
Distributed Localization Using Noisy
Distance and Angle Information∗

Amitabh Basu
Stony Brook University

Stony Brook, NY 11794-4400

Jie Gao
Stony Brook University

Stony Brook, NY 11794-4400

Joseph S. B. Mitchell
Stony Brook University

Stony Brook, NY 11794-3600

Girishkumar Sabhnani
Stony Brook University

Stony Brook, NY 11794-4400

ABSTRACT
Localization is an important and extensively studied prob-
lem in ad-hoc wireless sensor networks. Given the connec-
tivity graph of the sensor nodes, along with additional local
information (e.g. distances, angles, orientations etc.), the
goal is to reconstruct the global geometry of the network.
In this paper, we study the problem of localization with
noisy distance and angle information. With no noise at all,
the localization problem with both angle (with orientation)
and distance information is trivial. However, in the pres-
ence of even a small amount of noise, we prove that the
localization problem is NP-hard. Localization with accu-
rate distance information and relative angle information is
also hard. These hardness results motivate our study of ap-
proximation schemes. We relax the non-convex constraints
to approximating convex constraints and propose linear pro-
grams (LP) for two formulations of the resulting localization
problem, which we call the weak deployment and strong
deployment problems. These two formulations give upper
and lower bounds on the location uncertainty respectively:
No sensor is located outside its weak deployment region,
and each sensor can be anywhere in its strong deployment
region without violating the approximate distance and an-
gle constraints. Though LP-based algorithms are usually
solved by centralized methods, we propose distributed, it-
erative methods, which are provably convergent to the cen-
tralized algorithm solutions. We give simulation results for
the distributed algorithms, evaluating the convergence rate,
dependence on measurement noises, and robustness to link
dynamics.

∗J. Mitchell acknowledges support from the National Science
Foundation (CCR-0098172, ACI-0328930, CCF-0431030,
CCF-0528209), Metron Aviation, and NASA Ames (NAG2-
1620).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’06, May 22–25, 2006, Florence, Italy.
Copyright 2006 ACM 1-59593-368-9/06/0005 ...$5.00.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—graphs and networks; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Geometrical prob-
lems and computations

General Terms
Algorithms, Design, Theory

Keywords
Sensor networks, Localization, Linear Programming

1. INTRODUCTION
In recent years wireless sensor networks have revealed

great potential to provide economical and practical solu-
tions for long-term extensive data gathering and monitor-
ing. One of the fundamental calibration procedures for sen-
sor networks is localization, i.e., determining either absolute
or relative locations of the sensor nodes. Node locations are
important features for the integrity of the sensor readings.
They are also helpful for many network operations such as
clustering, topology control and geographical routing. Sen-
sor node locations can be found by extra hardware support,
such as GPS (global positioning system) receivers [11]; how-
ever, due to the high cost of such hardware, it is desirable
to derive sensor locations from purely local measurements.

There has been extensive work on localization algorithms
[22, 23, 15, 16, 17, 21, 24, 25, 2, 13, 8, 7]. The major-
ity of them use distance estimations to derive relative node
locations or absolute locations when anchor nodes are avail-
able. Localization without anchor nodes, however, is a much
harder problem, both in theory and in practice. Given the
lengths of the edges of a unit disk graph, finding an em-
bedding in the plane so that non-neighboring nodes are
separated by distances of at least 1 is known to be NP-
complete [3, 12, 1]. One of the major problems in using
only distance information is resolving the flipping ambigu-
ity. In the example of Figure 1, using only edge lengths we
can fix the shapes of triangles 4abc and 4bcd, but we can-
not determine the “flip” of triangle 4bcd relative to triangle
4abc. When the network is large, this flipping ambiguity
issue can be so severe that many optimization-based ap-

proaches easily get stuck at local minima corresponding to
configurations that are far from the ground truth. To avoid
this problem, Moore et al. [13] identified robust quadrilater-
als that have a unique shape and combined them to derive
the global geometry. However, in order to collect enough
quadrilaterals to cover the majority of the nodes, simula-
tions on uniformly distributed sensor nodes show that it
is usually required to have a dense sensor network, with
average degree 10 or more [13]. In a sparse network, this
quadrilateral-based approach can be augmented with input
from mobile robots, which helps to create enough distance
measurements [19].

b

a c

d c
a

b
d

(i) (ii)

Figure 1: A connectivity graph with two distinct
embeddings having the same set of edge lengths.

Another direction to solve the ambiguity of embedding
with distances and incorrect flipping problem is to use angle
information. Indeed, if we measure not only the (accurate)
distance between two neighboring nodes but also the (ac-
curate) angle between two incoming links with clockwise or
counter-clockwise orientation, then localization is trivial –
each node can find the locations of all of its neighbors in its
local coordinate system, and then “gluing” these local coor-
dinate systems together yields the global geometry. Angles
between two incoming links can be measured by using mul-
tiple ultrasound receivers (e.g., the Angle of Arrival (AOA)
technique [20]), laser transmitters and receivers (as in the
SmartDust system), or directional antennas. In practice,
the distance and angle measurements inevitably have noise.

In this paper we study the problem of localizing sensor
nodes with noisy distance and angle measurements. Given
a pair (i, j) of neighboring sensors, we define the notion of a
region of uncertainty for a node pair. This region represents
the noise in the distance and angle measurements in the
sense that, if we fix the location of one node of the pair, the
other node is somewhere within this region. See Figure 2
for an example. The localization problem in this setup is

feasible region

relaxed feasible region
F ′

ij for node j

j
N θ1

θ2

r1
r2

i

Fij for node j

Figure 2: Region of uncertainty for node j in the
local coordinate space of node i. The relaxed feasible
region is shown shaded.

to find locations for the sensor nodes such that for each
neighboring pair (i, j), the nodes fall in the feasible regions
of each other. Some of the nodes may serve as anchor nodes,
whose exact locations are known. If there are no anchor
nodes, we arbitrarily fix one sensor node as the origin and
one of its adjacent edges as the horizontal axis, in order to
factor out global rotation and translation.

We first address the complexity of the localization prob-
lem. When we have accurate distance and angle measure-
ments, each feasible region shrinks to a single point, and
the localization problem is trivial (see above). On the other
hand, with unbounded noise in distance and angle measure-
ments, the embedding problem is NP-complete (with the
unit disk graph assumption), as shown in [3, 12]. It re-
mains NP-complete if we have exact angle information but
unbounded noise in distance [4]. We are interested in the
spectrum of possibilities in noise models to find out at what
point does the embedding problem become hard. Surpris-
ingly, even with an arbitrarily small noise in distance and
angle measurements, the problem is hard, as we show using
a reduction from 3SAT. Furthermore, with accurate distance
measurements and accurate relative angle measurements, in
which we know the absolute value of the angle between two
incoming links but we do not know the orientation (the sign
of the angle), the localization problem is also hard. This
suggests that under certain reasonable noise models, the lo-
calization problem is very hard in theory unless both angle
and distance information is known exactly.

