
The Lazy Bureaurat Sheduling ProblemEsther M. Arkin� Mihael A. Bendery Joseph S. B. MithellzSteven S. SkienaxState University of New YorkStony Brook, NY 11794May 14, 1999AbstratWe introdue a new lass of sheduling problems in whih the optimization is performed by the worker(single \mahine") who performs the tasks. The worker's objetive may be to minimize the amount ofwork he does (he is \lazy"). He is subjet to a onstraint that he must be busy when there is work thathe an do; we make this notion preise, partiularly in the ase in whih preemption is allowed. Theresulting lass of \perverse" sheduling problems, whih we term \Lazy Bureaurat Problems," gives riseto a rih set of new questions that explore the distintion between maximization and minimization inomputing optimal shedules.1 IntrodutionSheduling problems have been studied extensively from the point of view of the objetives of the enterprisethat stands to gain from the ompletion of the set of jobs. We take a new look at the problem from thepoint of view of the workers who perform the tasks that earn the ompany its pro�ts. In fat, it is naturalto expet that some employees may lak the motivation to perform at their peak levels of eÆieny, eitherbeause they have no stake in the ompany's pro�ts or beause they are simply lazy. The following exampleillustrates the situation faing a \typial" oÆe worker, who may be one small og in a large bureauray:Example. It is 3:00 p.m., and Dilbert goes home at 5:00 p.m. Dilbert has two tasks that havebeen given to him: one requires 10 minutes, the other requires an hour. If there is a task inhis \in-box," Dilbert must work on it, or risk getting �red. However, if he has multiple tasks,Dilbert has the freedom to hoose whih one to do �rst. He also knows that at 3:15, another taskwill appear | a 45-minute personnel meeting. If Dilbert begins the 10-minute task �rst, he willbe free to attend the personnel meeting at 3:15 and then work on the hour-long task from 4:00until 5:00. On the other hand, if Dilbert is part way into the hour-long job at 3:15, he may beexused from the meeting. After �nishing the 10-minute job by 4:10, he will have 50 minutes totwiddle his thumbs, iron his tie, or enjoy engaging in other mindless trivia. Naturally, Dilbertprefers this latter option.There is also an historial example of an atual situation in whih it proved ruial to shedule tasksineÆiently, as doumented in the book/movie Shindler's List [4℄. It was essential for the workers and�estie�ams.sunysb.edu; Department of Applied Mathematis and Statistis. Partially supported by a grant from the NationalSiene Foundation (CCR-9732220).ybender�s.sunysb.edu; Department of Computer Siene.zjsbm�ams.sunysb.edu; Department of Applied Mathematis and Statistis. Supported in part by Boeing, BridgeportMahines, Sandia National Labs, Seagull Tehnologies, Sun Mirosystems, and the National Siene Foundation (CCR-9732220).xskiena�s.sunysb.edu; Department of Computer Siene. Supported in part by NSF Grant CCR-9625669 and ONR award431-0857A.



management of Shindler's fatory to appear to be busy at all times, in order to stay in operation, but theysimultaneously sought to minimize their ontribution to the German war e�ort.These examples illustrate a general and natural type of sheduling problem, whih we term the \LazyBureaurat Problem" (LBP), in whih the goal is to shedule jobs as ineÆiently (in some sense) as possible.We propose that these problems provide an interesting set of algorithmi questions, whih may also leadto disovery of struture in traditional sheduling problems. (Several other ombinatorial optimizationproblems have been studied \in reverse," leading, e.g., to maximum TSP, maximum ut, and longest path;suh inquiries an lead to better understanding of the struture and algorithmi omplexity of the originaloptimization problem.) Our investigations may also be motivated by a \game theoreti" view of the employee-employer system.1.1 The ModelThere is a vast literature on a variety of sheduling problems; see, e.g., some of the reent surveys [3, 5, 7℄.Here, we onsider a set of jobs 1 : : : n having proessing times (lengths) t1 : : : tn respetively. Job i arrivesat time ai and has its deadline at time di. We assume throughout this paper that ti, ai, and di havenonnegative integral values. The jobs have hard deadlines, meaning that eah job i an only be exeutedduring its allowed interval Ii = [ai; di℄; we also all Ii the job's window . We let i = di� ti denote the ritialtime of job i; job i must be started by time i if there is going to be any hane of ompleting it on time.The jobs are exeuted on a single proessor, the (lazy) bureaurat . The bureaurat exeutes only one jobat a time. (We leave the ase of multiple proessors for future work.)Greedy Requirement. The bureaurat hooses a subset of jobs to exeute. Sine his goal is to minimizehis e�ort, he prefers to remain idle all the time and to leave all the jobs unexeuted. However, this senario isforbidden by what we all the greedy requirement, whih requires that the bureaurat work on an exeutablejob, if there are any exeutable jobs. A job is \exeutable" if it has arrived, its deadline has not yet passed,and it is not yet fully proessed. In the ase with preemption, there may be other onstraints that governwhether or not a job is exeutable; see Setion 3.Objetive Funtions. In traditional sheduling problems, if it is impossible to omplete the set of all jobsby their deadlines, one typially tries to optimize aording to some objetive, e.g., to maximize a weightedsum of on-time jobs, to minimize the maximum lateness of the jobs, or to minimize the number of latejobs. For the LBP we onsider three di�erent objetive funtions, whih naturally arise from onsidering thebureaurat's goal of being ineÆient:(1) Minimize the total amount of time spent working. This objetive naturally appeals to a \lazy" bureau-rat.