
A Geometric Shortest Path Problem, with Application toComputing a Longest Common Subsequence in Run-LengthEncoded StringsJoseph S. B. Mitchell�1 IntroductionLet R denote an axis-aligned rectangle in the plane. Without loss of generality, we assume that R is theregion f(x; y) : 0 � x � M; 0 � y � Ng. Within R there are n pairwise-disjoint axis-aligned rectangles,R1; R2; : : : ; Rn � R. We refer to the region B = [iRi as \blue", and the complement, R nB, as \red". Ourgoal is to travel from the upper left corner s = (0; N) to the lower right corner t = (M; 0), while minimizingthe total length of travel in the red region. We are constrained to travel as follows:(a) In the red region, we must travel horizontally to the right, or vertically downwards.(b) In the blue regions, we must travel along a line of slope -1.In this paper, we give an O(n logn) time algorithm for this problem, based on methods we developedearlier for rectilinear and \�xed orientation" shortest paths in the plane. In particular, we base our algorithmon the \continuous Dijkstra" paradigm, as we developed it in Mitchell [4, 5]. See [3] for an extensive surveyof shortest path results in geometry.Our study is motivated by the problem of computing a longest common subsequence (LCS) of run lengthencoded strings, X = X1X2 : : : Xl and Y = Y1Y2 : : : Yk, where each Xi or Yj represents a character, with itsrun length. For example, we write X1 = a8 if the �rst 8 characters of string X are the letter \a", and theninth character is not an \a". If X = aaaaaaaabbfffgdddddaaabbbbb, then we write X = a8b2f3g1d5a3b5 asthe run length encoded string. We let M (resp., N) denote the total number of characters in string X (resp.,Y ). If Xi is a run of the same characters as is Yj , then we create a rectangular (\blue") block correspondingto (i; j), whose x-interval (resp., y-interval) is given by the indices of the characters in Xi (resp., Yj). Then,the problem of �nding a longest common subsequence between X and Y is readily seen to be equivalent tothe optimal path problem mentioned above: we must move from upper left corner to lower right corner ofR, while minimizing the number of mismatches (i.e., the number of steps taken in the red (non-matching)region). By sorting the set of characters, it is easy to obtain the set of n blue blocks (R1; : : : ; Rn) thatcorrespond the the shortest path instance, in time O(n+ (k + l) log(k + l)).Related Work. In the time since our results were �rst obtained, an independent e�ort by Apostolico,Landau, and Skiena [1] has resulted in some similar results. In particular, they obtain a time bound ofO(kl log(kl)). Since n � kl, our result (O((n+ k+ l) log(n+ k+ l))) compares favorably to theirs, improvingthe worst-case time bound, particularly when n is much smaller than its worst-case upper bound kl.�jsbm@ams.sunysb.edu; http://www.ams.sunysb.edu/~jsbm/. Department of Applied Mathematics and Statistics, StateUniversity of New York, Stony Brook, NY 11794-3600. Partially supported by NSF grant CCR-9504192, and by grants fromBoeing Computer Services, Bridgeport Machines, Hughes Aircraft, and Sun Microsystems.
1



2 The AlgorithmWe follow the continuous Dijkstra paradigm: We want to track a \front", parameterized by d, that corre-sponds to points within R that are known to be within distance d of the source point s, where \distance"is measured according to the length only of travel in the red region, and the path is constrained to travelaccording to (a) and (b) above.At any given stage of the algorithm, we have a set of dragged segments that represent pieces of the front.Each is inclined at an angle of 45 degrees with respect to the positive x-axis, and is advancing down and to theright. As in [4, 5], the endpoints of a dragged segment slide along track rays, which are axis-parallel, pointingdownwards or rightwards. Each dragged segment has a root point, which is labeled with the distance froms. All points on a dragged segment are below and to the right of the root, and are at the same (rectilinear)distance from the root.Events correspond to(Type I) A dragged segment hitting a vertex of some blue rectangle Ri, at a point interior to the draggedsegment; or(Type II) An endpoint of a dragged segment hitting the boundary of a blue rectangle Ri, or the outerboundary of R.We can determine events of either type in time O(logn), by the same methods as in [4, 5]. (If the track raysare parallel to each other, then we use segment-dragging queries by the methods of Chazelle [2]; if the tracksare orthogonal to each other, then we use point location queries in the subdivision described in [4, 5].)The algorithm is simply this: Process events in order of increasing distance from s, until t is reached bysome dragged segment.To process an event of Type I, we distinguish two cases, depending on whether or not the hit vertex, v,has already been hit previously. If it has, then we clip the dragged segment, according to the track ray of thedragged segments that have previously hit it, as in [4, 5]. If it has not been hit previously, then we label itwith its newly discovered distance from s. (The Dijkstra property of the algorithm assures us that the labelwe give it is correct.) We also instantiate a new dragged segment rooted at v0, the point on the boundaryof Ri where a ray �red southeast from v exits Ri. Finally, we clip the dragged segment on both the top ofRi and the left side of Ri, resulting in two dragged segments still rooted at the same point that the originalone was.To process an event of Type II, we create a labeled point at the point p where the endpoint of the draggedsegment hits Ri, and we instantiate a new dragged segment, rooted at p0, the point on the boundary of Riwhere a ray �red southeast from p exits Ri.The proof of correctness is based on observing that we are conservative in our clipping of draggedsegments: we only clip the propagation when we have cause to do so.The proof of complexity involves bounding the total number of events to be O(n), and noting that eachevent is processed in time O(logn). The crucial thing to examine is the number of times that a draggedsegment re-hits a vertex, causing clipping. (The �rst time a vertex of some Ri is hit, we charge the event tothat vertex.) However, each time a dragged segment, rooted at r, hits a vertex v that has already been hit,we can charge the event to a vertex of the shortest path map, which is a planar subdivision of size O(n).Theorem 1 An optimal path, minimizing travel in the red region, can be computed in time O(n logn),using O(n) space. In fact, within these same bounds, the shortest path map with respect to source s can beconstructed.Corollary 2 The LCS problem on run length encoded strings can be solved in time O((n+k+l) log(n+k+l)).Extensions. It is easy to extend our results to more general settings. In particular, the blue regions neednot be axis-aligned rectangles; if they are disjoint polygons, having a total of n vertices, the same resultsapply. Further, if the travel in the blue regions is not at slope -1, but at any other negative slope, the sameresults apply. This, in particular, allows the LCS problem to be solved in a more general setting, allowingfor more general edit distances. 2



In fact, for any decomposition of the plane into polygonal regions of two (or more) colors, and with anconvex distance function de�ned within each region, our methods should yield an O(n logn) time algorithm.Are there applications for this more general class of shortest path problems?AcknowledgementsI thank Tim Chen for pointing out this problem to me, and for helpful discussions in the formulation of theshortest path version of the LCS problem.References[1] A. Apostolico, G. M. Landau, and S. S. Skiena. Matching for run length encoded strings. Manuscript,Stony Brook, 1997.[2] B. Chazelle. An algorithm for segment-dragging and its implementation. Algorithmica, 3:205{221, 1988.[3] J. Mitchell. Shortest paths and networks. In J. E. Goodman and J. O'Rourke, editors, Handbook ofDiscrete and Computational Geometry, chapter 24, pages 445{466. CRC Press LLC, Boca Raton, FL,1997.[4] J. S. B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles. In Abstracts 1stCanad. Conf. Comput. Geom., page 22, 1989.[5] J. S. B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica, 8:55{88, 1992.

3