The hardness of the localization problem mainly comes
from the fact that the feasible region associated with a node
pair is not convex. Thus, one can relax the feasible region to
a convex enclosing shape, e.g., a minimum enclosing trape-
zoid [5]; see Figure 2. The localization problem under these
relaxed constraints is polynomially solvable using linear pro-
gramming, since all of the constraints can be represented by
linear inequalities. Specifically, for n nodes with m edges,
we have 2n variables for the coordinates of all nodes and
8m + 2 linear constraints. With the relaxed constraints, we
define two problems, the weak deployment and the strong
deployment problem, which focus on different optimization
criteria. In the weak deployment problem, we are to de-
termine, for each node, its set of all possible placements
(in the global coordinate system), assuming that all other
nodes are placed in any feasible location (satisfying all noise
constraints of all pairs of neighboring nodes). This weak de-
ployment region represents an upper bound on the positional
uncertainty of the node; no node can be located outside its
weak deployment region. In the strong deployment prob-
lem, we are to determine, for each node, its strong deploy-
ment region, which has the property that for any choice of
node locations, one within each of the strong deployment re-
gions, the measurement constraints are satisfied for all pairs
of neighboring nodes. The strong deployment regions repre-
sent a lower bound on the uncertainty inherent in the system
– there is no way to tell where exactly each node is within
its strong deployment region, based solely on the available
constraints. The two problems are correlated: The weak
deployment solution is non-empty if and only if the strong
deployment solution is non-empty.

The use of linear programming to solve localization prob-
lems represents a centralized solution; distributed algorithms
are more suitable for sensor network applications. Fortu-
nately, our deployment problems have special structure, with
all constraints being specified between neighboring pairs of
nodes. This enables us to propose distributed algorithms
that run in iterations, but provably converge to the same so-
lution as the global LP. For the weak deployment problem,
each node keeps its current feasible deployment region and
updates it as it receives new information from its neighbors.
At each iteration, a node sends its updated feasible region

to all of its one-hop neighbors. Each node then solves a local
problem with the constraints from its neighbors and the new
constraints enforced by the feasible deployment regions on
itself and its neighbors. This local algorithm will output new
feasible regions for each node. Iteratively, the feasible region
of each node shrinks until the system converges. We prove
that this iterative algorithm, which is implemented in terms
of simple Minkowski sums, converges to the same solution
as the global LP. The distributed iterative algorithm applies
to the strong deployment problem as well, by reducing it to
solving a weak deployment problem.

Another advantage of our distributed localization algo-
rithm is its robustness to network dynamics. Sensor net-
works have high link dynamics, due to channel fading, node
mobility, power conservation and communication interfer-
ence. For the case of directional antennas, the antenna
rotates between different sectors, potentially making pre-
viously available links unavailable. Our iterative algorithm
only requires a mild condition on network connectivity. As
long as the network is jointly connected, i.e., the union of
the communication networks at different time steps is con-
nected, the algorithm will converge to a reasonably good
solution. The robustness to link variation is confirmed by
simulation results. We note that this robustness is mainly
due to the iterative nature of the solution. We also evaluate
the convergence rate through simulation. With reasonable
measurement noises, the algorithm converges rather fast.

2. PROBLEM SETUP
We have a collection of n sensor nodes and a connectivity

graph G = (V, E), where |V | = n, |E| = m. We assume that
each node has a compass; thus, each knows the universal
north and the local coordinate systems for all nodes are
aligned. For each pair of sensor nodes i, j, we can measure
both the distance between them and the angle of edge ij
with the universal north. These measurements are noisy, so
we only have lower and upper bounds (r1 and r2) on the
distance, and upper and lower bounds (θ1 and θ2) on the
angle. This uncertainty in the measurement is captured by
the region of uncertainty, Fij , which is a frustum in which
j can lie with respect to i’s local coordinate system; see
Figure 2. We note that for each pair of neighboring nodes
i, j, there are two regions of uncertainty – one, Fij , is the
region of uncertainty for node j with respect to i, and one,
Fji, is the region of uncertainty for node i with respect to j.

We define the localization problem with noise in the fol-
lowing way. Given, for each node, regions of uncertainty
for its neighbors in its local coordinate system, find possi-
ble deployment regions for each node in a global coordinate
system. Note that this problem is more general than the
usual definition of the localization problem, which attempts
to compute the “best” exact coordinates for the nodes. Our
goal is to obtain regions for possible deployment that are
consistent with the measurement data. Specifically we de-
fine deployment regions in two different ways that focus on
different optimization criteria.

Weak deployment problem: Find the (set-theoretic)
maximal deployment regions Wi such that, for any point
p ∈ Wi, there exists a feasible placement of all other nodes
j 6= i that is consistent with placing node i at p. We factor
out global translation by fixing one node (without loss of
generality, node 1) at the origin.

Strong deployment problem: Find deployment re-
gions Si, of a specified shape, such that all constraints im-
plied by the regions of uncertainty for neighboring pairs are
satisfied if we locate node i at any point within the de-
ployment region Si, for each i = 1, 2, . . . , n. The objective
function is to maximize (maximally scale) the size of the
smallest deployment region.

The motivation behind the above definitions is in obtain-
ing upper and lower bounds on the uncertainty of node lo-
cations. Weak deployment regions Wi capture all possible
feasible solutions to the given input; i.e., no placement out-
side these regions can possibly be the actual coordinates of
the nodes, thus providing an upper bound on the solution
space. Analogously, strong deployment regions Si give a
means of quantifying the “best we can do” with the inher-
ent error in the input: Any combination of points within
these regions simultaneously satisfies all constraints; based
on the measurement data, one cannot tell where the real
node location is within the strong deployment region. So
the strong deployment provides a lower bound on the un-
certainty in the system. The weak and strong deployment
problems are correlated. The strong deployment region for
each node is always a subset of the weak deployment region,
Wi ⊆ Si. Further, the weak deployment region is non-empty
if and only if the strong deployment region is non-empty.

In section 5, we show that it is NP-Complete to solve
the problem with nonconvex frustums Fij as defined above;
thus, we approximate these regions with convex polygons
F ′

ij , as in Figure 2. By the relaxation we can formulate the
problem by linear programs as shown in section 3. We de-
note by P the original problem and P ′ the relaxed problem.
Since Fij ⊆ F ′

ij for all pairs i, j, the weak deployment re-
gion W ′

i for P ′ is always a superset of Wi for P. A feasible
solution for P is always feasible for P ′, but not vice versa.

Relaxing non-convex constraints to convex constraints was
previously utilized by Bǎdoiu et al. [5]. In their paper, they
do not consider finding regions for deployment; they instead
mention that any feasible solution to the LP is a valid as-
signment of node coordinates. They also adapt the method
to minimize the angle and distance errors and different met-
rics, e.g., `1 and the `∞ norms. On the other hand, comput-
ing feasible regions by collecting constraints on the possible
position of a sensor node has been considered in both single-
hop and multi-hop scenarios [10, 9, 18]. These methods use
either only connectivity information [18] or (absolute or rel-
ative) ranging information [10, 9].

3. LP FORMULATIONS FOR WEAK AND
STRONG DEPLOYMENT

In this section we focus on the problem P ′, by relaxing
the regions of uncertainty to convex regions.

3.1 Weak Deployment
We first present the linear program for the weak deploy-

ment. The decision variables in the LP are the 2n coordi-
nates of the n nodes (xi, yi). The set of inequalities given
by the sides of the convex region of uncertainty, F ′

ij , define
the constraints of the LP. Let the set of lines bounding F ′

ij

be denoted by Lij and any element of this set be denoted
by `k

ij(x, y), k ∈ {1, . . . , |Lij |}. Now we can constrain node

j to be within F ′
ij by putting the constraint `k

ij(xj , yj) ≤ 0

or `k
ij(xj , yj) ≥ 0, depending on which side of `k

ij is feasible.

Two additional constraints, x1 = 0 and y1 = 0, “pin-down”
node 1 to be at the origin.

