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Abstract: We introduce the snowblower problem (SBP), a new optimization prob-
lem that is closely related to milling problems and to some material-handling prob-
lems. The objective in the SBP is to compute a short tour for the snowblower to
follow to remove all the snow from a domain (driveway, sidewalk, etc.). When a
snowblower ¡¡¡¡¡¡¡ abstract.tex passes over each region along the tour, it displaces
snow into a nearby region. The constraint is that if the snow is piled too high, then
the snowblower cannot clear the pile.

We give an algorithmic study of the SBP. We show that in general, the prob-
lem is NP-complete, and we present polynomial-time approximation algorithms for
removing snow under various assumptions about the operation of the snowblower.
Most commercially-available snowblowers allow the user to control the direction in
which the snow is thrown. We differentiate between the cases in which the snow
can be thrown in any direction, in any direction except backwards, and only to the
right. For all cases, we give constant-factor approximation algorithms; the constants
increase as the throw direction becomes more restricted.

Our results are also applicable to robotic vacuuming (or lawnmowing) with
bounded capacity dust bin and to some versions of material-handling problems,
in which the goal is to rearrange cartons on the floor of a warehouse. =======
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right. For all cases, we give constant-factor approximation algorithms; the constants
increase as the throw direction becomes more restricted.

Our results are also applicable to robotic vacuuming (or lawnmowing) with
bounded capacity dust bin and to some versions of material-handling problems,
in which the goal is to rearrange cartons on the floor of a warehouse. ¿¿¿¿¿¿¿ 1.9

1 Introduction

During a recent major snowstorm in the northeastern USA, one of the
authors used a snowblower to clear an expansive driveway. A snowblower is a
“material shifting machine”, lifting material from one place, and depositing it
nearby The goal is to dispose of all the snow outside the driveway. There is a
skill in making sure that the deposited piles of snow do not grow higher than
the maximum depth capacity of the snowblower. This experience crystallized
into an algorithmic question we have called the Snowblower Problem (SBP):
How does one optimally use a snowblower to clear a given polygonal

region?

The SBP shows up also in other contexts: Consider a mobile robot that
is equipped with a device that allows it to pick up a carton and then place
the carton down again, possibly on a stack of cartons, in a location just next
to it; with each such operation, the robot shifts a unit of “material”. The
SBP models the problem in which the robot is to move a set of boxes to a
specified destination in the most efficient manner, subject to the constraint
that it cannot stack boxes higher than a capacity bound.

In a third motivating application, consider a robotic lawnmower or vacuum
cleaner that has a catch basin for the clippings, leaves, dust, or other debris.
The goal is to remove the debris from a region, with the constraint that the
catch basin must be emptied (e.g., in the compost pile) whenever it gets full.

The SBP is related to other problems on milling, vehicle routing, and trav-
eling salesman tours, but there are two important new features: (a) material
must be moved (snow must be thrown), and (b) material may not pile up too
high.

While the SBP arises naturally in these other application domains, for the
rest of the paper, we use the terminology of snow removal.

The objective of the SBP is to find the shortest snowblower tour that clears
a domain P , assumed to be initially covered with snow at uniform depth 1.
An important parameter of the problem is the maximum snow depth D > 1
through which the snowblower can move. At all times no point of P should
have snow of greater depth than D. The snow is to be moved to points outside
of P . We assume that each point outside P is able to receive arbitrarily much
snow (i.e., that the driveway is surrounded by a “cliff” over which we can toss
as much snow as we want).1

1 The “cliff” assumption accurately models the capacitated vacuum cleaner prob-
lem for which there is a (central) “dustpan vac” in the baseboard, where a robotic
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Snowblowers offer the user the ability to control the direction in which
the snow is thrown. Some throw directions are preferable over others; e.g.,
throwing the snow back into the user’s face is undesirable. However, it can be
cumbersome to change the throw direction too frequently during the course
of clearing; also, some variants require that the throw direction is fixed. Thus,
we consider three throw models. In the default model throwing the snow back-
wards is allowed. In the adjustable-throw model the snow can be thrown only
to the left, right, or forward. In the fixed-throw model the snow is always
thrown to the right. Even though it seems silly to allow the throw direction to
be back into one’s face, the default model is the starting point for the analysis
of other models and is equivalent to the vacuum cleaner problem (discussed
later).

Results. In this paper we introduce the snowblower problem, model its
variants, and give the first algorithmic results for its solution. We show that
the SBP is NP-complete for multiply connected domains P . Our main re-
sults are constant-factor approximation algorithms for each of the three throw
models, assuming D ≥ 2; refer to Table 1. The approximation ratio of our al-
gorithms increases as the throw direction becomes more restricted. We give
extensions for clearing polygons with holes, both where the holes are obstacles
and cliffs. Then we discuss how to adapt our algorithms for clearing nonrec-
tilinear polygons and polygons with uneven initial distributions of snow. We
conclude by giving a succinct representation of the snowblower tour, in which
the tour specification is polynomial in the complexity of the input polygon.

