: Given a set
S = {x1,...,23m} of 3m positive integers and a positive integer bound B such that B/4 < x; < B/2, for
i=1,...,3m and ), x; = mB, does there exist a partitioning of S into m disjoint sets, Si,...,S,,, such
that fori =1,...,m, Zm,-esi x; = B? (Note that, by the assumption that B/4 < x; < B/2, each set S; must
contain exactly 3 elements.)

We construct an instance of the LBP containing three classes of jobs:

Element jobs: We define one “element job” corresponding to each element x; € S, having arrival time 0,
deadline d; = (m — 1) + mB, and processing time x;.

Unit jobs: We define m —1 “unit” jobs, each of length 1. The i-th unit job (for i = 1,...,m —1) has arrival
time i(B + 1) — 1 and deadline i(B + 1). Note that for these unit-length jobs we have d; —a; = 1;
thus, these jobs must be processed immediately upon their arrival, or not at all.

Large job: We define one “large” job of length L > (m — 1) + mB, arrival time 0, and deadline L + (m —
2) + mB. Note that in order to complete this job, it must be started at time (m — 2) + mB or before.

As in the proof of Theorem 1, the lazy bureaucrat wants to avoid executing the long job, but can do so
if and only if all other jobs are actually executed. Otherwise, there will be a time when the large job is the
only job in the system and the lazy bureaucrat will be forced to execute it. Thus, the unit jobs must be done
immediately upon their arrival, and the element jobs must fit in the intervals between the unit jobs. Each
such interval between consecutive unit jobs is of length exactly B. Refer to Figure 1. In summary, the long
job is not processed if and only if all of the element and unit jobs can be processed before their deadlines,
which happens if and only if the corresponding instance of 3-PARTITION is a “yes” instance. Note that since
L can be as large as we want, this also implies that no polynomial-time approximation algorithm with any
fixed approximation bound can exist, unless P=NP. O



Long job: \

Element jobs:[ | [ ][] ]| ] l:l:m (very long)

Unit jobs: [ 8 — ] []
0 B B+1 2B+2 ... (m —1) +mB
2B + 1 (m —1)(B+1)

Figure 1: Proof of hardness of LBP with no preemption and arbitrary arrival times.

2.2 Algorithms for Special Cases

Unit-Length Jobs. Consider the special case of the LBP in which all jobs have unit processing times.
(Recall that all inputs are assumed to be integral.) The Latest Deadline First (LDF) scheduling policy
selects the job in the system having the latest deadline.

Theorem 3 The Latest Deadline First (LDF) scheduling policy minimizes the amount of executed work.

Proof. Assume by contradiction that no optimal schedule is LDF. We use an exchange argument. Consider
an optimal (non-LDF) schedule that has the fewest pairs of jobs executed in non-LDF order. The schedule
must have two neighboring jobs 4,j such that ¢ < j in the schedule but D; < Dj, and j is in the system
when i starts its execution. Consider the first such pair of jobs. There are two cases:

(1) The new schedule with i and j switched, is feasible. It executes no more work than the optimal
schedules, and is therefore also optimal.

(2) The schedule with ¢ and j switched is not feasible. This happens if i’s deadline has passed. If no
job is in the system to replace 7, then we obtain a better schedule than the optimal schedule and reach a
contradiction. Otherwise, we replace ¢ with the other job and repeat the switching process.

We ultimately obtain a schedule executing no more work than an optimal schedule, with fewer pairs of
jobs in non-LDF order, a contradiction. O

Narrow Windows. Consider now the version in which jobs are large in comparison with their intervals,
that is, the intervals are “narrow.” Let R be a bound on the ratio of window length to job length; i.e., for
each job i, d; — a; < R -t;. We show that a pseudo-polynomial algorithm exists for the case of sufficiently
narrow windows, that is, when R < 2.

Lemma 4 Assume that for each job i, d; — a; < 2t;. Then, if job i can be scheduled before job j, then job j
cannot be scheduled before job i.