Each feasible solution of the localization problem is an as-
signment of locations to all the nodes and is a point in R

2n.
The linear constraints specify a feasible solution subspace
F ′, which is a convex polytope in R

2n. The projection of
the feasible region F ′ of the LP onto the (xi, yi) space (the
coordinate space of node i), denoted by W ′

i , is the solution
to the weak deployment problem for P ′. Since it is a pro-
jection into two dimensions of a convex polytope, the weak
deployment region W ′

i for node i is a 2D convex polygon. In
general, the complexity of the feasible polytope F ′ ⊆ R

2n of
an LP can be exponential in n in the worst case. Our goal is
to compute only the projections W ′

i , for each i, of the poly-
tope F ′. One approach is to compute, using an LP solver,
a low-complexity convex polygon to approximate each pro-
jection W ′

i . For example, by the appropriate choice of ob-
jective function in the LP over region F ′, we can compute
the extreme points of W ′

i along specified set of directions;
the corresponding intersection of halfplanes gives an outer
approximation to W ′

i . The more choices of directions (and
calls to the LP optimizer), the better the approximation
to the weak deployment region W ′

i . For example, we can
find the bounding box for each of the deployment regions
by solving four LPs over F ′ with four different objective
functions, namely, max xi, min xi, max yi and min yi.
In fact, if the regions of uncertainty F ′

ij are given as axis-
aligned rectangles, instead of trapezoids, then this approach
gives the exact weak deployment regions. This approach
is the approach we used in simulations. More generally, in
section 4.1 below, we show (Lemma 2) that the exact weak
deployment regions are obtained by optimizing over F ′ in
each of the directions determined by the set of all outward
normals to the regions of uncertainty F ′

ij . This implies that
we can solve the weak deployment problem exactly (in poly-
nomial time) by making a number of calls to an LP, with
the number being linear in the total number of sides of the
convex polygonal regions F ′

ij .

3.2 Strong Deployment
We now show how to obtain an LP formulation for solving

the strong deployment problem. Let the deployment regions
of two neighboring nodes i, j be denoted by S ′

i, S′
j . By the

convexity of the problem P ′, any set of strong deployment
regions is a set of convex polygons. The first challenge we
face for the strong deployment problem is that for any p ∈ S ′

i

and any q ∈ S′
j , the constraints must be satisfied. This

leads to an infinite number of constraints for all pairs of
such points. To formulate a finite constraint set for the LP,
we can use the following lemma, whose proof is omitted due
to space constraints.

Lemma 1. Assume that every pair of corners ci, cj from
S′

i, S′
j satisfies the uncertainty constraints; i.e., cj lies in

F ′
ij if the origin is placed at ci and ci lies in F ′

ji if the origin
is placed at cj . Then, any pair of points from S′

i and S′
j

satisfies the uncertainty constraints for nodes i and j.

The above lemma shows that if we satisfy the constraints
for every pair of corners of the deployment regions, then the
regions are valid under the strong deployment condition.
Hence, the strong deployment condition can be enforced by
simply enforcing them on the finite set of corners.

Another subtle issue for the strong deployment problem
is that we can trade off part of the deployment region of
one node to obtain a larger deployment region for another
node. Thus, our formulation of the strong deployment prob-
lem is subject to an optimization criterion. In this paper we
impose one objective to make specific our choice of strong
deployment regions: we restrict the shape of each strong de-
ployment region to be a convex polygon of some fixed shape
(e.g., an axis-aligned square) and maximize the minimum-
size (scale) strong deployment region. In other words, we
treat the regions S′

i for all i equally (all the regions S′
i have

the same shape) and then maximize the minimum region
size so that all of the constraints are satisfied.

If we enforce the regions S′
i to be rectangles (similar for-

mulation can be given for any other convex shape), the de-
cision variables of the LP are the center of the rectangle
(xi, yi), and the height (hi) and width (wi). The four cor-
ners can now be obtained in terms of these parameters and
the constraint equations can be obtained for every pair of
corners just as in the weak deployment LP. Again, one of the
centers must be “pinned down” (say, x1 = 0, y1 = 0) to elim-
inate global translation. Additionally, we have constraints
of the type: hi ≥ r, wi ≥ r for all i. The objective function
of our LP is max r, where r is the scale factor for the sizes of
the boxes. Thus, the strong deployment problem is solvable
in polynomial time, using linear programming methods.

4. DISTRIBUTED ALGORITHMS FOR
WEAK AND STRONG DEPLOYMENT

The LP formulations outlined above for weak and strong
deployment are centralized algorithms. The LP formulation,
however, has special structure that can be exploited in de-
vising distributed algorithms that are more appropriate to
sensor network applications: Each constraint only involves 4
of the variables in the LP, namely, the x- and y-coordinates
of two neighboring nodes. Based on this structure of the con-
straint matrix, we devise distributed methods for the weak
and strong deployment problems.

4.1 A Distributed Method for Weak
Deployment

In our distributed method, a node uses only the local con-
straints to refine its region of deployment. Only the con-
straints of the centralized LP that involve this particular
node and one of its neighbors are considered. We also in-
clude the constraints induced by the current regions of de-
ployment of a node and its neighbors. Since the region of
deployment is represented by a convex polygon, these con-
straints are linear. A localized halfplane intersection prob-
lem is formed at each node and solved iteratively. The
deployment regions of all the nodes are refined by solving
these local constraint problems, and this updated informa-
tion about the network is used in the next iteration for the
construction of the local deployment regions.

4.1.1 The Algorithm

1. Fix one of the nodes, without loss of generality node 1,
at the origin in order to eliminate global translation.
For each node i 6= 1, initialize the deployment regions
Ri to be the whole plane R

2. The deployment region
for node 1 is initialized to (and remains throughout
the algorithm) a single point – the origin.

2. For any node j, let Cb(j) be the linear constraints of
the sides of its current deployment region Rj on xj , yj .
For each node i, we formulate a local linear constraint
problem. Denote the set of neighbors of i by N(i). Let
Cg(i) be all the linear constraints that only involve
node i and one of its neighbors. Create a new set
of constraints U(i) = Cb(i) ∪

S

j∈N(i) Cb(j). The set

of local linear constraints, denoted by L(i), is then
U(i) ∪ Cg(i). At node i, we find the projection of
the intersection of the constraints L(i) onto the xi-yi

plane. This is the updated deployment region for node
i. Do this local computation for all nodes.

3. If none of the deployment regions were updated in the
previous step, then stop; otherwise, go to step (2).

4.1.2 Implementation in Terms of Minkowski Sums
The distributed method for weak deployment can be con-

veniently interpreted in terms of Minkowski sums of convex
polygons. Recall that each node i has a current deployment
region Ri, which is a convex polygon. Given a polygon P
with a fixed reference point p inside it, we denote by P (v)
the translated polygon by a vector v ∈ R

2, i.e., p is trans-
lated to p + v. Now we can define the feasible region for
node j in the reference frame of node i as a translated poly-
gon F ′

ij(vij), as shown by the shaded region in Figure 3 (i),
where vij is the displacement vector between node i and a
fixed corner of F ′

ij . If node i’s location is fixed, then node

F ′
ij(vij)

Ri ⊕ F ′
ij(vij)

vij
Ri

Rj(−vij) ⊕ (−F ′
ij)

Rj

−vij

−F ′
ij

(i) (ii)

Figure 3: (i) The shaded region is the feasible re-
gion of node j for a particular location of node i.
Node j stays inside the Minkowski sum of two poly-
gons Ri and F ′

ij(vij). (ii) The constraint for edge ij
also restricts that only points in Rj(−vij)⊕(−F ′

ij) are
possible deployment locations for node i.