(2) Minimize the weighted sum of ompleted jobs. Here, we usually assume that the weight of job i is itslength, ti; however, other weights (e.g., unit weights) are also of interest. This objetive appeals to a\spiteful" bureaurat whose goal it is to minimize the fees that the ompany ollets on the basis ofhis labors, assuming that the fee (in proportion to the task length, or a �xed fee per task) is olletedonly for those tasks that are atually ompleted.(3) Minimize the makespan, the maximum ompletion time of the jobs. This objetive appeals to an \impa-tient" bureaurat, whose goal it is to go home as early as possible, at the ompletion of the last job heis able to omplete. He ares about the number of hours spent at the oÆe, not the number of hoursspent doing work (produtive or otherwise) at the oÆe.Note that, in ontrast with standard sheduling problems, the makespan in the LBP hanges; it is afuntion of whih jobs have passed their deadlines and an no longer be exeuted.Additional Parameters of the Model. As with most sheduling problems, additional parameters ofthe model must be set. For example, one must expliitly allow or forbid preemption of jobs. If a job is2



preempted, it is interrupted and may be resumed later at no additional ost. If preemption is forbidden,then one a job is begun, it must be ompleted without interruptions.One must also speify whether sheduling ours on-line or o�-line. A sheduling algorithm is onsideredto be o�-line if all the jobs are known to the sheduler at the outset; it is on-line if the jobs are known to thesheduler only as they arrive. In this paper we restrit ourselves to o�-line sheduling; we leave the on-linease as an interesting open problem for future researh.1.2 Our ResultsIn this paper, we introdue the Lazy Bureaurat Problem and develop algorithms and hardness results forseveral versions of it. From these results, we derive some general harateristis of this new lass of shedulingproblems and desribe (1) situations in whih traditional sheduling algorithms extend to our problems and(2) situations in whih these algorithms no longer apply.No Preemption. We prove that the LBP is NP-omplete, as is generally the ase for traditional shedulingproblems. Thus, we fous on speial ases to study algorithms. When all jobs have unit size, optimalshedules an be found in polynomial time. The following three ases have pseudo-polynomial algorithms:(1) when eah job i's interval Ii is less than twie the length of i; (2) when the ratios of interval length to joblength and longest job to shortest job are both bounded; and (3) when all jobs arrive in the system at thesame time. These last sheduling problems are solved using dynami programming both for Lazy Bureauratand traditional metris. Thus, in these settings, the Lazy Bureaurat metris and traditional metris aresolved using similar tehniques.From the point of view of approximation, however, the standard and Lazy Bureaurat metris behavedi�erently. Standard metris typially allow polynomial-time algorithms having good approximation ratios,whereas we show that the Lazy Bureaurat metris are diÆult to approximate. This hardness derives morefrom the greedy requirement and less from the partiular metri in question. The greedy requirement appearsto render the problem substantially more diÆult, as we show. (Ironially, even in standard optimizationproblems, the management often tries to impose this requirement, beause it naively appears to be desirable.)Preemption. The greedy requirement ditates that the worker must stay busy while work is in the system.If the model allows preemption we must speify under what onditions a job an be interrupted or resumed.We distinguish three versions of the preemption rules, whih we list from most permissive to most restritive.In partiular possible onstraints on what the worker an exeute inlude (I) any job that has arrived andis before its deadline, (II) any job that has arrived and for whih there is still time to omplete it before itsdeadline, or (III) any job that has arrived, but with the onstraint that if it is started, it must eventually beompleted.We onsider all three metris and all three versions of preemption. We show that, for all three metris,version I is polynomially solvable, and version III is NP-omplete. Many of the hardness results for nopreemption arry over to version III. However, the question of whether the problem is strongly NP-ompleteremains open.Our main results are for version II. We show that the general problem is NP-omplete. Then, we fouson minimizing the makespan in two omplementary speial ases: (1) All jobs have a ommon arrival timeand arbitrary deadlines; (2) All jobs have a ommon deadline and arbitrary arrival times. We show that the�rst problem is NP-omplete, whereas the seond problem an be solved in polynomial time.These last results illustrate a urious feature of the LBP. One an onvert one speial ase into the otherby reversing the diretion of time. In the LBP, unlike many sheduling settings, this reversing of time hangesthe omplexity of the problem.2 LBP: No PreemptionIn this setion, we assume that no job an be preempted: if a job is started, then it is performed withoutinterruption until it ompletes. We show that the Lazy Bureaurat Problem (LBP) without preemption isstrongly NP-omplete and is not approximable to within any fator. These hardness results distinguish our3