Proof. We rewrite the assumption: for each i, d; — t; < t; + a;. The fact that job i can be scheduled before
job j is equivalent to the statement that a; +t; < d; — ¢t;, since the earliest that job ¢ can be completed is
at time a; + ¢; and the latest that job j can be started is at time d; — ¢;. Combining these inequalities, we
obtain

aj+tj >dj *tj >a; +1; >di7ti,

which implies that job j cannot be scheduled before job i. O

Corollary 5 Under the assumption that d; — a; < 2t; for each i, the ordering of any subset of jobs in a
schedule is uniquely determined.

Theorem 6 Suppose that for each job i, d; — a; < 2t;. Let K = max;d;. Then the LBP can be solved in
O(nK max(n, K)) time.



Proof. We use dynamic programming to find the shortest path in a directed acyclic graph (DAG). There
are O(nk?) states the system can enter. Let (i,4,7) denote the state of the system when the processor
begins executing the j-th unit of work of job ¢ at time 7. Thus, i =1,...,n, 7 =1,..,t;,and 7 =0, ..., K.
Transitions from state to state are defined according to the following rules:

1. No preemption: once a job is begun, it must be completed without interruptions.

2. When a job is completed at time 7, another job must begin immediately. if one exists in the system.
(By Lemma 4, we know this job has not yet been executed.) Otherwise, the system is idle and begins
executing a job as soon as one arrives.

3. State (i,t;,7) is an end state if and only if when job i completes at time 7, no jobs can be executed
subsequently.

4. The start state has transitions to the jobs (i,1,0) that arrive first.

The goal of the dynamic program is to find the length of a shortest path from the start state to an
end state. To complete the time analysis, note that only nk of the nK? states have more than constant
outdegree, and these states each have outdegree bounded by n. O

Note that for R > 2 we know of no efficient algorithm without additional conditions. Let W be a bound
on the ratio of longest window to shortest window, and let A be a bound on the ratio of the longest job to
the shortest job. Note that bounds on R and A imply a bound on W, and bounds on R and W imply a
bound on A. However, a bound on A alone is not sufficient for a pseudopolynomial time algorithm.

Theorem 7 Even with a bound on the ratio A, the LBP with no preemption is strongly NP-complete. It
cannot be approzimated to within a factor of A — €, for any € > 0, unless P=NP.

Proof. Modify the reduction from 3-partition of Theorem 2, by changing all the fixed “unit” jobs to have
length B/3, and adjust the arrival times and deadlines accordingly.

Instead of one very long job as in the proof from Theorem 2, we create a sequence of bounded-length jobs
that serve the same purpose. One unit before the deadline of the “element” jobs (see Theorem 2) a sequence
of long jobs fy,...,{,, arrives. Each job ¢; entirely fills its window and so can only be executed directly
when it arrives. Job #;;; arrives at the deadline of job ¢;. In addition, a sequence of small jobs si,..., s,
arrives, where each small job s; also entirely fills its window and can only be executed when it arrives. Small
job s; overlaps ¢; and ¢;1; it arrives one unit before the deadline of job ¢;. Jobs s; have length B/4 and
jobs £; have length A - B/4. Thus, if all the jobs comprising the 3-partition problem can be executed, jobs
ly,..., 4, will be avoided by executing jobs si,...,S,. Otherwise, jobs ¢1,...,£,, must be executed. The
index of m can be adjusted to any e. O

Bounds on both A and R are sufficient to yield a pseudo-polynomial algorithm:

Theorem 8 Let K = max; d;. Given bounds on R and A, the Lazy Bureaucrat Problem with no preemption
can be solved in O(K - n*Flga),

Proof. We modify the dynamic programming algorithm of Theorem 6 for this more complex situation. The
set of jobs potentially available to work on in a given schedule at time 7 are the jobs j that have not yet
been executed, for which d; —; <. Our state space will encode the complement of this set for each time
i, specifically, the set of jobs that were executed earlier but could otherwise have been executed at i.