j must stay inside the feasible region F ′
ij(vij). Now node i

stays inside the region Ri. Thus node j stays in the feasible
region F ′

ij(vij) for every possible position of node i in Ri,
as shown in Figure 3 (i). Formally, for two convex polygons
P and Q, the Minkowski sum is defined as

P ⊕ Q = {p + q | p ∈ P, q ∈ Q},
where p + q is the sum of the vectors p, q. Then node j
stays in the Minkowski sum of two polygons Ri ⊕ F ′

ij(vij),
as shown in Figure 3 (i). This puts a new constraint on
the location of node j. Namely, the new deployment region
should be Rj

T
`

Ri ⊕ F ′
ij(vij)

´

.
Furthermore, it is not just the deployment region for node

j that may shrink. The constraint may also shrink the

deployment region Ri. Namely, if a part of the polygon
Ri ⊕ F ′

ij(vij) is not feasible for node j, this indicates that
part of Ri is not feasible. Intuitively, for a valid deployment
point in Rj , there should be a point p in the deployment re-
gion Ri such that node j stays inside the feasible region F ′

ij

with node i at position p. This implies that only the points
inside the polygon Rj(−vij) ⊕ (−F ′

ij) are valid deployment
points, as shown in Figure 3 (ii). Thus, the deployment
region for node i shrinks to Ri

T
`

Rj(−vij) ⊕ (−F ′
ij)

´

.
The Minkowski sum can be implemented efficiently. If

P and Q are convex polygons with m and n vertices, both
operations result in convex polygons with complexity O(m+
n) vertices and can be implemented in time O(m + n) [6].

The distributed weak deployment method can be imple-
mented using this Minkowski sum interpretation. At each
iteration, a node i first obtains the current deployment re-
gions of all of its neighbors N(i). For each neighbor j, both
the constraint F ′

ij(vij) and F ′
ji(−vij) will shrink the deploy-

ment region Ri. The algorithm stops when the deployment
regions do not change. We summarize the algorithm in the
pseudo-code below. Each node has a flag not done(i) that
indicates whether it needs to perform an iteration. Essen-
tially, if a node i shrinks its deployment region, it informs
its neighbors by setting their flags to 1.

Initialize: Ri = R
2 and not done(i) = 1

while (not done(i)) do
N(i) = set of neighbors of node i
Collect deployment regions Rj , for j ∈ N(i)
M =

T

j∈N(i) Rj ⊕ F ′
ji(vji)

N =
T

j∈N(i) Rj(−vij) ⊕ (−F ′
ij)

R′
i = Ri ∩ M ∩ N

if (Ri 6= R′
i) {Ri = R′

i, ∀j ∈ N(i): not done(j) = 1}
else not done(i)= 0

From the Minkowski interpretation of the construction of
regions Ri, and the fact that the Minkowski sum of two con-
vex polygons is bounded by translates of edges from the two
polygons, we immediately get the following lemma, which
justifies the claim made in section 3 about the global LP:

Lemma 2. The edges bounding the regions Ri at each it-
eration of the distributed weak deployment algorithm, and
therefore also the edges bounding the weak deployment re-
gions R∗

i , have orientations among those of the set of all
edges bounding the input constraint regions F ′

ij.

4.1.3 Convergence
We now show that the distributed weak deployment method

converges in a finite number of iterations to the same solu-
tion given by the global (centralized) LP-based solution; the
proof is based on the three lemmas that follow.

Theorem 3. The distributed weak deployment method con-
verges to the solution of the weak deployment problem.

Lemma 4. At iteration k, the deployment region R
(k)
i is

a superset of R∗
i , the deployment region of the global LP.

Proof. We prove this claim inductively on the number of
iterations. Denote by M the global LP algorithm. Suppose
in the global LP algorithm, the weak deployment region of
node i is R∗

i . R∗
i is the projection of the feasible region of

M in R
2n on the xi, yi plane. At the initial step, each node

i has a deployment region R
2, which obviously include R∗

i .
Suppose at the k-th iteration the current deployment region

R
(k)
i is a superset of R∗

i , for every node i. Now we claim

that the deployment region in the next iteration, R
(k+1)
i , is

also a superset of R∗
i .

Consider the local constraint region at node i, denoted

by M
(k)
i , the constraints are L(i) = U (k)(i)

S

Cg(i), where
Cg(i) is the subset of the constraints in the global LP that

involves node i and its neighbors, U (k)(i) is the constraints

imposed by the current deployment regions R
(k)
i and R

(k)
j ,

for j ∈ N(i). Now we define a global LP with the extra con-

straints U (k)(i) besides those in M , denoted by M ′. Since

R
(k)
i is a superset of R∗

i for every node i, the constraints

U (k)(i) are redundant constraints in the problem M ′. Thus

we can safely throw away the constraints U (k)(i) with the
feasible region unchanged. This says, the feasible region of
M ′ in R

2n is the same as that of the original LP M . Now
notice that we can throw away the constraints that does not
involve node i. This will only enlarge the feasible region.
Now since we do not have any constraints involving nodes
other than node i or nodes N(i), we can throw away those
variables with the projection for node i unchanged. This is

exactly the local constraint formulation M
(k)
i . The weak de-

ployment region for problem M
(k)
i is a superset of R∗

i . This
finishes the induction.

Lemma 5. When the algorithm stops, the weak deploy-
ment region is the same as R∗

i for every node i.

Proof. The proof is by contradiction. Let Ri denote the
deployment region produced by the local constraint problem
for node i. Suppose there is a node i with Ri a strict superset
of R∗

i , and let p ∈ Ri \ R∗
i . This implies that if node i is

at p, then there is no feasible assignment of locations to
all nodes. Now we prove that the iterative algorithm can
continue and improve (reduce) the deployment region Ri of
node i, contradicting the fact that it stopped.

We first define by F̂ ′
ij(p) the mutually feasible region of

node j if node i is at p – this is the collection of points q that
are inside the region of uncertainty of p with the condition
that p is also inside the region of uncertainty of q. We note
that F̂ ′

ij(p) is a convex polygon whose shape only depends on
F ′

ij and F ′
ji. Now consider a self-disjoint path P in the graph

G from node i to some node ` and propagate information
along P. We can define the feasible region of node `, denoted
by F`(P, p), as the collection of positions of node ` enforced
by the constraints of edges of P and the fact that node i
is at location p. Essentially F`(P, p) = ⊕jk∈P F̂ ′

jk in the
reference space with p at the origin. It can be observed that
F`(P, p) is a convex polygon whose shape only depends on
the polygons F ′

jk, F ′
kj , for all of the edges jk on the path P.

We now propagate the constraints starting from point p
and compute the feasible regions of a node ` along each path
from node i. For each node `, we take the intersection, de-
noted H`(p), of all of these feasible regions, each correspond-
ing to a different path from node i. Suppose H`(p) 6= ∅ for
each node `, and that the origin o is not in H1(p) for the
node 1; then, we can find a feasible location assignment for
all of the nodes when node i is at p. This shows that p lies
in the set R∗

i , which contradicts our choice of p.
Thus, it must be the case either that (1) for some node `,

H`(p) = ∅, or that (2) H1(p) does not include the origin, o.
We first show that (1) cannot happen. Indeed, the shape

of the regions F`(P, p) does not depend on the position of
node i. Now we choose p∗ as a feasible location for node
i, p∗ ∈ R∗

i . Correspondingly there is a feasible position for
node `, say at q∗. Then F`(P, p) and F`(P, p∗) have the
same shape. Thus H`(p) and H`(p

∗) have the same shape.
However, H`(p

∗) is not empty – it includes the feasible posi-
tion q∗ for node `. This completes the argument for case (1).