problem from traditional sheduling metris, whih an be approximated in polynomial time, as shown inthe reent paper of [1℄. We show, however, that several speial ases of the problem have pseudo-polynomialtime algorithms, using appliations of dynami programming.2.1 Hardness ResultsWe begin by desribing the relationship between the three di�erent objetive funtions in the ase of nopreemption. The problem of minimizing the total work is a speial ase of the problem of minimizing theweighted sum of ompleted jobs, beause every job that is exeuted must be ompleted. (The weights beomethe job lengths.) Furthermore, if all jobs have the same arrival time, say time zero, then the two objetives,minimizing total work and minimizing makespan (go home early) are equivalent, sine no feasible shedulewill have any gaps. Our �rst hardness theorem applies therefore to all three objetive funtions:Theorem 1 The Lazy Bureaurat Problem with no preemption is (weakly) NP-omplete, and is not approx-imable to within any �xed fator, even when arrival times are all the same.Proof. We use a redution from the Subset Sum problem [2℄: Given a set of integers S = fx1; x2; : : : ; xngand a target integer T , does there exist a subset S0 � S, suh that Pxi2S0 xi = T ?We onstrut an instane of the LBP having n + 1 jobs, eah having release time zero (ai = 0 for alli). For i = 1 : : : ; n, job i has proessing time ti = xi and deadline di = T . Job n + 1 has proessing timetn+1 = 1 +Pxi2S xi and deadline dn+1 = T + tn+1 � 1; thus, job n + 1 an be started at time T � 1 orearlier. Beause job n + 1 is so long, the bureaurat wants to avoid exeuting it, but an do so if and onlyif he selets a subset of jobs from f1; : : : ; ng to exeute whose lengths sum to exatly T . 2As we show in Setion 2.2, the problem from Theorem 1 has a pseudopolynomial-time algorithm. How-ever, if arrival times and deadlines are arbitrary integers, the problem is strongly NP-omplete. The givenredution applies to all three objetive funtions.Theorem 2 The Lazy Bureaurat Problem with no preemption is strongly NP-omplete, and is not approx-imable to within any �xed fator.Proof. Clearly the problem is in NP, sine any solution an be represented by an ordered list of jobs, giventheir arrival times. To show hardness, we use a redution from the 3-Partition problem [2℄: Given a setS = fx1; : : : ; x3mg of 3m positive integers and a positive integer bound B suh that B=4 < xi < B=2, fori = 1; : : : ; 3m and Pi xi = mB, does there exist a partitioning of S into m disjoint sets, S1; : : : ; Sm, suhthat for i = 1; :::;m,Pxj2Si xj = B? (Note that, by the assumption that B=4 < xi < B=2, eah set Si mustontain exatly 3 elements.)We onstrut an instane of the LBP ontaining three lasses of jobs:Element jobs: We de�ne one \element job" orresponding to eah element xi 2 S, having arrival time 0,deadline di = (m� 1) +mB, and proessing time xi.Unit jobs: We de�ne m�1 \unit" jobs, eah of length 1. The i-th unit job (for i = 1; : : : ;m�1) has arrivaltime i(B + 1) � 1 and deadline i(B + 1). Note that for these unit-length jobs we have dj � aj = 1;thus, these jobs must be proessed immediately upon their arrival, or not at all.Large job: We de�ne one \large" job of length L > (m� 1) +mB, arrival time 0, and deadline L+ (m�2) +mB. Note that in order to omplete this job, it must be started at time (m� 2) +mB or before.As in the proof of Theorem 1, the lazy bureaurat wants to avoid exeuting the long job, but an do soif and only if all other jobs are atually exeuted. Otherwise, there will be a time when the large job is theonly job in the system and the lazy bureaurat will be fored to exeute it. Thus, the unit jobs must be doneimmediately upon their arrival, and the element jobs must �t in the intervals between the unit jobs. Eahsuh interval between onseutive unit jobs is of length exatly B. Refer to Figure 1. In summary, the longjob is not proessed if and only if all of the element and unit jobs an be proessed before their deadlines,whih happens if and only if the orresponding instane of 3-Partition is a \yes" instane. Note that sineL an be as large as we want, this also implies that no polynomial-time approximation algorithm with any�xed approximation bound an exist, unless P=NP. 24



Element jobs:Unit jobs:Long job:
0 B 2B + 2 . . . (m� 1) +mBB + 1 B

L(very long)2B + 1 (m � 1)(B + 1)Figure 1: Proof of hardness of LBP with no preemption and arbitrary arrival times.2.2 Algorithms for Speial CasesUnit-Length Jobs. Consider the speial ase of the LBP in whih all jobs have unit proessing times.(Reall that all inputs are assumed to be integral.) The Latest Deadline First (LDF) sheduling poliyselets the job in the system having the latest deadline.Theorem 3 The Latest Deadline First (LDF) sheduling poliy minimizes the amount of exeuted work.Proof. Assume by ontradition that no optimal shedule is LDF. We use an exhange argument. Consideran optimal (non-LDF) shedule that has the fewest pairs of jobs exeuted in non-LDF order. The shedulemust have two neighboring jobs i; j suh that i < j in the shedule but Di < Dj , and j is in the systemwhen i starts its exeution. Consider the �rst suh pair of jobs. There are two ases:(1) The new shedule with i and j swithed, is feasible. It exeutes no more work than the optimalshedules, and is therefore also optimal.(2) The shedule with i and j swithed is not feasible. This happens if i's deadline has passed. If nojob is in the system to replae i, then we obtain a better shedule than the optimal shedule and reah aontradition. Otherwise, we replae i with the other job and repeat the swithing proess.We ultimately obtain a shedule exeuting no more work than an optimal shedule, with fewer pairs ofjobs in non-LDF order, a ontradition. 