The bounds on R and A together imply an upper bound on the number of subsets of jobs active at i
that could have been executed prior to time i. Let dmin be the length of the shortest job potentially active
at time i. We can partition all potentially active jobs into Ig A classes, where the jth class consists of the
jobs of size > 297 d i, and < 29dyin. The earliest possible arrival time of any class-j job is i — 27dmin R,
since each job has an R-bounded window. Only 2/dinR/27  dmin = 2R jobs from class j can be executed
within this window. Summing over all the classes implies that at most 2R1g A jobs potentially active at
time ¢ could have been executed in a non-preemptive schedule by time i.

The time bound follows by observing that each of the Kn(?182) states has outdegree at most 2R1g A.
O



Jobs Having a Common Release Time. In the next version of the problem all jobs are released at time
zero, i.e., a; = 0 for all 4. This problem can be solved in polynomial time by dynamic programming. The
dynamic programming works because of the following structural result: There exists an optimal schedule
that executes the jobs Earliest Due Date (EDD).

In fact this problem is a special case of the following general problem: Minimizing the weighted sum of
jobs not completed by their deadlines. This problem was solved by [6], using the same structural result.

Theorem 9 The LBP can be solved in pseudo-polynomial time when all jobs have a common release time.

3 LBP: Preemption

In this section we consider the Lazy Bureaucrat Problem in which jobs may be preempted: a job in progress
can be set aside, while another job is processed, and then possibly resumed later. It is important to distinguish
among different constraints that specify which jobs are available to be processed. We consider three natural
choices of such constraints:

Constraint I: In order to work on job i at time 7, we require only that the current time 7 lies within the
job’s interval I;: a; < 1 < dj;.

Constraint II: In order to work on job 7 at time 7, we require not only that the current time 7 lies within
the job’s interval I;, but also that the job has a chance to be completed, e.g., if it is processed without
interruption until completion.

This condition is equivalent to requiring that 7 < ¢}, where ¢ = d; — t; + y; is the adjusted critical
time of job i: ¢ is the latest possible time to start job i, in order to meet its deadline d;, given that
an amount y; of the job has already been completed.

Constraint III: In order to work on job ¢, we require that 7 € I;. Further, we require that any job that is
started is eventually completed.

As before, we consider the three objective functions (1)—(3), in which the goal is to minimize the total
time working (regardless of which jobs are completed), the weighted sum of completed jobs, or the makespan
of the schedule (the “go home” time).

The third constraint makes the problem with preemption quite similar to the one with no preemption.
In fact, if all jobs arrive at the same time (a; = 0 for all i), then the three objective functions are equivalent,
and the problem is hard:

Theorem 10 The LBP with preemption, under constraint III (one must complete any job that is begun), is
NP-complete and hard to approximate.

Proof. We use the same reduction as the one given in the proof of Theorem 1. Note that any schedule
for an instance given by the reduction, in which all jobs processed must be completed eventually, can be
transformed into an equivalent schedule with no preemptions. This makes the problem of finding an optimal
schedule with no preemption equivalent to the problem of finding an optimal schedule in the preemptive
case under constraint III. Note that we cannot use a proof similar to that of Theorem 2 to show that this
problem is strongly NP-complete, since preemption can lead to improved schedules in that instance. O

3.1 Minimizing Total Time Working

Theorem 11 The LBP with preemption, under constraint I (one can work on any job in its interval) and
objective (1) (minimize total time working), is polynomially solvable.

Proof. The algorithm schedules jobs according to latest deadline first (LDF), in which at all times the job
in the system with the latest deadline is being processed, with ties broken arbitrarily. An exchange argument
shows that this is optimal. Suppose there is an optimal schedule that is not LDF. Consider the first time
in which an optimal schedule differs from LDF, and let OPT be an optimal schedule in which this time is



as late as possible. Let OPT be executing a piece of job ¢, p; and LDF executes a piece of job j, p;j. We
know that d; < d;. We want to show that we can replace the first unit of p; by one unit of p;, contradicting
the choice of OPT, and thereby proving the claim. If in OPT, job j is not completely processed, then this
swap is feasible, and we are done. On the other hand, if all of j is processed in OPT, such a swap causes a
unit of job 7 later on to be removed, leaving a gap of one unit. If this gap cannot be filled by any other job
piece, we get a schedule with less work than OPT, which is a contradiction. Therefore assume the gap can
be filled, possibly causing a later unit gap. Continue this process, and at its conclusion, either a unit gap
remains contradicting the optimality of OPT, or no gaps remain, contradicting the choice of OPT. O

Theorem 12 The LBP with preemption, under constraint II (one can only work on jobs that can be com-
pleted) and objective (1) (minimize total time working), is (weakly) NP-complete.