Default model, Thm. 2

D 2 or 3 any D ≥ 4

Apx. 6 8

Adjustable throw, Thm. 3

D any D ≥ 2

Apx. 4 + 3D/bD/2c

Fixed throw, Thm. 4

D any D ≥ 2

Apx. 34 + 24D/bD/2c

Table 1: Approximation factors of our algorithms.

Related Work. The SBP is closely related to milling and lawn-mowing
problems, which have been studied extensively in the NC-machining and
computational-geometry literatures; see e.g., [4,5,11]. The SBP is also closely
related to material-handling problems, in which the goal is to rearrange a set
of objects (e.g., cartons) within a storage facility; see [8,9,14]. The SBP may
be considered as an intermediate point between the TSP/lawnmowing/milling
problems and material-handling problems. Indeed, for D = ∞, the SBP is that
of optimal milling. Unlike most material-handling problems, the SBP formu-
lation allows the material (snow) to pile up on a single pixel of the domain,
and it is this compressibility of the material that distinguishes the SBP from
previously studied material-handling problems. With TSP and related prob-

vacuum cleaner may empty its load [1] and applies also to urban snow removal
using snow melters [2] or disposing off the snow into a river.
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lems, every pixel only is visited a constant number of times, whereas with
material-handling problems, pixels may have to be visited a number of times
exponential in the input size. For this reason, material-handling problems are
not even known to be in NP [8, 9], in contrast with the SBP. Note that in
material handling problems the objective is to minimize workload (distance
traveled while loaded), while in the SBP (as in the milling/mowing problems)
the objective is to minimize total travel distance (loaded or not).

The SBP is also related to the earth-mover’s distance (EMD), which is
the minimum amount of work needed to rearrange one distribution (of earth,
snow, etc.) to another; see [7]. In the EMD literature, the question is explored
mostly from an existential point of view, rather than planning the actual pro-
cess of rearrangement. In the SBP, we are interested in optimizing the length
of the tour, and we do not necessarily know in advance the final distribution
of the snow after it has been removed from P .

The title of this paper coincides with that of [10] but the problems con-
sidered appear to be totally unrelated.

Notation. The input is a polygonal domain, P . Since we are mainly con-
cerned with proving constant factor approximation algorithms, it suffices to
consider distances measured according to ¡¡¡¡¡¡¡ intro.tex the L1 metric. We
consider the snowblower to be an (axis-parallel) unit square that moves hor-
izontally or vertically by unit steps. This justifies our assumption, in most
of our discussion, that P is an integral-orthogonal simple polygon, which is
comprised of a union of pixels – (closed) unit squares with disjoint interiors
and integral coordinates. In Section 5 we remark how our methods extend
to general (non-rectilinear) regions. ======= the L1 metric. We consider
the snowblower to be an (axis-parallel) unit square that moves horizontally
or vertically by unit steps. This justifies our assumption, in most of our dis-
cussion, that P is an integral-orthogonal simple polygon, which is comprised
of a union of pixels – (closed) unit squares with disjoint interiors and inte-
gral coordinates. In Section 5 we remark how our methods extend to general
(nonrectilinear) regions. ¿¿¿¿¿¿¿ 1.69

We say that two pixels are adjacent or neighbors if they share a side; the
degree of a pixel is the number of its neighbors. For a region R ⊆ P (subset
of pixels), let GR denote the dual graph of R, having a vertex in the center
of each pixel of R and edges between adjacent pixels. A pixel of degree less
than four is a boundary pixel. For a boundary pixel, a side that is also on the
boundary of P is called a boundary side. The set of boundary sides, ∂P , forms
the boundary of P . We assume that the elements of ∂P are ordered as they
are encountered when the boundary of P is traversed counterclockwise.

An articulation vertex of a graph G is a vertex whose removal disconnects
G. We assume that GP has no articulation vertices. (Our algorithms can
be adapted to regions having articulation vertices, at a possible increase in
approximation ratio.)
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Algorithms Overview. Our algorithms proceed by clearing the polygon
Voronoi-cell-by-Voronoi-cell, starting from the Voronoi cell of the garage g —
the pixel on the boundary of P at which the snowblower tour starts and ends.
The order of the boundary sides in ∂P provides a natural order in which to
clear the cells. We observe that the Voronoi cell of each boundary side is a
tree of one of two special types, which we call lines and combs. We show how
to clear the trees efficiently in each of the throw models. We prove that our
algorithms give constant-factor approximations by charging the lengths of the
tours produced by the algorithms to two lower bounds, described in the next
section.