Now consider case (2): H1(p) does not include the origin
o. Then there is a path from node i to node k, say P, such
that F1(P, p) does not include the origin. Define F−1

1 (P, o)
to be the collection of positions for node i such that F1(P, p)
includes the origin. Point p is not included in F−1

1 (P, o). By
the definition of mutual feasibility, F−1

1 (P, o) = Fi(P−1, o),
where P−1 is the inverse path of P. This means that if we
fix node 1 at the origin, then p cannot be a feasible position
for node i by the constraints along the path P−1. Indeed,
we can apply the local constraint region algorithm starting
from 1 along the path P−1. At some nodes on P−1 we
can shrink the feasible regions – at least we can shrink the
current deployment region Ri, since p should definitely be
excluded. This shows that the algorithm could not have
stopped (converged) with the region Ri.

Lemma 6. The distributed weak deployment algorithm ter-
minates after a finite number of steps.

Proof. We first make the following claim. For a node j,
recall that Hj(1) is the intersection of the feasible regions
computed along each simple path from the origin o (node
1) to j. Now we claim that the region Hj(1) is the weak
deployment region R∗

j for node j. If otherwise, suppose that
there is a point p ∈ Hj(1) that is not in R∗

j . Then by
the same argument as in Lemma 5, it must be the case
that H1(p) does not include the origin; thus, Hj(1) does not
contain p, which is a contradiction.

Now for each node i, we keep a list Li = {P} of simple
paths that start from the origin and end at node i. Only the
paths in Li contribute to the current feasible region of node
i. Initially the lists Li, for all i, are initialized to be {i}.
After an iteration that updates the feasible region of node
j by using the feasible region of node i, the list of paths for
node j will include new paths Pj , for all P ∈ Li.

Now we claim that the current feasible region of node j,
Rj = ∩P∈Lj

Fj(P, o). This is proved inductively. The claim
is true for the base case. For a neighbor j of the origin o,
the feasible region will shrink from R

2 to F̂ ′
1j(o). The list

Lj will contain a new path 1j. Now for an iteration from

node i to j, we will intersect Rj with Ri ⊕ F̂ ′
ij . By the

induction hypothesis, Ri ⊕ F̂ ′
ij =

`

∩P∈Li
Fi(P, o)

´

⊕ F̂ ′
ij =

∩P∈Li

`

Fi(P, o) ⊕ F̂ ′
ij

´

. Recall that Fi(P, o) = ⊕`k∈P F̂ ′
`k.

Thus, Rj = ∩P∈Lj
Fj(P, o), proving the claim.

This claim shows that the feasible region of a node j will
not shrink unless the list Lj is increased. Combined with
the first claim, it shows that the algorithm converges after
a finite number of steps – essentially when the list for each
node i has already contained all possible simple paths from
the origin to node i. Since there is a finite number of simple
paths from the origin to each node i in the network. The
list Li cannot grow indefinitely. Thus, the algorithm stops
after a finite number of iterations.

4.1.4 Finding a Single Feasible Solution
We note that the goal for the weak deployment problem

is to provide an upper bound on the solution space. If we

want to obtain a feasible location assignment, we can start
with the weak deployment regions and produce one feasible
solution. Essentially, we iterate through the nodes in some
arbitrary order. At the beginning of the ith iteration, all the
nodes from 1 to i − 1 have been assigned locations and the
rest of the nodes have feasible regions that are compatible
with the assignment for node 1, . . . , i − 1. Now we fix node
i at a point in its current feasible region and run the weak
deployment algorithm with the partial assignment. The de-
ployment regions for the rest of the nodes will shrink. At
the end of the algorithm, we have a feasible assignment to
all the nodes.

4.2 A Distributed Method for Strong
Deployment

We now give an algorithm for strong deployment using
distributed methods. The strong deployment problem can
be reduced to the weak deployment problem, by Lemma 1.
Recall that we specify the shape of the strong deployment re-
gion (e.g, a rectangle with fixed aspect ratio) and search for
the maximum size regions for all the nodes. We describe the
algorithm by using a rectangular deployment region. The
algorithm for deployment regions of other shapes is similar.
We first assume that we have guessed the maximum scale
of the strong deployment region. Now we show how to find
all the strong deployment regions in a distributed manner.
For the strong deployment region Si, we fix one point, called
the center, as a reference point for the position of Si. In the
reference frame with the center at the origin, the corners of
the rectangle are represented by vectors ck, k = 1, 2, 3, 4.
We look for the placement of the centers of the Si’s such
that the constraints are satisfied for every choice of location
assignment in Si.

Consider two nodes i an j. For each placement of the
center for Si, we consider possible placements of the center
for Sj . By Lemma 1, node j must stay completely inside
the region R =

T

k
F ′

ij(vij + ck), which is the intersection
of the feasible regions for each corner of Sj , as shown by
the shaded region in Figure 4. This defines a region Hij

for the center of j’s deployment region to be such that the
deployment region Sj lies completely inside R (see Figure 4).
It is easy to compute Hij in linear time. We consider Hij to
be the “feasibility region” for node j’s center with respect
to node i’s center. Using these new feasibility regions for
the centers of the neighboring node regions, we can now use
our distributed weak deployment algorithms to find regions
for the center of the strong deployment regions. Using ideas
from the previous subsection, we obtain a feasible solution
from these regions, and we have a solution to the strong
deployment problem.

Note that we had assumed the knowledge of the maxi-
mum size of the Si’s. In order to determine the size, we
can use repeated doubling and binary search, running the
method O(log r + B) times, where r is the actual value of
the objective function and B is the number of bits used for
representing r.

5. HARDNESS OF LOCALIZATION
In this section we study the computational complexity of

localization by noisy measurements. Given a graph G =
(V, E) together with noisy measurement of edge lengths R
and angles Θ (with respect to a universal north), the local-
ization problem asks whether one can find an assignment E

F ′
ij

R
vij

Hij

Si

Figure 4: The feasibility region Hij for center of Sj

with respect to placement of Si.

of locations to all the vertices that satisfy the constraints.
In particular, suppose E(u) is the embedded point in R

2 for
node u. For each edge uv, we have

r1(u, v) ≤ r(E(u), E(v)) ≤ r2(u, v),

θ1(u, v) ≤ θ(E(u), E(v)) ≤ θ2(u, v),

where r(E(u), E(v)) and θ(E(u), E(v)) are the length and
angle of edge uv, r1(u, v), r2(u, v), θ1(u, v), θ2(u, v) are the
lower and upper bound on the edge length and angle of uv
respectively, as shown in Figure 2.

We first note that this formulation includes a number
of interesting subcases whose computational complexity is
known. One subcase is unit disk graph embedding, where
neighboring nodes are embedded to have distance no more
than 1 and non-neighboring nodes are of at least distance
1 apart. It is shown by Breu and Kirkpatrick [3] that unit
disk graph embedding with only the connectivity informa-
tion, i.e., with infinite noise in the angle measurement and
only a upper (lower) distance bound on the neighboring
(non-neighboring) pairs, is NP-complete. In fact, a re-
laxed version, quasi-unit disk graph embedding is still hard,
where neighboring nodes are within distance 1 and non-
neighboring nodes are of at least distance

p

3/2 away [12].
Unit disk graph embedding remains NP-hard even if we
have exact angle information [4].