Proof. If all arrival times are the same, then this problem is equivalent to the one in which the objective
function is minimize the makespan, which is shown to be NP-complete in Theorem 16. O

3.2 Minimizing Weighted Sum of Completed Jobs

Theorem 13 The LBP with preemption, under constraint I (one can work on any job in its interval) and
objective (2) (minimize the weighted sum of completed jobs), is polynomially solvable.

Proof. Without loss of generality, assume that jobs 1,...,n are indexed in order of increasing deadlines.
We show how to decompose the jobs into separate components that can be treated independently. Schedule
the jobs according to EDD (if a job is executing and its deadline passes, preempt and execute the next job).
Whenever there is a gap (potentially of size zero), where no jobs are in the system, the jobs are divided into
separate components that can be scheduled independently and their weights summed. Now we focus on one
such set of jobs (having no gaps). We modify the EDD schedule by preempting a job € units of time before
it completes. Then we move the rest of the jobs of the schedule forward by e time units and continue to
process. At the end of the schedule, there are two possibilities. (1) the last job is interrupted because its
deadline passes; in this case we obtain a schedule in which no jobs are completed; (2) the last job completes
and in addition all other jobs whose deadlines have not passed are also forced to complete.
The proof is completed by noting that:

(a). There is an optimal schedule that completes all of its jobs at the end; and

(b). The above schedule executes the maximum amount of work possible. (In other words, EDD (“minus
€”) allows one to execute the maximum amount of work on jobs 1 through i without completing any
of them.)

O

Theorem 14 The LBP with preemption, under constraint II (one can only work on jobs that can be com-
pleted) and objective (2) (minimize the weighted sum of completed jobs), is (weakly) NP-complete.

Proof. If every job processed is also completed, then this problem is equivalent to the one which is shown
to be NP-complete in Theorem 16. The reduction in that proof has this property. O

3.3 Minimizing Makespan: Going Home Early

We assume now that the bureaucrat’s goal is to go home as soon as possible.

We begin by noting that if the arrival times are all the same (a; = 0, for all i), then the objective (3)
(go home as soon as possible) is in fact equivalent to the objective (1) (minimize total time working), since,
under any of the three constraints I-III, the bureaucrat will be busy nonstop until he can go home.

We note, however, that if the deadlines are all the same (d; = D, for all i), then the objectives (1) and
(3) are quite different. Consider the following example. Job 1 arrives at time a; = 0 and is of length ¢; = 2,



job 2 arrives at time as = 0 and is of length t5 = 9, job 3 arrives at time a3 = 8 and is of length ¢t3 = 2, and
all jobs have deadline di = ds = d3 = 10. Then, in order to minimize total time working, the bureaucrat
will do jobs 1 and 3, a total of 4 units of work, and will go home at time 10. However, in order to go home
as soon as possible, the bureaucrat will do job 2, performing 9 units of work, and go home at time 9 (since
there is not enough time to do either job 1 or job 3).

Theorem 15 The LBP with preemption, under constraint I (one can do any job in its interval) and objec-
tive (8) (go home as early as possible), is polynomially solvable.

Proof. The algorithm is to schedule by latest deadline first (LDF). The proof is similar to the one given in
Theorem 11. O

If instead of constraint I we impose constraint I, the problem becomes hard:

Theorem 16 The LBP with preemption, under constraint II (one can only work on jobs that can be com-
pleted) and objective (8) (go home as early as possible), is (weakly) NP-complete, even if all arrival times
are the same.