2 Preliminaries

Voronoi Decomposition. For a pixel p ∈ P let V (p) denote the element
of ∂P , closest to p. In case of ties, the tie-breaking rule (see below) is applied.
Inspired by computational-geometry terminology, we call V (p) the Voronoi
side of p. We let δ(p) denote the length of the path from p to the pixel having
V (p) as a side. For a boundary side e ∈ ∂P we let Voronoi(e) denote the
(possibly, empty) set of pixels, having e is the Voronoi side: Voronoi(e) =
{p ∈ P |V (p) = e}. We call Voronoi(e) the Voronoi cell of e. The Voronoi cells
of the elements of ∂P form a partition of P , called the Voronoi decomposition
of P .

A set of pixels L whose dual graph GL is a straight path or a path with
one bend, is called a line. Each line L has a root pixel p, which corresponds
to one of the two leaves of GL, and a base, e ∈ ∂P , which is a side of p.

A (horizontal) comb C is a union of pixels consisting of a set of vertically
adjacent (horizontal) rows of pixels, with all of the rightmost pixels (or all of
the leftmost pixels) in a common column. (A vertical comb is defined similarly;
however, by our tie breaking rules, we need consider only horizontal combs.) A
comb is a special type of histogram polygon [6]. The common vertical column
of rightmost/leftmost pixels is called the handle of comb C, and each of the
rows is called a tooth. A leftward comb has its teeth extending leftwards from
the handle; a rightward comb is defined similarly. The pixel of a tooth that is
furthest from the handle is the tip of the tooth. The topmost row is the wisdom
tooth of the comb. The root pixel p of the comb is either the bottommost or
topmost pixel of the handle, and its bottom or top side, e ∈ ∂P , is the base
of the comb. See Fig. 1, left. The union of a leftward comb and a rightward
comb having a common root pixel is called a double-sided comb.

Tie Breaking. Our rules for finding V (p) for a pixel p that is equidistant
between two or more boundaries is based on the direction of the shortest path
from p to V (p); horizontal edges are preferred to vertical, going down has
higher priority than going up, going to the right — than going left. In fact,
any tie-breaking rule can be applied as long as it is applied consistently. The
particular choice of the rule only affects the orientation of the combs.
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Fig. 1: Left: a comb. The base is bold. The pixels in the handle are marked with
asterisks, the pixels in the wisdom tooth are marked with bullets. Right: Voronoi
cells. The sides of ∂P are numbered 1 . . . 28 counterclockwise. The pixels in the
Voronoi cell of a side are marked with the corresponding number. Voronoi cell of
side 3 is a comb; Voronoi cells of sides 6, 11, 17, 25, 28 are empty; cells of sides 1,
7, 10, 18, 24 are lines, comprised of just one pixel; cells of the other edges are lines
with more than one pixel.

Voronoi Cell Structure. An analysis of the structure of the Voronoi
partition under our tie breaking rules gives:

Lemma 1. For a side e ∈ ∂P , the Voronoi cell of e is either a line (whose
dual graph is a straight path), or a comb, or a double-sided comb. By our
tie-breaking rule, the combs may appear only as the Voronoi cells of horizon-
tal edges. The double-sided combs may appear only as the Voronoi cells of
(horizontal) edges of length 1.

Let p be a boundary pixel of P , let e ∈ ∂P be the side of p such that
p ∈ Voronoi(e). We denote Voronoi(e) by T (p) or T (e), indicating that it is a
unique tree (a line or a comb) that has p as the root and e as the base.

Lower Bounds. We exhibit two lower bounds on the cost of an optimal
tour, one based on the number of pixels and the other on the Voronoi de-
composition of the domain. At any time let s(R) be the set of pixels of R
covered with snow and also, abusing notation, the number on these pixels.
Let d(R) = 1

D

∑

p∈s(R) δ(p) .

Lemma 2. Let R be a subset of P with the snowblower starting from a pixel
outside R. Then s(R) and d(R) are lower bounds on the cost to clear R.

Proof. For the snow lower bound, observe that region R cannot be cleared
with fewer than s(R) snowblower moves because each pixel of s(R) needs to
be visited.

For the distance lower bound, observe that, in order to clear the snow
initially residing on a pixel p, the snowblower has to make at least δ(p) moves.
When the snow from p is carried to the boundary of P and thrown away, the
snow from at most D − 1 other pixels can be thrown away simultaneously.
Thus, a region R cannot be cleared with fewer than d(R) moves. ut
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NP-Completeness. It is known [12,13] that the Hamiltonian path problem
in cubic grid graphs is NP-complete. The problem can be straightforwardly
reduced to SBP. If G is a cubic grid graph, construct an (integral orthohedral)
domain P such that G = GP . Since GP is cubic, each pixel p ∈ P is a boundary
pixel, thus, the snowblower can throw the snow away from p upon entering
it. Hence, SBP on P is equivalent to TSP on G, which has optimum less
than n + 1 iff G is Hamiltonian (where n is the number of nodes in G). The
reduction works for any D ≥ 1.