2Narrow Windows. Consider now the version in whih jobs are large in omparison with their intervals,that is, the intervals are \narrow." Let R be a bound on the ratio of window length to job length; i.e., foreah job i, di � ai < R � ti. We show that a pseudo-polynomial algorithm exists for the ase of suÆientlynarrow windows, that is, when R � 2.Lemma 4 Assume that for eah job i, di � ai < 2ti. Then, if job i an be sheduled before job j, then job jannot be sheduled before job i.Proof. We rewrite the assumption: for eah i, di� ti < ti+ ai. The fat that job i an be sheduled beforejob j is equivalent to the statement that ai + ti � dj � tj , sine the earliest that job i an be ompleted isat time ai + ti and the latest that job j an be started is at time dj � tj . Combining these inequalities, weobtain aj + tj > dj � tj � ai + ti > di � ti;whih implies that job j annot be sheduled before job i. 2Corollary 5 Under the assumption that di � ai < 2ti for eah i, the ordering of any subset of jobs in ashedule is uniquely determined.Theorem 6 Suppose that for eah job i, di � ai < 2ti. Let K = maxi di. Then the LBP an be solved inO(nKmax(n;K)) time. 5



Proof. We use dynami programming to �nd the shortest path in a direted ayli graph (DAG). Thereare O(nK2) states the system an enter. Let (i; j; �) denote the state of the system when the proessorbegins exeuting the j-th unit of work of job i at time � . Thus, i = 1; :::; n, j = 1; :::; ti, and � = 0; :::;K.Transitions from state to state are de�ned aording to the following rules:1. No preemption: one a job is begun, it must be ompleted without interruptions.2. When a job is ompleted at time � , another job must begin immediately. if one exists in the system.(By Lemma 4, we know this job has not yet been exeuted.) Otherwise, the system is idle and beginsexeuting a job as soon as one arrives.3. State (i; ti; �) is an end state if and only if when job i ompletes at time � , no jobs an be exeutedsubsequently.4. The start state has transitions to the jobs (i; 1; 0) that arrive �rst.The goal of the dynami program is to �nd the length of a shortest path from the start state to anend state. To omplete the time analysis, note that only nK of the nK2 states have more than onstantoutdegree, and these states eah have outdegree bounded by n. 2Note that for R > 2 we know of no eÆient algorithm without additional onditions. Let W be a boundon the ratio of longest window to shortest window, and let � be a bound on the ratio of the longest job tothe shortest job. Note that bounds on R and � imply a bound on W , and bounds on R and W imply abound on �. However, a bound on � alone is not suÆient for a pseudopolynomial time algorithm.Theorem 7 Even with a bound on the ratio �, the LBP with no preemption is strongly NP-omplete. Itannot be approximated to within a fator of �� �, for any � > 0, unless P=NP.Proof. Modify the redution from 3-partition of Theorem 2, by hanging all the �xed \unit" jobs to havelength B=3, and adjust the arrival times and deadlines aordingly.Instead of one very long job as in the proof from Theorem 2, we reate a sequene of bounded-length jobsthat serve the same purpose. One unit before the deadline of the \element" jobs (see Theorem 2) a sequeneof long jobs `1; : : : ; `m arrives. Eah job `i entirely �lls its window and so an only be exeuted diretlywhen it arrives. Job `i+1 arrives at the deadline of job `i. In addition, a sequene of small jobs s1; : : : ; smarrives, where eah small job si also entirely �lls its window and an only be exeuted when it arrives. Smalljob si overlaps `i and `i+1; it arrives one unit before the deadline of job `i. Jobs si have length B=4 andjobs `i have length � � B=4. Thus, if all the jobs omprising the 3-partition problem an be exeuted, jobs`1; : : : ; `m will be avoided by exeuting jobs s1; : : : ; sm. Otherwise, jobs `1; : : : ; `m must be exeuted. Theindex of m an be adjusted to any �. 2Bounds on both � and R are suÆient to yield a pseudo-polynomial algorithm:Theorem 8 Let K = maxi di. Given bounds on R and �, the Lazy Bureaurat Problem with no preemptionan be solved in O(K � n4R lg�).Proof. We modify the dynami programming algorithm of Theorem 6 for this more omplex situation. Theset of jobs potentially available to work on in a given shedule at time i are the jobs j that have not yetbeen exeuted, for whih dj � tj < i. Our state spae will enode the omplement of this set for eah timei, spei�ally, the set of jobs that were exeuted earlier but ould otherwise have been exeuted at i.The bounds on R and � together imply an upper bound on the number of subsets of jobs ative at ithat ould have been exeuted prior to time i. Let dmin be the length of the shortest job potentially ativeat time i. We an partition all potentially ative jobs into lg� lasses, where the jth lass onsists of thejobs of size � 2j�1dmin and < 2jdmin. The earliest possible arrival time of any lass-j job is i � 2jdminR,sine eah job has an R-bounded window. Only 2jdminR=2j�1dmin = 2R jobs from lass j an be exeutedwithin this window. Summing over all the lasses implies that at most 2R lg� jobs potentially ative attime i ould have been exeuted in a non-preemptive shedule by time i.The time bound follows by observing that eah of the Kn(2R lg�) states has outdegree at most 2R lg�.2 6