However, with exact angle and distance information, i.e.,
r1 = r2, θ1 = θ2, the localization problem is trivially in
P. We wish to examine this spectrum and find out at what
point does the localization problem become hard. We first
show that even with ε noise in distance measurement and δ
noise in angle measurement, ε > 0, δ > 0 arbitrarily small,
the problem immediately becomes hard. Further, the em-
bedding problem remains hard if we have accurate distance
information but relative angle information. In other words,
we know the magnitude of the angle measurements but do
not know the sign, thus allowing flips. Therefore, unless
P = NP, essentially only the case with exact information
about both angle and distance is polynomially tractable. We
summarize the hardness results in Figure 5.

5.1 Hardness of Embedding with Noisy
Distance and Angle Measurements

Our reduction is from 3SAT. A 3SAT problem consists of
a set of Boolean variables and clauses. Each clause has at
most three literals, either negated variables or unnegated. A
clause is satisfied if one of the literal has value 1. The 3SAT

Input Hardness ref.
UDG graph only NP-hard [3, 12]
UDG graph with O(1)-hop distances NP-hard [1]
UDG graph with O(1)-hop angles NP-hard [4]
Noisy O(1)-hop distances and angles NP-hard this paper
Accurate distances and relative angles NP-hard this paper
O(1)-hop angles & distances in P [4]
Ω(n2) pairs distances in P [2, 25]
all pairs angles in P [4]

Figure 5: A summary of the hardness results.

problem asks for an assignment to the variables such that all
the clauses are satisfied. We use the special version of the
3SAT , in which each variable occurs in at most 3 clauses.
This version is known to be NP-Hard too. An instance of
3SAT can be formulated as an rectilinear plane graph G with
the clauses and variables as vertices and an edge between a
variable node and a clause node if that variable appears in
the clause. This graph can be obtained in polynomial time.
See Figure 6 for an example. We now show that for each
3SAT instance we can construct a planar graph such that
the planar graph has a valid embedding under noisy angle
and distance constraints if and only if we can solve the 3SAT
problem.

x2 x3

C3

C2

C1

x1 x3x2x1

Figure 6: The graph GC of a 3SAT instance (x1∨x2∨
x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

We have the following building blocks for construction.
Given any ε, δ > 0, for each edge the (absolute) error on the
distance measurement and angle measurement (with respect
to the universal north) are ε and δ respectively. In other
words, for an edge e = uv the measurement length is `e

and the angle with respect to the universal north direction
is θe. The upper and lower bound on the distance between
the embedded positions E(u), E(v) are `e +ε/2 and `e −ε/2,
respectively. Similarly the angle of E(u)E(v) is bounded by
θe + δ/2 and θe − δ/2.

F

≥ π

A B

CD

E

≤
√

h2 − ε2

x x

ε

2` − ε

` − ε ∼ `

π/2 ± δ/2

≥ h = ε/ sin δ/2

≤ π/2

Figure 8: Variable.

• Truth-Setters: These are the truth-setting compo-
nents for the variables. See Figure 8. Basically we
have a fixed-length rectangle ABCD with a tilted edge

EF inside, whose length is longer than the vertical side
length of the bounding box. There are only 2 possible
embeddings for this component – one with the cen-
ter segment sloping right and one sloping left. One
in which it slopes to the left is setting the variable to
1. The right-sloping configuration corresponds to set-
ting this variable to 0. For the positive literal, the left
half of the top edge is used; the negative literal corre-
sponds to the right half. A literal has value 1 (or 0) if
its corresponding length is ` − ε (or `).

This block is realized by a graph with appropriate con-
straints on the edges. The four inner angles of the
polygon AEBCFD at vertices A, B, C, D are in be-
tween π/2−δ and π/2. The angles ∠AEB and ∠CFD
(measured counter-clockwise) are upper bounded by
π. Since the sum of all the inner angles of polygon
AEBCFD is 4π, both AEB and DFC are flat and
ABCD is a rectangle. The lengths of AD and BC are
between

√
h2 − ε2 − ε and

√
h2 − ε2. The length of

the tilted edge EF is between h and h + ε, where h =
ε/ sin δ/2. The angle of EF with the vertical line is at
most δ/2. The four horizontal edges AE, EB, DF, FC
have lengths between `− ε and `. One can verify that
indeed there are only two ways to embed this graph
so that all of the constraints are satisfied. These two
embeddings correspond to the variable being set to 0
and 1, respectively.

• Propagators and Cross-overs: These are for prop-
agating the truth value along the edges of G to the
clauses. They attach themselves to the truth-setting
components and the clauses. Cross-overs are for the
crossing edges in G. See Figure 7 (i) and Figure 7
(ii). To realize them, we restrict the angles between
all adjacent edges to be upper bounded by π/2. For
a valid embedding in the plane, all of them must be
π/2. Thus all the edges are axis-aligned.

• Bends: These are for the corners in the edges in G.
See Figure 7 (iii). The diagonals ensure that the same
truth value gets propagated around the bend.

• Clause: We need to ensure that the three variables are
not simultaneously 0, i.e. their lengths in the truth-
setting components are not simultaneously `. See Fig-
ure 7 (iv). We first set the inner angles of the polygon
in Figure 7 (iv) accordingly such that the shape is a
rectangle. Moreover, the height of the rectangle is up-
per bounded by 3`− ε. Thus, one of the input literals
must take a value 1. This is exactly the 3SAT satisfi-
ability condition.

Now with the basic building blocks we can establish the
reduction from 3SAT to our localization problem. For each
3SAT instance, we can find a localization problem such that
the localization problem has a feasible solution if and only
if the 3SAT instance is satisfiable. This shows that the lo-
calization problem with angle/distance measurements, even
with small noise, is still NP-hard.

5.2 Hardness of Embedding with Accurate Dis-
tance and Relative Angle Measurements

Here we consider the problem of embedding with exact
(or noisy) angle and distance information, but only relative

x

x = (` − ε) ∼ `

≤ π/2

≤ π/2

(` − ε) ∼ `

(` − ε) ∼ ` ≤ π/2

(` − ε) ∼ `

(` − ε)
∼ `

≤ π

(` − ε) ∼ `

(` − ε) ∼ `

(` − ε) ∼ `

(2` − 2ε) ∼
(2` − ε)

(` − ε) ∼ `

≤ π/2

(i) (ii) (iii) (iv)

Figure 7: (i) Propagator; (ii) Cross-over; (iii) Corner; (iv) Clause.

angle information. In other words, we know the magnitude
of the angle measurements but do not know the sign, thus
allowing flips; e.g., node i knows that node j is 30 degrees
from north, but does not know if it is 30 degrees clockwise or
counter-clockwise of north. We prove that this version of the
embedding problem is also hard, under the unit disk graph
assumption. We again reduce from 3SAT and use a similar
construction as in [3]. The corresponding building blocks
for the construction are illustrated in the figures below.

1 c

1 − ε

b

a

Figure 9: Basic octagon.

The construction exploits the fact that, because of the
UDG assumption, two non-neighboring nodes cannot be too
close to each other in the final embedding. As before, con-
sider the graph G described earlier that represents the logical
formula. The truth setting is reflected now as an orienta-
tion of the edges (as opposed to the width in the earlier
construction). We use a basic octagon and a chain of such
octagons to represent each edge. Notice that we only have
relative angle information; the small “twig” attached at the
boundary of the octagon can be either completely inside or
outside. Note that due to the UDG assumption, all of the
little twigs in the octagons have to be oriented in the same
direction, since two twigs cannot co-exist in an octagon; see
Figure 9 and Figure 11. The basic building blocks are:

• Truth-Setters Refer to Figure 10. There are only two
possible embeddings, if the UDG constraint is to be
respected. The arms emerging from the left correspond
to the positive literal and the arms on the right side
correspond to the negative literal. If the twigs in the
arms are pointing out of the gadget, then that literal
is set to 0.