The algorithms proposed in this paper show that any domain can be
cleared using a set of moves of cardinality polynomial in the number of pixels
in the domain, assuming D ≥ 2. Thus, we obtain

Theorem 1. If D ≥ 2, the SBP is NP-complete, both in the default model
and in the adjustable throw model, for inputs that are domains with holes.

3 Approximation Algorithm for the Default

Model

In this section we give an 8-approximation algorithm for the case when the
snow can be thrown in all four directions. We first show how to clear a line
efficiently with the operation called line-clearing. We then introduce another
operation, the brush, and show how to clear a comb efficiently with a sequence
of line-clearings and brushes. Finally, we splice the subtours through each line
and comb into a larger tour, clearing the entire domain. The algorithm for the
default model, developed in this section, serves as a basis for the algorithms
in the other models.

Clearing a Line. Let L be a line of pixels; let p and e be its root and the
base. We are interested in clearing lines for which the base is a boundary side,
i.e., e ∈ ∂P . Let ` = s(L); let the first J pixels of L counting from p be clear.
We assume that p is already clear (J > 0); the snow from it was thrown away
through the side e as the snowblower first entered pixel p. Let L|J denote L
with the J pixels clear; let ` − J = kD + r.2 Denote by (L|J)D the first kD
pixels of L|J covered with snow; denote by Lr the last r pixels on L|J . The
idea of decomposing L|J into (L|J)D and Lr is that the snow from (L|J)D is
thrown away with k “fully-loaded” throws, and the snow from Lr is thrown
away with (at most one) additional “under-loaded” throw.

We clear line L starting at p by moving all the snow through the base e
and returning back to p. The basic clearing operation is a back throw. In a
back throw the snowblower, entering a pixel u from pixel v, throws u’s snow
backward onto v. Starting from p, the snowblower moves along L away from

2 For ease of presentation, we adapt the following convention. For d ∈ {D, bD/2c}
and an integer w we understand the equality w = ad + b as follows: b and a are
the remainder and the quotient, respectively, of w divided by d.
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p until either the snowblower moves through D pixels covered with snow or
the snowblower reaches the other end of L; this is called the forward pass.
Next, the snowblower makes a U-turn and moves back to p, pushing all the
snow in front of it and over e; this is called the backward pass. A forward and
backward pass that clears exactly D units of snow is called a D-full pass.

Lemma 3. For arbitrary D ≥ 4 the line-clearing cost is at most 2s(L \ p) +
4d(L|J). For D = 2, 3 the line-clearing cost is at most 2s(L \ p) + 2d(L|J). If
every pass is D-full, the cost is 4d(L|J) for D ≥ 4 and 2d(L|J) for D = 2, 3.

Proof. The clearing cost is c(L|J) = c((L|J)D) + c(Lr) =
∑k

i=1 2(J − 1 +
iD) + 2(` − 1) = 2kJ + Dk(k + 1) − 2k + 2(` − 1). The snow lower bound of
L \ p is s(L \ p) = ` − 1. The distance lower bound of (L|J)D is d((L|J)D) =
1
D

∑kD
i=1(J + i) = kJ + k(kD + 1)/2.

Thus,

c(L|J) = 2s(L \ p) +

(

2 +
D − 3

J + (Dk + 1)/2

)

d((L|J)D)

If every pass is a D-full pass, then c(Lr) = 0. Therefore, c(L|J) = c((L|J)D) =
(

2 + D−3
J+(Dk+1)/2

)

d((L|J)D). ut

Clearing a Comb. Let C be a comb with the root p, base e, and handle H
of length H. Let `1 . . . `H be the lengths of the teeth of the comb. Since we are
interested in clearing combs for which the base e is a boundary side (e ∈ ∂P ),
we assume that pixel p is already clear — the snow from it was thrown away
through e as the snowblower first entered p.

Our strategy for clearing C is as follows. While there exists a line L ⊂ C
rooted at p, such that s(L) ≥ D, we perform as many D-full passes on L as
we can. When no such L remains, we call the comb brush-ready and we use
another clearing operation, the brush, to finish the clearing.