Jobs Having a Common Release Time. In the next version of the problem all jobs are released at timezero, i.e., ai = 0 for all i. This problem an be solved in polynomial time by dynami programming. Thedynami programming works beause of the following strutural result: There exists an optimal shedulethat exeutes the jobs Earliest Due Date (EDD).In fat this problem is a speial ase of the following general problem: Minimizing the weighted sum ofjobs not ompleted by their deadlines. This problem was solved by [6℄, using the same strutural result.Theorem 9 The LBP an be solved in pseudo-polynomial time when all jobs have a ommon release time.3 LBP: PreemptionIn this setion we onsider the Lazy Bureaurat Problem in whih jobs may be preempted: a job in progressan be set aside, while another job is proessed, and then possibly resumed later. It is important to distinguishamong di�erent onstraints that speify whih jobs are available to be proessed. We onsider three naturalhoies of suh onstraints:Constraint I: In order to work on job i at time � , we require only that the urrent time � lies within thejob's interval Ii: ai � � � di.Constraint II: In order to work on job i at time � , we require not only that the urrent time � lies withinthe job's interval Ii, but also that the job has a hane to be ompleted, e.g., if it is proessed withoutinterruption until ompletion.This ondition is equivalent to requiring that � � 0i, where 0i = di � ti + yi is the adjusted ritialtime of job i: 0i is the latest possible time to start job i, in order to meet its deadline di, given thatan amount yi of the job has already been ompleted.Constraint III: In order to work on job i, we require that � 2 Ii. Further, we require that any job that isstarted is eventually ompleted.As before, we onsider the three objetive funtions (1){(3), in whih the goal is to minimize the totaltime working (regardless of whih jobs are ompleted), the weighted sum of ompleted jobs, or the makespanof the shedule (the \go home" time).The third onstraint makes the problem with preemption quite similar to the one with no preemption.In fat, if all jobs arrive at the same time (ai = 0 for all i), then the three objetive funtions are equivalent,and the problem is hard:Theorem 10 The LBP with preemption, under onstraint III (one must omplete any job that is begun), isNP-omplete and hard to approximate.Proof. We use the same redution as the one given in the proof of Theorem 1. Note that any shedulefor an instane given by the redution, in whih all jobs proessed must be ompleted eventually, an betransformed into an equivalent shedule with no preemptions. This makes the problem of �nding an optimalshedule with no preemption equivalent to the problem of �nding an optimal shedule in the preemptivease under onstraint III. Note that we annot use a proof similar to that of Theorem 2 to show that thisproblem is strongly NP-omplete, sine preemption an lead to improved shedules in that instane. 23.1 Minimizing Total Time WorkingTheorem 11 The LBP with preemption, under onstraint I (one an work on any job in its interval) andobjetive (1) (minimize total time working), is polynomially solvable.Proof. The algorithm shedules jobs aording to latest deadline �rst (LDF), in whih at all times the jobin the system with the latest deadline is being proessed, with ties broken arbitrarily. An exhange argumentshows that this is optimal. Suppose there is an optimal shedule that is not LDF. Consider the �rst timein whih an optimal shedule di�ers from LDF, and let OPT be an optimal shedule in whih this time is7



as late as possible. Let OPT be exeuting a piee of job i, pi and LDF exeutes a piee of job j, pj . Weknow that di < dj . We want to show that we an replae the �rst unit of pi by one unit of pj , ontraditingthe hoie of OPT, and thereby proving the laim. If in OPT, job j is not ompletely proessed, then thisswap is feasible, and we are done. On the other hand, if all of j is proessed in OPT, suh a swap auses aunit of job j later on to be removed, leaving a gap of one unit. If this gap annot be �lled by any other jobpiee, we get a shedule with less work than OPT, whih is a ontradition. Therefore assume the gap anbe �lled, possibly ausing a later unit gap. Continue this proess, and at its onlusion, either a unit gapremains ontraditing the optimality of OPT, or no gaps remain, ontraditing the hoie of OPT. 2Theorem 12 The LBP with preemption, under onstraint II (one an only work on jobs that an be om-pleted) and objetive (1) (minimize total time working), is (weakly) NP-omplete.Proof. If all arrival times are the same, then this problem is equivalent to the one in whih the objetivefuntion is minimize the makespan, whih is shown to be NP-omplete in Theorem 16. 23.2 Minimizing Weighted Sum of Completed JobsTheorem 13 The LBP with preemption, under onstraint I (one an work on any job in its interval) andobjetive (2) (minimize the weighted sum of ompleted jobs), is polynomially solvable.Proof. Without loss of generality, assume that jobs 1; : : : ; n are indexed in order of inreasing deadlines.We show how to deompose the jobs into separate omponents that an be treated independently. Shedulethe jobs aording to EDD (if a job is exeuting and its deadline passes, preempt and exeute the next job).Whenever there is a gap (potentially of size zero), where no jobs are in the system, the jobs are divided intoseparate omponents that an be sheduled independently and their weights summed. Now we fous on onesuh set of jobs (having no gaps). We modify the EDD shedule by preempting a job � units of time beforeit ompletes. Then we move the rest of the jobs of the shedule forward by � time units and ontinue toproess. At the end of the shedule, there are two possibilities. (1) the last job is interrupted beause itsdeadline passes; in this ase we obtain a shedule in whih no jobs are ompleted; (2) the last job ompletesand in addition all other jobs whose deadlines have not passed are also fored to omplete.The proof is ompleted by noting that:(a). There is an optimal shedule that ompletes all of its jobs at the end; and(b). The above shedule exeutes the maximum amount of work possible. (In other words, EDD (\minus�") allows one to exeute the maximum amount of work on jobs 1 through i without ompleting anyof them.)2Theorem 14 The LBP with preemption, under onstraint II (one an only work on jobs that an be om-pleted) and objetive (2) (minimize the weighted sum of ompleted jobs), is (weakly) NP-omplete.Proof. If every job proessed is also ompleted, then this problem is equivalent to the one whih is shownto be NP-omplete in Theorem 16. The redution in that proof has this property. 