Proof. We give a reduction from SUBSET SUM. Consider an instance of SUBSET SUM given by a set S of n
positive integers, x1, Ta,...,T,, and target sum 7. We construct an instance of the required version of the
LBP as follows. For each integer z;, we have a job i that arrives at time a; = 0, has length ¢; = z;, and is due
at time d; = T + x; — €, where ¢ is a small constant (it suffices to use ¢ = 7). In addition, we have a “long”
job n + 1, with length ¢,,1 > T, that arrives at time a,+1 = 0 and is due at time d,,41 =T — 2e + t,,41.
We claim that it is possible for the bureaucrat to go home by time 7' if and only if there exists a subset of
{z1,...,z,} that sums to exactly T'.

If there is a subset of {z,...,,} that sums to exactly T, then the bureaucrat can perform the corre-
sponding subset of jobs (of total length T) and go home at time T'; he is able to avoid doing any of the other
jobs, since their critical times fall at an earlier time (T' — € or T' — 2¢), making it infeasible to begin them at
time 7', by our assumption.

If, on the other hand, the bureaucrat is able to go home at time 7', then we know the following:

(a) He must have just completed a job at time T.

He cannot quit a job and go home in the middle of a job, since the job must have been completable at
the instant he started (or restarted) working on it, and it remains completable at the moment that he
would like to quit and go home.

(b) He must have been busy the entire time from 0 until time T'.

He is not allowed to be idle for any period of time, since he could always have been working on some
available job, e.g., job J,41.

(c) If he starts a job, then he must finish it.

First, we note that if he starts job J; and does at least € of it, then he must finish it, since at time T
less than z; — e remains to be done of the job, and it is not due until time T — € 4+ x;, making it feasible
to return to the job at time T" (so that he cannot go home at time T').

Second, we must consider the possibility that he may perform very small amounts (less than €) of
some jobs without finishing them. However, in this case, the total amount that he completes of these
barely started jobs is at most ne < % This is a contradiction, since his total work time consists of
this fractional length of time, plus the sum of the integral lengths of the jobs that he completed, which
cannot add up to the integer T'. Thus, in order for him to go home at exactly time 7', he must have
completed every job that he started.

Finally, note that he cannot use job J,y1 as “filler”, and do part of it before going home at time T,
since, if he starts it and works at least time 2¢ on it, then, by the same reasoning as above, he will be
forced to stay and complete it. Thus, he will not start it at all, since he cannot complete it before time
T (recall that t,+; > T).
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Figure 2: Proof of hardness of LBP with preemption, assuming that all arrival times are at time 0.

We conclude that the bureaucrat must complete a set of jobs whose lengths sum exactly to 7.
Thus, we have reduced SUBSET SUM to our problem, showing that it is (weakly) NP-complete. O

Remark. The above theorem leaves open the problem of finding a pseudo-polynomial time algorithm for
the problem. It is also open to obtain an approximation algorithm for this case of the problem.

We come now to one of our main results, which utilizes a rather sophisticated algorithm and analysis in
order to show that, in contrast with the case of identical arrival times, the LBP with identical deadlines is
polynomially solvable. The remainder of this section is devoted to proving the following theorem:

Theorem 17 The LBP with preemption, under constraint II (one can only work on jobs that can be com-
pleted) and objective (3) (go home as early as possible), is solvable in polynomial time if all jobs have the
same deadlines (d; = D, for all 7).

We begin with a definition a “forced gap:” There is a forced gap starting at time 7 if 7 is the earliest
time such that the total work arriving by time 7 is less than 7. This (first) forced gap ends at the arrival
time, 7', of the next job. Subsequently, there may be more forced gaps, each determined by considering the
scheduling problem that starts at the end, 7/, of the previous forced gap. We note that a forced gap can
have length zero.

Under the “go home early” objective, we can assume, without loss of generality, that there are no forced
gaps, since our problem really begins only at the time 7' that the last forced gap ends. (The bureaucrat is
certainly not allowed to go home before the end 7' of the last forced gap, since more jobs arrive after 7/ that
can be processed before their deadlines.) While an optimal schedule may contain gaps that are not forced,
the next lemma implies that there exists an optimal schedule having no unforced gaps.

7

Lemma 18 Consider the LBP of Theorem 17, and assume that there are no forced gaps. If there is a
schedule having makespan T, then there is a schedule with no gaps, also having makespan T'.