A brush, essentially, is a “capacitated” depth-first-search. Among the teeth
of a brush-ready comb that are not fully cleared, let t be the tooth, furthest
from the base. In a brush, we move the snowblower from p through the handle,
turn into t, reach its tip, U-turn, come back to the handle (pushing the pile
of snow), turn onto the handle, move by the handle back towards p until we
reach the next not fully cleared tooth, turn onto the tooth, and so on. We
continue clearing the teeth one-by-one in this manner until D units of snow
have been moved (or all the snow on the comb has been moved). Then we
push the snow to p through the handle and across e. This tour is called a
brush (Fig. 2).

Lemma 4. For arbitrary D ≥ 4 the comb C can be cleared at a cost of at most
4s(C \ p) + 4d(C \ p) (at most 4s(C \ p) + 2d(C \ p) for D = 2, 3).
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Fig. 2: Left: a brush-ready comb. The snow is shown in light gray. Center: a brush,
D = 4; the part of the brush, traveling through the handle, is bold. Right: the comb
after the brush.

Proof. If s(C \ p) < D, then the cost of clearing is just 2s(C \ p), so suppose,
s(C \ p) ≥ D. Let B be the number of brushes used; let B be the set of pixels
cleared by the brushes. For b = 1 . . . B let tb and t′b be the first and the last
tooth visited during the bth brush. For b ∈ {1 . . . B − 1} the bth brush enters
at least 2 teeth, so tb > t′b ≥ tb+1.

Each brush can be decomposed into two parts: the part, traveling through
the teeth, and the part, traveling through the handle (Fig. 2). Since each tooth
is visited during at most 2 brushes, the length of the first part is at most 4
times the size of all teeth, that is, 4s(C \ H). The total length of the second

part of all brushes is 2
∑B

b=1(tb − 1). Thus, the cost of the “brushing” is

c(B) ≤ 2

B
∑

b=1

(tb − 1) + 4s(C \ H) ≤ 2

B
∑

b=2

tb + 4s(C \ p) − 2 (1)

since t1 ≤ H and H ≥ 2 (for otherwise C is a line).
There are exactly D pixels cleared during each brush b ∈ {0 . . . B − 1},

and each of these pixels is at distance at least tb′ from the base of the comb.
Thus, the distance lower bound of the pixels, cleared during brush b, is at
least tb′ . Consequently, the distance lower bound of B

d(B) ≥
B
∑

b=1

tb′ ≥
B−1
∑

b=1

tb+1 =
B
∑

b=2

tb (2)

From (1) and (2), B can be cleared at a cost of at most 2d(B) + 4s(C \ p).
Let P ⊆ C be the pixels, cleared during the line-clearings. By our strategy,

during each line-clearing, every pass is D-full; thus, by Lemma 3, P can be
cleared at a cost of at most 4d(P) (or 2d(P) if D = 2, 3). Since P and B are
snow-disjoint and P ∪ B = C \ p, the lemma follows. ut

The above analysis is also valid in the case when the handle is initially clear.
This is the case when the second side of a double-sided comb is being cleared.
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Thus, a double-sided comb can be cleared within the same bounds on the cost
of clearing.

Clearing the Domain. Now that we have defined the operations which
allow us to clear efficiently lines and combs, we are ready to present the
algorithm for clearing the domain.

Theorem 2. For arbitrary D ≥ 4 (resp., D = 2, 3) an 8-approximate (resp.,
6-approximate) tour can be found in polynomial time.

Proof. Let p1, . . . , pM be the boundary pixels of P as they are encountered
when going around the boundary of P counterclockwise starting from g = p1;
let e1, . . . , eM ∈ ∂P be the boundary sides of p1, . . . , pM such that ei =
V e(pi), i = 1 . . . M . The polygon P can be decomposed into disjoint trees
T (p1), . . . , T (pM ) = T (e1), . . . , T (eM ) with the bases e1 . . . , eM , where each
tree T (ei) is either a line or a comb.

Our algorithm clears P tree-by-tree starting with T (e1) = T (g). By Lem-
mas 3 and 4, for i = 1 . . . M , the tree T (pi) \ pi can be cleared at a cost of at
most 4s(T (pi)\pi)+4d(T (pi)\pi) starting from pi and returning to pi. Since
⋃M

1 T (pi) \ pi = P \ {p1 . . . pM}, the interior of P can be cleared at a cost
of at most c(P \ {p1 . . . pM}) = 4s(P \ {p1 . . . pM}) + 4d(P \ {p1 . . . pM}) ≤
4s(P \g)+4d(P \g)−4M +4. Finally, the tours clearing the interior of P can
be spliced into a tour, clearing P at a cost of at most 2M . Since the optimum
is at least s(P \ g) and is at least d(P \ g), the theorem follows. ut

4 Other Models

In this section we give approximation algorithms for the case when the
throw direction is restricted. Specifically, we first consider the adjustable throw
direction formulation. This is a convenient case for the snowblower operator
who does not want the snow thrown in his face. We then consider the fixed
throw direction model, which assumes that the snow is always thrown to the
right.