23.3 Minimizing Makespan: Going Home EarlyWe assume now that the bureaurat's goal is to go home as soon as possible.We begin by noting that if the arrival times are all the same (ai = 0, for all i), then the objetive (3)(go home as soon as possible) is in fat equivalent to the objetive (1) (minimize total time working), sine,under any of the three onstraints I{III, the bureaurat will be busy nonstop until he an go home.We note, however, that if the deadlines are all the same (di = D, for all i), then the objetives (1) and(3) are quite di�erent. Consider the following example. Job 1 arrives at time a1 = 0 and is of length t1 = 2,8



job 2 arrives at time a2 = 0 and is of length t2 = 9, job 3 arrives at time a3 = 8 and is of length t3 = 2, andall jobs have deadline d1 = d2 = d3 = 10. Then, in order to minimize total time working, the bureauratwill do jobs 1 and 3, a total of 4 units of work, and will go home at time 10. However, in order to go homeas soon as possible, the bureaurat will do job 2, performing 9 units of work, and go home at time 9 (sinethere is not enough time to do either job 1 or job 3).Theorem 15 The LBP with preemption, under onstraint I (one an do any job in its interval) and obje-tive (3) (go home as early as possible), is polynomially solvable.Proof. The algorithm is to shedule by latest deadline �rst (LDF). The proof is similar to the one given inTheorem 11. 2If instead of onstraint I we impose onstraint II, the problem beomes hard:Theorem 16 The LBP with preemption, under onstraint II (one an only work on jobs that an be om-pleted) and objetive (3) (go home as early as possible), is (weakly) NP-omplete, even if all arrival timesare the same.Proof. We give a redution from Subset Sum. Consider an instane of Subset Sum given by a set S of npositive integers, x1, x2; : : : ; xn, and target sum T . We onstrut an instane of the required version of theLBP as follows. For eah integer xi, we have a job i that arrives at time ai = 0, has length ti = xi, and is dueat time di = T + xi � �, where � is a small onstant (it suÆes to use � = n3 ). In addition, we have a \long"job n + 1, with length tn+1 > T , that arrives at time an+1 = 0 and is due at time dn+1 = T � 2� + tn+1.We laim that it is possible for the bureaurat to go home by time T if and only if there exists a subset offx1; : : : ; xng that sums to exatly T .If there is a subset of fx1; : : : ; xng that sums to exatly T , then the bureaurat an perform the orre-sponding subset of jobs (of total length T ) and go home at time T ; he is able to avoid doing any of the otherjobs, sine their ritial times fall at an earlier time (T � � or T � 2�), making it infeasible to begin them attime T , by our assumption.If, on the other hand, the bureaurat is able to go home at time T , then we know the following:(a) He must have just ompleted a job at time T .He annot quit a job and go home in the middle of a job, sine the job must have been ompletable atthe instant he started (or restarted) working on it, and it remains ompletable at the moment that hewould like to quit and go home.(b) He must have been busy the entire time from 0 until time T .He is not allowed to be idle for any period of time, sine he ould always have been working on someavailable job, e.g., job Jn+1.() If he starts a job, then he must �nish it.First, we note that if he starts job Ji and does at least � of it, then he must �nish it, sine at time Tless than xi� � remains to be done of the job, and it is not due until time T � �+xi, making it feasibleto return to the job at time T (so that he annot go home at time T ).Seond, we must onsider the possibility that he may perform very small amounts (less than �) ofsome jobs without �nishing them. However, in this ase, the total amount that he ompletes of thesebarely started jobs is at most n� � 13 . This is a ontradition, sine his total work time onsists ofthis frational length of time, plus the sum of the integral lengths of the jobs that he ompleted, whihannot add up to the integer T . Thus, in order for him to go home at exatly time T , he must haveompleted every job that he started.Finally, note that he annot use job Jn+1 as \�ller", and do part of it before going home at time T ,sine, if he starts it and works at least time 2� on it, then, by the same reasoning as above, he will befored to stay and omplete it. Thus, he will not start it at all, sine he annot omplete it before timeT (reall that tn+1 > T ). 9



job n + 10 T T � �+ tiT � �T � 2� job i