• Propagators and Corners The basic chain of oc-
tagons is used. See Figure 11.

• Clauses The basic property of the clause gadget is
that the three incoming arms cannot all possibly be
oriented inwards (corresponding to a truth value of 0).
See Figure 11 (iii) and (iv).

• Cross-Overs When two edges in the 3SAT graph
cross, the orientations of the edges are propagated.

We again argue that the 3SAT problem is satisfiable if
and only if the localization problem with accurate distances
and relative angle information has a feasible solution.

≤ 1

> 1

Figure 10: Variable.

> 1≤ 1

≤ 1

Figure 12: Cross-Over

6. SIMULATION
We implemented our distributed weak deployment algo-

rithm to evaluate its performance, especially the conver-
gence rates, dependence on average degree, network size,
anchor density, etc. Moreover, we test the method’s robust-
ness under link variations. We focused on the weak deploy-
ment problem, implemented with Minkowski sums, since the
algorithm for the strong deployment problem uses the same
mechanism but simply a different notion of feasible regions.

6.1 Experimental Setup
We tested the algorithm on the topological level; we do

not explicitly consider issues on MAC layer, such as medium
contention, packet loss and corruption, in evaluating the al-
gorithm’s convergence behavior. Due to the iterative nature
of the algorithm, it can be easily adapted under an imper-
fect environment, as will be shown in section 6.4. The input
was generated as follows.

• Connectivity Graph: We placed n nodes uniformly ran-
domly in a squared region with size [0, 400] × [0, 400].
Then we connected nodes within a chosen distance d
of each other (simulating the communication range of
sensor nodes). For our simulation, d is chosen (de-
pending on n) such that the graph is connected.

≥ 1

≥ 1

(i) (ii) (iii) (iv)

Figure 11: (i) Chain; (ii) Corner; (iii) and (iv) Two embedding of a clause gadget.

• Noise Generation: We currently use only axis-aligned
rectangles as our feasibility regions. This is only for
the purpose of simulation; as we described earlier, the
algorithm works for arbitrary convex regions. These
axis-aligned noise rectangles are generated by the fol-
lowing scheme. We first fix the distance and angle er-
ror at ε and δ respectively. Then we use the bounding
box of the noise frustum shown in Figure 2.

6.2 Convergence Rates
Many factors can potentially affect the convergence rate.

We investigated the effect of these input parameters on the
convergence rate, measured by the number of iterations it
takes for the algorithm to converge. This evaluates roughly
the number of message exchanges per node.

1. Number of nodes We keep the average degree the same
and increases the network size. The number of itera-
tions grows with a slow linear dependence on the num-
ber of nodes of the input graph. Refer to Figure 13 (a).

2. Average degree of the nodes Increasing the average de-
gree implies increasing the number of constraints on
a node, and, not surprisingly, increasing the rate of
convergence of the regions; see Figure 13 (b).

3. Number of fixed nodes In the original definition of the
weak deployment problem, one of the nodes is fixed
to rule out global translation. However, in general,
we may have the information about the location of
more than one node. These can be incorporated in our
algorithm and as expected, the number of iterations
decreases as the number of anchor nodes increases. See
Figure 13 (c). Of course if the fixed nodes are in a
close neighborhood of each other, there would not be
significant change in the number of iterations. This is
the cause of the plateau regions in the graph.

6.3 Size of Deployment Regions
We measure the size of the (weak) deployment regions by

the area of the rectangle. We use two statistics for the area
of the regions obtained: maximum and average. We again
vary the different parameters and plot the effect on size. To
get an intuitive idea of the results, we include a snapshot of
our simulation in Figure 14.

1. Average degree of nodes As seen in Figure 13 (d), the
maximum and the average area of deployment regions
both steadily decrease as the average degree increases.
This is not surprising, since an increase in average de-
gree implies an increase in the number of edges and,

thus, the number of constraints. Hence, it is natural
for the regions to shrink in size.

2. Number of fixed nodes As before, we fix the coordi-
nates of more than one node. As expected, the regions
shrink in size as the number of fixed nodes increases;
see Figure 13 (e). As in the case of convergence rates,
there are plateau regions when the fixed nodes are in
a small vicinity of each other.

6.4 Robustness to Link Failures
One interesting thing to study is how the convergence rate

is affected when links are unstable, that is they go down at
some instant and come back up again after some time. Our
results confirm that if the joint union of all the intermediate
graphs is connected, we get very close to the solution without
any link failures. Our experiments were run as follows. We
assign a probability p > 0 to each individual link and we
start with all of the links active. At each iteration, a link
toggles between active and inactive with probability p (that
is they become inactive if they were on, and turned back
on if they are off). We study the number of iterations and
the size statistics of the regions for different probability p.
See Figure 13 (f) and Figure 13 (g). There is practically no
variation in the size statistics, i.e. maximum and average
area, showing that our method is highly robust even for a
high percentage of link failures. The number of iterations
jumps up immediately when link dynamics are introduced;
but then decreases rapidly until it becomes almost stable
with slight fluctuations for p > 0.20. It may appear odd
that the convergence rate when p is small is even slower.
The reason is that, when the graph is disconnected at some
instant, with a small p it takes longer to reconnect the graph.

6.5 Comparisons to SDP Methods
We compared our methods to the localization method for

noisy data proposed by Biswas and Ye [2]. The algorithm
in [2] uses semi-definite programming (SDP) for localization
with noisy distance measurements between the nodes. The
non-convex constraints are relaxed to yield an SDP formu-
lation. In both the SDP-based method and our methods,
upper and lower bounds are provided for the distance of
a neighboring sensor. These bounds are generated using a
multiplicative Gaussian distribution. The synthesized range
is d(1 ± |N(0, 1) ∗ f |), where d is the actual distance and
f = 0.2. The SDP algorithm, however, does not use any an-
gle information. By a comparison with SDP we show that
even a rough angle range of π/4 can help substantially in
improving the localization results.

10

20

30

40

50

60

70

0 200 400 600 800100012001400160018002000

N
o.

 o
f I

te
ra

tio
ns

No. of Nodes

Avg Degree of a Node 10

20

25

30

35

40

45

10 20 30 40 50 60 70

N
um

be
r

of
 It

er
at

io
ns

Avg Degree of Nodes

No. of Nodes = 1024

0
5

10
15
20
25
30
35
40
45
50

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 It

er
at

io
ns

No. of Fixed Nodes

No. of Nodes = 1024 Avg Degree 11.5

(a) (b) (c)

0
50

100
150
200
250
300
350
400
450
500

10 20 30 40 50 60 70A
re

a
of

 th
e

D
ep

lo
ym

en
t R

eg
io

ns

Avg Degree of Nodes

No. of Nodes = 1024

Max
Avg

0
50

100
150
200
250
300
350
400
450
500

0 10 20 30 40 50 60 70 80 90 100A
re

a
of

 th
e

D
ep

lo
ym

en
t R

eg
io

ns

No. of Fixed Nodes

No. of Nodes = 1024 Avg Degree 11.5

Max
Avg

60
80

100
120
140
160
180
200
220
240

0 20 40 60 80 100A
re

a
of

 D
ep

lo
ym

en
t R

eg
io

ns

Percent Link Failure

No. of Nodes 512 , Avg degree of a Node 11.5

Max
Avg

(d) (e) (f)

20
40
60
80

100
120
140
160
180

0 20 40 60 80 100

N
o.

 o
f I

te
ra

tio
ns

Percent Link Failure

No. of Nodes 512 , Avg degree of a Node 11.5

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

8 10 12 14 16 18 20

R
M

S
 E

rr
or

Avg Degree of Nodes

No. of Nodes = 100

SDP
WD maximum error

WD center error
SD maximum error

SD center error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

R
M

S
 E

rr
or

No of Anchor Nodes

No. of Nodes = 100

SDP
WD

(g) (h) (i)

Figure 13: (a) Number of iterations vs. number of nodes; (b) Number of iterations v.s. average degree of
nodes; (c) Number of iterations vs. number of fixed nodes; (d) Area statistics vs. average degree of nodes;
(e) Area statistics vs. number of fixed nodes; (f) Area statistics vs. percentage of link failure; (g) Number
of iterations vs. percentage of link failure; (h) and (i) Comparison of SDP with our distributed algorithms.