We remark that the low approximation factors of the algorithms for the
default model, presented in the previous section, were due to a very conserva-
tive clearing: the snow from every pixel p ∈ P was thrown through the Voronoi
side V (p). Unfortunately, it seems hard to preserve this appealing property if
throwing back is forbidden. The reason is that the comb in the Voronoi cell
Voronoi(e) of a boundary side e ∈ ∂P often has a “staircase”-shaped bound-
ary; clearing the first “stair” in the staircase cannot be done without throwing
the snow onto a pixel of Voronoi(e′), where e′ 6= e is another boundary side.
That’s why the approximation factors of the algorithms in this section are
higher than those in the previous one.
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Adjustable Throw Direction

In the adjustable-throw model the snow cannot be thrown backward but
can be thrown in the three other directions. To give a constant-factor ap-
proximation algorithm for this case, we show how to emulate line-clearings
and brushes avoiding back throws (Fig. 3). The approximation ratios increase
slightly in comparison with the default model.
Line-clearing. We can emulate a (half of a) pass by a sequence of moves,
each with throwing the snow to the left, forward or to the right (Fig. 3, left
and center). Thus, the line-clearing may be executed in the same way as it
was done if the back throws were allowed. The only difference is that now the
snow is moved to the base when the snow from only bD/2c pixels (as opposed
to D pixels) of the line is gathered.

Lemma 5. The line-clearing cost is at most 3D/bD/2cd(L|J) + 2s(L \ p). If
every pass is bD/2c-full, the cost is 3D/bD/2cd(L|J).

Proof. Let `−J = k′ bD/2c+r′. Let (L|J)bD/2c be the first k′bD/2c pixels of
L|J , let Lr′ be its last r′ pixels. Then the cost of the clearing of L|J is c(L|J) =

c((L|J)bD/2c)+c(Lr′) =
∑k′

i=1 2(J+ibD/2c)+2` = 2k′J+bD/2ck′(k′+1)+2`.
The lower bounds are given by s(L \ p) = ` − 1 and

d((L|J)bD

2
c) =

1

D

k′bD

2
c

∑

i=1

(J + i) =
bD

2 c

D

[

k′J +
k′(k′bD

2 c + 1)

2

]

(3)

Thus,

c(L|J) ≤
D

bD
2 c



2 +
2 +

⌊

D
2

⌋

k′ − k′

k′J +
bD

2 c
2 k′2 + k′

2



 d(L \ p) + 2s(L \ p) ut

Brush. Brush also does not change too much from the default case. The
difference is the same as with the line-clearing: now, instead of clearing D
pixels with a brush, we prepare to clear only bD/2c pixels (Fig. 3, right).
Consequently, the definition of a brush-ready comb is changed — now we
require that there is less than bD/2c pixels covered with snow on each tooth
of such a comb. Observe that together with each unit of snow, the snow from
at most 1 other pixel is moved — thus (although the brush may go outside
the comb, as, e.g., in Fig. 3), the brush is feasible.

Lemma 6. A comb can be cleared at a cost of 3D/bD/2cd(C \ p) + 4s(C \ p).

Proof. In comparison with the default model (Lemma 4) several observations
are in place. The number of brushes may go up; we still denote it by B. The
cost of the brushes 1 . . . B − 1 does not change. If the Bth brush has to enter
the first tooth, there may be 2 more moves needed to return to the root of
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Fig. 3: Emulating line-clearing and brush. The (possible) snow locations are in light
gray; s is the snowblower. Left: forward and backward passes in the default model;
there are D units of snow on the checked pixel. Center: the passes emulation; there is
(at most) 2bD/2c units of snow on the checked pixel. Right: the snow to be cleared
during a brush is in light gray; there are bD/2c light gray pixels.

the comb (see Fig. 3, right); hence, the total cost of the brushing (1) may go
up by 2. The distance lower bound (2) goes down by D/bD/2c. The rest of
the proof is identical to the proof of Lemma 4 (with Lemma 5 used in place
of Lemma 3). ut

Observe that in fact the snow can be removed from more than bD/2c pixels
during a brush; we just ignore it for now in our analysis. Note that a double-
sided comb can also be cleared in the described way.
Clearing the Domain. As in the default case (Theorem 2),

Theorem 3. A (4+3D/bD/2c)-approximate tour can be found in polynomial
time.

Comment on the Parity of D. We remark that if D is even, the cost of the
clearing is the same as it would be if the snowblower were able to move through
snow of depth D + 1 (the slight increase of 6/(D − 1) in the approximation
factor would be due to the decrease of the distance lower bound).