Figure 2: Proof of hardness of LBP with preemption, assuming that all arrival times are at time 0.We onlude that the bureaurat must omplete a set of jobs whose lengths sum exatly to T .Thus, we have redued Subset Sum to our problem, showing that it is (weakly) NP-omplete. 2Remark. The above theorem leaves open the problem of �nding a pseudo-polynomial time algorithm forthe problem. It is also open to obtain an approximation algorithm for this ase of the problem.We ome now to one of our main results, whih utilizes a rather sophistiated algorithm and analysis inorder to show that, in ontrast with the ase of idential arrival times, the LBP with idential deadlines ispolynomially solvable. The remainder of this setion is devoted to proving the following theorem:Theorem 17 The LBP with preemption, under onstraint II (one an only work on jobs that an be om-pleted) and objetive (3) (go home as early as possible), is solvable in polynomial time if all jobs have thesame deadlines (di = D, for all i).We begin with a de�nition a \fored gap:" There is a fored gap starting at time � if � is the earliesttime suh that the total work arriving by time � is less than � . This (�rst) fored gap ends at the arrivaltime, � 0, of the next job. Subsequently, there may be more fored gaps, eah determined by onsidering thesheduling problem that starts at the end, � 0, of the previous fored gap. We note that a fored gap anhave length zero.Under the \go home early" objetive, we an assume, without loss of generality, that there are no foredgaps, sine our problem really begins only at the time � 0 that the last fored gap ends. (The bureaurat isertainly not allowed to go home before the end � 0 of the last fored gap, sine more jobs arrive after � 0 thatan be proessed before their deadlines.) While an optimal shedule may ontain gaps that are not fored,the next lemma implies that there exists an optimal shedule having no unfored gaps.Lemma 18 Consider the LBP of Theorem 17, and assume that there are no fored gaps. If there is ashedule having makespan T , then there is a shedule with no gaps, also having makespan T .Proof. Consider the �rst gap in the shedule, whih begins at time g. Beause the gap is not fored, thereis some job j that is not ompleted, and whose ritial time is at time g0 � g. This is beause there mustbe a job that arrived before g that is not ompleted in the shedule, and at time g it is no longer feasibleto omplete it. Therefore its ritial time is before g. The interval of time between g0 and T may onsist of(1) gaps, (2) work on ompleted jobs, and (3) work on jobs that are never ompleted. Consider a revisedshedule in whih, after time g0, jobs of type 3 are removed, and jobs of type 2 are deferred to the end ofthe shedule. (Sine a job of type 2 is ompleted, we know that it is possible to move it later in the shedulewithout passing its ritial time. It may not be possible to move a (piee of a) job of type 3 later in theshedule, sine its ritial time may have passed.) In the revised shedule, extend job j to �ll the emptyspae. Note that there is enough work in job j to �ll the spae, sine a ritial time of g0 means that the jobmust be exeuted ontinuously until deadline D in order to omplete it. 2Lemma 19 Consider an LBP of Theorem 17 in whih there are no fored gaps. Any feasible shedule anbe rearranged so that all ompleted jobs are ordered by their arrival times, and all inomplete jobs are orderedby their arrival times. 10



Proof. The proof uses a simple exhange argument as in the standard proof of optimality for the EDD(Earliest Due Date) poliy in traditional sheduling problems. 2Our algorithm heks if there exists a shedule having no gaps that ompletes exatly at time T . Assumethat the jobs 1; : : : ; n are labeled so that a1 � a2 � � � � an. The main steps of the algorithm are as follows:The Algorithm:1. Determine the fored gaps. This allows us to redue to a problem having no fored gaps, whih startsat the end of the last fored gap.The fored gaps are readily determined by omputing the partial sums, �j =Pji=1 ti, for j = 0; 1; : : : ; n,and omparing them to the arrival times. (We de�ne �0 = 0.) The �rst fored gap, then, begins atthe time � = �j� = minf�j : �j < aj+1g and ends at time aj�+1. (� = 0 if a1 > 0; � = 1 if there areno fored gaps.) Subsequent fored gaps, if any, are omputed similarly, just by re-zeroing time at � 0,and proeeding as with the �rst fored gap.2. Let x = D � T be the length of time between the ommon deadline D and our target makespan T . Ajob i for whih ti � x is alled short ; jobs for whih ti > x are alled long .If it is not possible to shedule the set of short jobs, so that eah is ompleted and they are all doneby time T , then our algorithm stops and returns \NO," onluding that going home by time T isimpossible. Otherwise, we ontinue with the next step of the algorithm.The rationale for this step is the observation that any job of length at most x must be ompleted inany shedule that permits the bureaurat to go home by time T , sine its ritial time ours at orafter time T .3. Create a shedule S of all of the jobs, ordered by their arrival times, in whih the amount of time spenton job i is ti if the job is short (so it is done ompletely) and is ti � x if the job is long.For a long job i, ti�x is the maximum amount of time that an be spent on this job without ommittingthe bureaurat to ompleting the job, i.e., without ausing the adjusted ritial time of the job to ourafter time T .If this shedule S has no gaps and ends at a time after T , then our algorithm stops and returns\YES." A feasible shedule that allows the bureaurat to go home by time T is readily onstruted by\squishing" the shedule that we just onstruted: We redue the amount of time spent on the longjobs, starting with the latest long jobs and working bakwards in time, until the ompletion time ofthe last short job exatly equals T . This shedule ompletes all short jobs (as it should), and doespartial work on long jobs, leaving all of them with adjusted ritial times that fall before time T (andare therefore not possible to resume at time T , so they an be avoided).4. If the above shedule S has gaps or ends before time T , then S is not a feasible shedule for the lazybureaurat, so we must ontinue the algorithm, in order to deide whih long jobs to omplete, if it ispossible to go home by time T .We use a dynami programming algorithm Shedule-by-T , whih we desribe in detail below.Proedure Shedule-by-T . Let Gi be the sum of the gap lengths that our before time ai in sheduleS. Then, we know that in order to onstrut a gapless shedule, at least dGi=xe long jobs (in addition tothe short jobs) from 1; : : : ; i� 1 must be ompleted. For eah i we have suh a onstraint; olletively, weall these the gap onstraints .Claim 20 If for eah gap in shedule S, there are enough long jobs to be ompleted in order to �ll the gap,then a feasible shedule ending at T exists.We devise a dynami programming algorithm as follows. Let T (m; k) be the earliest ompletion time ofa shedule that satis�es the following: 11