We compare the localization error, in particular the root-
mean-square error, in both methods. Since our algorithms
compute regions instead of actual points, we use either the
center of the deployment region or the furthest point from
the actual location as an estimate of the sensor location in
our method. The second metric gives an upper bound on
localization error. We compare the SDP result with our
weak and strong deployment regions under both error met-
rics. See Figure 13 (h); here, we used 4 anchor nodes for
the SDP method. As expected, the farthest points in the
weak deployment regions are the most erroneous. The SDP
method performs worse than our algorithm for low average
degree and gets successively better when the average degree
increases. However, our algorithm remains competitive, and
the quality of our results is not dependent on the density of
the graph.

We also note that the method proposed in [2] produces re-
sults whose quality depends significantly on the number of
anchor nodes. We show that our algorithms perform consid-
erably better, showing that having noisy angle information
in addition to noisy distances alleviates the dependence on
anchors. See Figure 13 (i).

7. CONCLUSION AND FUTURE WORK
In this paper we initiated an algorithmic study of the sen-

sor localization problem with noisy distance and angle in-
formation. Several interesting open problems remain.

Since the localization problem is NP-hard, we use con-
vex polygons to (outer) approximate the regions of uncer-
tainty. Can we bound the approximation ratio caused by
this relaxation? Little seems to be known about approxi-
mation algorithms for localization; we know only of Mosci-
broda et al. [14], which gives a polylogarithmic approxima-
tion ratio. Another natural question is to bound the con-
vergence rate of our distributed weak deployment algorithm.

Acknowledgements. We thank the anonymous reviewers and

our shepherd Xiang-Yang Li for many comments and suggestions

that improved the presentation of this paper. We thank P. Biswas

and Y. Ye for providing us the code of their algorithm for com-

parison. We thank E. Arkin, M. Bender, T-R. Hsiang, V. Pol-

ishchuk, A. Wildenberg, A. Yildirim, and other participants of

the Stony Brook algorithms group for the original discussions on

LP-based methods of localization, which led to the development

of our methods. J. Gao thanks A. Jiang for suggesting to study

the hardness of localization with noisy measurements.

(i) (ii)

Figure 14: (i) The connectivity graph; (ii) Weak deployment regions. (280 nodes, average degree is 11.7)

8. REFERENCES
[1] J. Aspnes, D. Goldenberg, and Y. R. Yang. On the

computational complexity of sensor network localization.
In Proc. 1st Internat. Workshop on Algorithmic Aspects of
Wireless Sensor Networks, pages 32–44, 2004.

[2] P. Biswas and Y. Ye. Semidefinite programming for ad hoc
wireless sensor network localization. In Proc. 3rd Internat.
Symposium on Information Processing in Sensor
Networks, pages 46–54, 2004.

[3] H. Breu and D. G. Kirkpatrick. Unit disk graph
recognition is NP-hard. Computational Geometry. Theory
and Applications, 9(1-2):3–24, 1998.

[4] J. Bruck, J. Gao, and A. Jiang. Localization and routing in
sensor networks by local angle information. In Proc. 6th
ACM Internat. Symposium on Mobile Ad Hoc Networking
and Computing, pages 181–192, 2005.

[5] M. Bǎdoiu, E. D. Demaine, M. T. Hajiaghayi, and
P. Indyk. Low-dimensional embedding with extra
information. In Proc. 20th Annual Symposium on
Computational Geometry, pages 320–329, 2004.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer-Verlag, Berlin, 1997.

[7] L. Doherty, L. E. Ghaoui, and S. J. Pister. Convex position
estimation in wireless sensor networks. In Proc. IEEE
INFOCOM, vol 3, pages 1655–1663, 2001.

[8] C. Gotsman and Y. Koren. Distributed graph layout for
sensor networks. In Proc. Internat. Symposium on Grpah
Drawing, pages 273–284, 2004.

[9] S. Guha, R. Murty, and E. G. Sirer. Sextant: a unified
node and event localization framework using non-convex
constraints. In Proc. 6th ACM Internat. Symposium on
Mobile Ad Hoc Networking and Computing, pages 205–216,
2005.

[10] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and
T. Abdelzaher. Range-free localization schemes for large
scale sensor networks. In Proc. 9th Internat. Conference on
Mobile Computing and Networking, pages 81–95, 2003.

[11] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins.
Global Positioning Systems: Theory and Practice.
Springer, 5th ed., 2001.

[12] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit disk
graph approximation. In Proc. Joint Workshop on
Foundations of Mobile Computing, pages 17–23, 2004.

[13] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust
distributed network localization with noisy range
measurements. In Proc. 2nd Internat. Conference on
Embedded Networked Sensor Systems, pages 50–61, 2004.

[14] T. Moscibroda, R. O’Dell, M. Wattenhofer, and
R. Wattenhofer. Virtual coordinates for ad hoc and sensor
networks. In Proc. Joint Workshop on Foundations of
Mobile Computing, pages 8–16, 2004.

[15] D. Niculescu and B. Nath. Ad hoc positioning system
(APS). In Proc. IEEE GLOBECOM, pages 2926–2931,
2001.

[16] D. Niculescu and B. Nath. Ad hoc positioning system
(APS) using AOA. In Proc. IEEE INFOCOM, vol 22(1),
pages 1734–1743, 2003.

[17] D. Niculescu and B. Nath. Error characteristics of ad hoc
positioning systems (APS). In Proc. 5th ACM Internat.
Symposium on Mobile Ad Hoc Networking and Computing,
pages 20–30, 2004.

[18] R. O’Dell and R. Wattenhofer. Theoretical aspects of
connectivity-based multi-hop positioning. In Theoretical
Computer Science, 344: 47–68, 2005.

[19] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and
S. Teller. Mobile-assisted localization in wireless sensor
networks. In Proc. INFOCOM, 2005.

[20] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan.
The cricket location-support system. In Proc. 6th ACM
Annual Internat. Conference on Mobile Computing and
Networking, pages 32–43, 2000.

[21] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica.
Geographic routing without location information. In Proc.
9th ACM Internat. Conference on Mobile Computing and
Networking, pages 96–108, 2003.

[22] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic
fine-grained localization in ad-hoc networks of sensors. In
Proc. 7th ACM Internat. Conference on Mobile Computing
and Networking, pages 166–179, 2001.

[23] A. Savvides, H. Park, and M. Srivastava. The n-hop
multilateration primitive for node localization problems.
ACM Mobile Networks and Applications, 8(4):443–451,
2003.

[24] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz.
Localization from mere connectivity. In Proc. 4th ACM
Internat. Symposium on Mobile Ad Hoc Networking and
Computing, pages 201–212, 2003.

[25] A. M.-C. So and Y. Ye. Theory of semidefinite
programming for sensor network localization. In Proc. 16th
ACM-SIAM Symposium on Discrete Algorithms, pages
405–414, 2005.