Fixed Throw Direction

In reality, changing the throw direction requires some effort. In particular,
a snow plow does not change the direction of snow displacement at all. In
this section we consider the fixed throw direction model, i.e., the case of the
snowblower which can only throw the snow to the right. We exploit the same
idea as in the previous subsection — reducing the problem in the fixed throw
direction model to the problem in the default model. All we need is to show
how to emulate line-clearing and brush.

In what follows we retain the notation from the previous section.

Lemma 7. The line-clearing cost is at most 24D/bD/2cd(L|J) + 25s(L \ p).
If every pass is bD/2c-full, the cost is 24D/bD/2cd(L|J).
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Proof. We first consider clearing a line whose dual graph is embedded as a
single straight line segment and whose base is perpendicular to the segment;
we describe the line-clearing, assuming that the line is vertical. Next, we
extend the solution to the case when the base is parallel to the edges of
the dual graph; this can only be a horizontal line — the first tooth in a
(double-)comb. Finally, we consider clearing an L-shaped line; this can only
by a tooth together with the (part of the) handle.

A Line L with GL⊥e. As in the adjustable-throw case (see Fig. 3, left and
center), to clear L we will need to use the pixels to the right of L to throw the
snow onto. Let p′ be the boundary pixel, following p counterclockwise around
the boundary of P . Before the line-clearing is begun, it will be convenient
to have p′ clear. Thus, the first thing we do upon entering L (through p) is
clearing p′. Together with returning the snowblower to p it takes 2 or 4 moves
(Fig. 4, left); we call these moves the double-base setup.

e
s
-

e
s
-
¾
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s
¥

¥

¥

¥

¥

¥

s
¥

¥

¥

¥

¥

¥

Fig. 4: Left: the double-base setup. Right: before the forward pass the snow below
the snowblower is cleared on both lines.

Then, the following invariant is maintained during line-clearing. If the
snowblower is at a pixel q ∈ L before starting the forward pass, all pixels on
L from p to q are clear, along with the pixels to the right of them (Fig. 4, right).
The invariant holds in the beginning of the line-clearing and our line-clearing
strategy respects it.

Each back throw is emulated with 5 moves (Fig. 5, left). After moving up
by bD/2c pixels (and thus, gathering 2bD/2c units of snow on these bD/2c
pixels), the snowblower U-turns and moves towards p “pushing” the snow in
front of it; a push is emulated with 11 moves (Fig. 6).

The above observations already show that the cost of line-clearing increases
only by a multiplicative constant in comparison with the adjustable-throw
case. A more careful look at the Figs. 5, 6 reveals that: (1) in the push emu-
lation the first two moves are the opposites of the last two, thus, all 4 moves
may be omitted – consequently, a push may be emulated by a sequence of
only 7 moves; (2) if the boundary side, following e, is vertical, the last push,
throwing the snow away from P , may require 9 moves (Fig. 5, right); and,
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(3) when emulating the last back throw in a forward pass, the last 2 of the 5
moves (the move up and the move to the right in Fig. 5, left) can be omitted
– indeed, during the push emulation, the snowblower may as well start to the
right of the snow (see Fig. 6). Thus, a line L|J can be cleared at a cost of

c(L|J) ≤ 4 +
∑k′

i=1

(

J − 1 + (i − 1)
⌊

D
2

⌋

+ 5
⌊

D
2

⌋

+ 7(J + i
⌊

D
2

⌋

− 1)
)

+J +
5r′ + 7(` − 1).
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Fig. 5: Left: emulating back throw. Right: pushing the 2 bD/2c units of snow away
from P and returning the snowblower to p may require 9 moves.
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Fig. 6: Emulating pushing the snow in front of the snowblower.

A Line L with GL||e. Consider a horizontal line, extending to the left of the
base; such a line may represent the first tooth of a comb. The double-base
can be cleared with 8 or 12 moves, the root can be cleared with 3 moves, left)
instead of 9 moves; the rest of the clearing does not change. Consider now a
horizontal line extending to the right of the base; such a line may appear as
the first tooth in a double-sided comb. The double-base for such a line can be
cleared with 3 moves; the rest of the clearing is the same as for the vertical
line.

L-shaped Line. An L-shaped line L consists of a vertical and a horizontal
segment. Each of the segments can be cleared as described above.