(1) It ompletes by time T ;(2) It uses jobs from the set f1; : : : ; kg;(3) It ompletes exatly m jobs and does no other work (so it may have gaps, making it an infeasibleshedule);(4) It satis�es the gap onstraints; and(5) It ompletes all short jobs (of size � x).The boundary onditions on T (m; k) are given by:T (0; 0) = 0;T (0; n) =1, whih implies that at least one of the jobs must be ompleted;T (m; 0) =1 for m > 0;T (m; k) =1 if there exist onstraints suh that at least m+1 jobs from 1; : : : ; k must be ompleted, someof the jobs from 1; : : : ; k must be ompleted beause they are short, and some additional jobs may needto be ompleted beause of the gap onstraints. Note that this implies that T (0; k) is equal to zero orin�nity, depending on whether gap onstraints are disobeyed.In general, T (m; k) is given by seleting the better of two options:T (m; k) = minf�; �g;where � is the earliest ompletion time if we hoose not to exeute job k (whih is a legal option only if jobk is long), giving � = �T (m; k � 1) if tk > x1 otherwise,and � is the earliest ompletion time if we hoose to exeute job k (whih is a legal option only if the resultingompletion time is by time T ), giving� = nmax(ak + tk; T (m� 1; k � 1) + tk) if this quantity is � T1 otherwise.Lemma 21 There exists a feasible shedule ompleting at time T if and only if there exists an m for whihT (m;n) <1.Proof. If T (m;n) =1 for all m, then, sine the gap onstraints apply to any feasible shedule, and it isnot possible to �nd suh a shedule for any number of jobs m, there is no feasible shedule that ompleteson or before T .If there exists an m for whih T (m;n) < 1, let m� be the smallest suh m. Then, by de�nition,T (m�; n) � T . We show that the shedule S� obtained by the dynami program an be made into a feasibleshedule ending at T . Consider jobs that are not ompleted in the shedule S�; we wish to use some of themto \�ll in" the shedule to make it feasible, as follows.Ordered by arrival times of inomplete jobs, and doing up to ti � x of eah inomplete job, �ll in thegaps. Note that by the gap onstraints, there is enough work to �ll in all gaps. There are two things thatmay make this shedule infeasible: (i) Some jobs are worked on beyond their ritial times, and (ii) the lastjob to be done must be a ompleted one.(i). Fixing the ritial time problem: Consider a job i that is proessed at some time, beginning at � ,after its ritial time, i. We move all ompleted job piees that fall between i and T to the end of theshedule, lining them up to end at T ; then, we do job i from time i up until this bath of ompleted jobs.This is legal beause all ompleted jobs an be pushed to the end of the shedule, and job i annot ompleteone it stops proessing. 12



(ii). Fixing the last job to be a omplete one: Move a \sliver" of the last ompleted job to just beforetime T . If this is not possible (beause the job would have to be done before it arrives), then it means thatwe must omplete one additional job, so we onsider m� + 1, and repeat the proess.Note that a tehnial diÆulty arises in the ase in whih the sum of the gap lengths is an exat multipleof x: Do we have to omplete an additional job or not? This depends on whether we an put a sliver ofa ompleted job at T . There are several ways to deal with this issue, inluding onditioning on the lastompleted job, modifying the gap onstraint, or ignoring the problem and �xing it if it ours (that is if weannot put a sliver, then add another job whih must be ompleted to the gap onstraint). 2This ompletes the proof of our main theorem, Theorem 17.Remark. Even if all arrival times are the same, and deadlines are the same, and data is integer, an optimalsolution may not be integer. In fat, there may not be an optimal solution, only a limiting one, as thefollowing example shows: Let ai = 0 and di = 100, for all i. Jobs 1; : : : ; n have length 51, while job n + 1has length tn+1 = 48. A feasible shedule exeutes � of eah of the �rst n jobs, where � > 1=(n� 1), and allof job n+1, so the total work done is n�+48 > n=(n�1)+48. Note that eah of the �rst n jobs have 51� �remaining to do, while there is only time 52�n� left before the deadline. Now, by making � arbitrarily loseto zero, we an make the shedule better and better.Referenes[1℄ A. Bar-Noy, S. Guha, J. Naor, and B. Shieber. Approximating the throughput of real-time multiplemahine sheduling. In Pro. 31st ACM Symp. Theory of Computing, 1999.[2℄ M. R. Garey and D. S. Johnson. Computers and Intratability: A Guide to the theory of NP-ompleteness.W. H. Freeman, San Franiso, 1979.[3℄ D. Karger, C. Stein, and J. Wein. Sheduling algorithms. In CRC Handbook of Computer Siene, 1997.To appear.[4℄ T. Keneally. Shindler's List. Touhstone Publishers, New York, 1993.[5℄ E. Lawler, J. Lenstra, A. Kan, and D. Shmoys. Sequening and sheduling: Algorithms and omplexity. InHandbooks of Operations Researh and Management Siene, volume 4, pages 445{522. Elsevier SienePublishers B.V., 1993.[6℄ E. L. Lawler and J. M. Moore. A funtional equation and its appliation to resoure alloation andsequening problems. Management Siene, 16:77{84, 1969.[7℄ M. Pinedo. Sheduling: Theory, Algorithms, and Systems. Prentie Hall, 1995.

13