Proof. Consider the first gap in the schedule, which begins at time g. Because the gap is not forced, there
is some job j that is not completed, and whose critical time is at time g’ < g. This is because there must
be a job that arrived before g that is not completed in the schedule, and at time g it is no longer feasible
to complete it. Therefore its critical time is before g. The interval of time between ¢’ and T may consist of
(1) gaps, (2) work on completed jobs, and (3) work on jobs that are never completed. Consider a revised
schedule in which, after time ¢’, jobs of type 3 are removed, and jobs of type 2 are deferred to the end of
the schedule. (Since a job of type 2 is completed, we know that it is possible to move it later in the schedule
without passing its critical time. It may not be possible to move a (piece of a) job of type 3 later in the
schedule, since its critical time may have passed.) In the revised schedule, extend job j to fill the empty
space. Note that there is enough work in job j to fill the space, since a critical time of g’ means that the job
must be executed continuously until deadline D in order to complete it. O

Lemma 19 Consider an LBP of Theorem 17 in which there are no forced gaps. Any feasible schedule can
be rearranged so that all completed jobs are ordered by their arrival times, and all incomplete jobs are ordered
by their arrival times.
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Proof. The proof uses a simple exchange argument as in the standard proof of optimality for the EDD
(Earliest Due Date) policy in traditional scheduling problems. O

Our algorithm checks if there exists a schedule having no gaps that completes exactly at time 7'. Assume
that the jobs 1,...,n are labeled so that a; < ay--- < a,. The main steps of the algorithm are as follows:

The Algorithm:

1. Determine the forced gaps. This allows us to reduce to a problem having no forced gaps, which starts
at the end of the last forced gap.

The forced gaps are readily determined by computing the partial sums, 7; = ZL] ti,forj=0,1,...,n,
and comparing them to the arrival times. (We define 7o = 0.) The first forced gap, then, begins at
the time 7 = 7j» = min{7; : 7; < @41} and ends at time a;-41. (7 = 0 if a1 > 0; 7 = oo if there are
no forced gaps.) Subsequent forced gaps, if any, are computed similarly, just by re-zeroing time at 7/,
and proceeding as with the first forced gap.

2. Let x = D — T be the length of time between the common deadline D and our target makespan T'. A
job i for which ¢; < z is called short; jobs for which #; > x are called long.

If it is not possible to schedule the set of short jobs, so that each is completed and they are all done
by time T', then our algorithm stops and returns “NO,” concluding that going home by time T is
impossible. Otherwise, we continue with the next step of the algorithm.

The rationale for this step is the observation that any job of length at most  must be completed in
any schedule that permits the bureaucrat to go home by time T, since its critical time occurs at or
after time 7.

3. Create a schedule S of all of the jobs, ordered by their arrival times, in which the amount of time spent
on job i is t; if the job is short (so it is done completely) and is ¢; — x if the job is long.

For a long job i, t; —x is the maximum amount of time that can be spent on this job without committing
the bureaucrat to completing the job, i.e., without causing the adjusted critical time of the job to occur
after time 7.

If this schedule & has no gaps and ends at a time after T, then our algorithm stops and returns
“YES.” A feasible schedule that allows the bureaucrat to go home by time T is readily constructed by
“squishing” the schedule that we just constructed: We reduce the amount of time spent on the long
jobs, starting with the latest long jobs and working backwards in time, until the completion time of
the last short job exactly equals T. This schedule completes all short jobs (as it should), and does
partial work on long jobs, leaving all of them with adjusted critical times that fall before time T (and
are therefore not possible to resume at time 7', so they can be avoided).

4. TIf the above schedule S has gaps or ends before time T', then S is not a feasible schedule for the lazy
bureaucrat, so we must continue the algorithm, in order to decide which long jobs to complete, if it is
possible to go home by time 7.

We use a dynamic programming algorithm Schedule-by-T, which we describe in detail below.

Procedure Schedule-by-T. Let G; be the sum of the gap lengths that occur before time a; in schedule
S. Then, we know that in order to construct a gapless schedule, at least [G;/z] long jobs (in addition to
the short jobs) from 1,...,i — 1 must be completed. For each i we have such a constraint; collectively, we
call these the gap constraints.