Thus, any line L|J can be cleared at a cost of at most c(L|J) ≤ 12 +
∑k′

i=1

(

J − 1 + (i − 1)
⌊

D
2

⌋

+ 5
⌊

D
2

⌋

+ 7(J + i
⌊

D
2

⌋

− 1)
)

+ J + 5r′ + 7(` − 1).
Since the snow and distance (3) lower bounds do not change, the lemma
follows. ut

Lemma 8. A comb can be cleared at a cost of 34s(C \ p) + 24D/bD/2cd(C \ p).
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Proof. Brush in the fixed throw direction model can be described easily using
analogy with: a) brush in default and adjustable-throw models and b) line-
clearing in fixed-throw model. As in the adjustable-throw model, we prepare
to clear bD/2c pixels during each brush. Same as with line-clearing, we setup
the double-base for the comb with at most 12 moves; also, 9 moves per brush
may be needed to push the snow away from P through the base. Back throw
and push can be emulated with 5 and 7 moves (Fig. 5, left and Fig. 6). Thus,
if the cost of a brush (1) in the default model was, say, c, the cost of the brush
in the fixed-throw model is at most 7c + 9. Since any brush starts with the
double-base setup, c ≥ 6; this, in turn, implies 7c + 9 ≤ (51/6)c. Hence, the
cost of clearing B increases by at most a factor of 51/6.

By Lemma 7, the cost of clearing P, c(P) ≤ 24D/bD/2cd(P). The snow
and distance lower bounds do not change in comparison with the adjustable-
throw case. The lemma now follows from simple arithmetic. ut

As in the default and adjustable-throw models (Theorems 2, 3),

Theorem 4. A (34+ 24D
bD/2c

)-approximate tour can be found in polynomial time.

5 Extensions

Polygons with Holes. Our methods extend to the case in which P is a
polygonal domain with holes. There are two natural ways that holes may arise
in the model.

First, the holes may represent obstacles (e.g., walls of buildings that border
the driveway). No snow can be thrown onto such holes; the holes’ boundaries
serve as walls for the motion of the snowblower and for the deposition of snow.
Our algorithm for the default model extends immediately to this variation.
The SBP in restricted-throw models, however, may become infeasible.

In the second variation, the holes’ boundaries are assumed to be the same
“cliffs” as the polygon’s outer boundary. It is in fact this version of the problem
that we proved to be NP-complete. With some modifications our algorithms
work for this variation as well; see the full paper for details.

Nonrectilinear Polygonal Domains. If P is rectilinear, but not integral,
we proceed as in [4]: first, the boundary of P is traversed once, and then our
algorithms are applied to the remaining part, P ′, of the domain. Every time
the snow is thrown away from P ′, a certain length (which depends on the throw
model) may need to be added to the cost of the tour; thus, the approximation
factors of our algorithms may increase by an additive constant.

We can also extend our methods to general nonrectilinear domains. Since
the snowblower is not allowed to move outside the domain, care must be
taken about specifying which portion of the domain is actually clearable.
This portion can be found by traversing the boundary of the domain; then,
the accessible portion can be cleared as described above.
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The Vacuum Cleaner Problem. Consider the following problem. The
floor — a polygonal domain, possibly with holes — is covered with dust and
debris. The house is equipped with a central vacuum system, and certain
places on the boundary of the floor (the baseboard) are connected to the
“dustpan vac” — a dust dump location of infinite capacity [1]. The robotic
vacuum cleaner has a dust/debris capacity D and must be emptied to a dump
location whenever full. The described problem is equivalent to the SBP in
default throw model, and actually provided the motivation to study the SBP
with throwing backwards allowed.

Nonuniform Depth of Snow. Our algorithms generalize easily to the case
in which some pixels of the domain initially contain more than one unit of
snow. For a problem instance to be feasible it is required that there is less
than D (less than bD/2c in restricted-throw direction models) units of snow
on each pixel. The approximation ratios in this case depend (linearly) on D
(or, in general, on the ratio of D to the minimum initial depth of snow on P ).

Capacitated Disposal Region. If instead of “cliffs” at the boundary of P ,
there is a finite capacity (maximum depth) associated with each point in the
complement of P , the SBP more accurately models some material handling
problems, but also becomes considerably more difficult. The snow lower bound
still applies, the distance lower bound transforms to a lower bound based
on a minimum-cost matching between the pixels in P and the pixels in the
complement of P . This problem represents a computational problem related
to “earth-mover distance” [7] and is beyond the scope of this paper.

Possible Improvements. We opted for higher approximation factors in
favor of more easily described algorithms. For instance, in the adjustable-
throw case, the line-clearing cost could be reduced by go up for D − 3 pixels,
making a small detour, and going back; in the fixed-throw model, instead of
emulating each and every back throw with 5 moves, we could emulate a whole
(bD/2c-full) pass at once.

Open Problems. The complexity of the SBP in simple polygons and the
complexity of the SBP in the fixed-throw model are open. We also do not have
an algorithm for the case of holes-obstacles and restricted throw direction; the
hardness of this version is also open.

One issue we did not address is the difficulty in turning a snowblower
(see [3] for the discussion of the TSP-like problems with turn costs). Another
factor is that a snowblower can throw much further than one cell away.

Acknowledgements. We would like to thank the anonymous referees for
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