Claim 20 If for each gap in schedule S, there are enough long jobs to be completed in order to fill the gap,
then a feasible schedule ending at T exists.

We devise a dynamic programming algorithm as follows. Let T'(m, k) be the earliest completion time of
a schedule that satisfies the following:
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(1) Tt completes by time T
(2) Tt uses jobs from the set {1,...,k};

(3) It completes exactly m jobs and does no other work (so it may have gaps, making it an infeasible
schedule);

(4) Tt satisfies the gap constraints; and
(5) Tt completes all short jobs (of size < z).

The boundary conditions on T'(m, k) are given by:

of the jobs from 1,..., k must be completed because they are short, and some additional jobs may need
to be completed because of the gap constraints. Note that this implies that 7'(0, k) is equal to zero or
infinity, depending on whether gap constraints are disobeyed.

In general, T'(m, k) is given by selecting the better of two options:
T(m, k) = min{a, 8},

where « is the earliest completion time if we choose not to execute job k (which is a legal option only if job
k is long), giving
_ {T(m,k— 1) ifty >z

00 otherwise,

and [ is the earliest completion time if we choose to execute job k (which is a legal option only if the resulting
completion time is by time T'), giving

8= {max(ak +tg, T(m— 1,k —1)+1t) if this quantity is < T
00 otherwise.

Lemma 21 There exists a feasible schedule completing at time T if and only if there exists an m for which
T(m,n) < oo.

Proof. If T(m,n) = oo for all m, then, since the gap constraints apply to any feasible schedule, and it is
not possible to find such a schedule for any number of jobs m, there is no feasible schedule that completes
on or before T

If there exists an m for which T'(m,n) < oc, let m* be the smallest such m. Then, by definition,
T(m*,n) < T. We show that the schedule S* obtained by the dynamic program can be made into a feasible
schedule ending at T'. Consider jobs that are not completed in the schedule §*; we wish to use some of them
to “fill in” the schedule to make it feasible, as follows.

Ordered by arrival times of incomplete jobs, and doing up to ¢; — = of each incomplete job, fill in the
gaps. Note that by the gap constraints, there is enough work to fill in all gaps. There are two things that
may make this schedule infeasible: (i) Some jobs are worked on beyond their critical times, and (ii) the last
job to be done must be a completed one.

(i). Fizing the critical time problem: Consider a job i that is processed at some time, beginning at 7,
after its critical time, ¢;. We move all completed job pieces that fall between ¢; and T to the end of the
schedule, lining them up to end at T'; then, we do job i from time ¢; up until this batch of completed jobs.
This is legal because all completed jobs can be pushed to the end of the schedule, and job i cannot complete
once it stops processing.
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(ii). Fizing the last job to be a complete one: Move a “sliver” of the last completed job to just before
time T'. If this is not possible (because the job would have to be done before it arrives), then it means that
we must complete one additional job, so we consider m* + 1, and repeat the process.

Note that a technical difficulty arises in the case in which the sum of the gap lengths is an exact multiple
of z: Do we have to complete an additional job or not? This depends on whether we can put a sliver of
a completed job at T. There are several ways to deal with this issue, including conditioning on the last
completed job, modifying the gap constraint, or ignoring the problem and fixing it if it occurs (that is if we
cannot put a sliver, then add another job which must be completed to the gap constraint). O

This completes the proof of our main theorem, Theorem 17.

Remark. Even if all arrival times are the same, and deadlines are the same, and data is integer, an optimal
solution may not be integer. In fact, there may not be an optimal solution, only a limiting one, as the
following example shows: Let a; = 0 and d; = 100, for all i. Jobs 1,...,n have length 51, while job n + 1
has length ¢,,11 = 48. A feasible schedule executes € of each of the first n jobs, where ¢ > 1/(n — 1), and all
of job n+1, so the total work done is ne +48 > n/(n — 1) + 48. Note that each of the first n jobs have 51 — ¢
remaining to do, while there is only time 52 — ne left before the deadline. Now, by making € arbitrarily close
to zero, we can make the schedule better and better.
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