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Abstract
Given a connected polygonal domain P , the watchman route
problem is to compute a shortest path or tour for a mobile
guard (the “watchman”) that is required to see every point
of P . While the watchman route problem is polynomially
solvable in simple polygons, it is known to be NP-hard in
polygons with holes.

We present the first polynomial-time approximation
algorithm for the watchman route problem in polygonal
domains. Our algorithm has an approximation factor
O(log2 n). Further, we prove that the problem cannot be ap-
proximated in polynomial time to within a factor of c log n,
for a constant c > 0, assuming that P 6=NP.

1 Introduction

A classic problem in computational geometry is the
watchman route problem (WRP): Compute a shortest
path/tour within a polygonal domain (polygon with
holes) P so that every point of P is seen from some point
of the path/tour, i.e., compute a shortest “visibility
coverage tour”. The WRP models a natural problem
in robotics, in which a mobile robot/camera is to do a
visual inspection of a domain or a part, whose geometry
is given. Here, we focus on the offline setting, in which
the geometry of the domain P is given; the problem has
been studied extensively, both in the offline and online
setting (see the surveys [24, 25]).

In this paper we give the first polynomial-time
approximation algorithm for the WRP in polygonal
domains in the plane. Our approximation factor is
O(log2 n); we also give the first hardness of approxi-
mation result for the WRP, showing that the problem
cannot be approximated in polynomial time to within
a factor of c log n, for a constant c > 0, assuming that
P 6=NP. Here, n is the number of vertices of P .

1.1 Prior and Related Work. While the problem
had arisen earlier in robotics, the WRP was first studied
from an algorithmic perspective by Chin and Ntafos
in 1986 [6], who proved that the problem is NP-hard
in general (see [14] for a new proof that addresses
gaps in the original proof [6, 7]). Exact algorithms
are known for the WRP in simple polygons (domains
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with no holes) [4, 8, 11, 20, 31, 32]; the best known
time bounds [11] are O(n3 log n) for the “anchored”
WRP, in which the tour is required to pass through a
specified anchor point, andO(n4 log n) for the “floating”
WRP, in which no anchor point is specified. Linear-
time algorithms are known for approximating the WRP
in simple polygons (with approximation factor

√
2 for

the anchored case and approximation factor 2 for the
floating case – see [28, 29, 30]) and for exactly solving
the special case in which P is a simple rectilinear
polygon [7].

Another special case of the WRP that has an exact
polynomial-time algorithm is that in which P is the
union of a finite set of infinite lines in the plane (i.e.,
the WRP on a line arrangement) or a set of chords
with respect to a simple closed curve [13]; a polylog
approximation is also given for the case of WRP on
an arrangement of line segments, obtained by a direct
mapping of the problem to the group TSP problem.

For the general case, in which P is multiply con-
nected (has holes), very little has been known about the
approximability of the WRP; the question of the exis-
tence of a constant-factor approximation algorithm for
WRP has been posed (e.g., [29]). We know of only one
provable approximation algorithm [22], which gives an
O(log n)-approximation if P is rectilinear (with holes)
and the visibility model is also special (“rectangle vis-
ibility”, in which p sees q if and only if the rectangle
with corners p and q lies fully within P ; the require-
ment of rectangle visibility was not specified in the orig-
inal conference paper); it does not apply to the general
WRP, for ordinary visibility within a polygon domain,
as we address here. One can show that the mini-
mum length of a watchman tour for a polygon P with
h holes is O(per(P ) +

√
h · diam(P )), and this bound

is tight for polygons P with per(P ) > c · diam(P ), for
any fixed c > 2; see [10, 14] for two different proofs.
Dumitrescu and Tóth [14] show how to find a tour of
length O(per(P )+

√
h ·diam(P )) in time O(n log n) and

also provide related results for polyhedra with holes in
3-space. However, these results do not imply an approx-
imation algorithm, since neither per(P ) nor diam(P )
are lower bounds for the WRP in a particular P .

The WRP is related to a geometric traveling sales-
person problem (TSP), namely the “TSP with neigh-



borhoods” (TSPN) [2], in which one seeks a shortest
tour to visit a set of geometric regions (the neighbor-
hoods). The geometric TSP has a PTAS ([3, 23]), as
does the TSPN in certain special cases (e.g., if the
regions are “fat” and (weakly) disjoint [12, 16, 26]).
Further, there is a quasipolynomial-time approximation
scheme (QPTAS) for geometric instances of TSPN in
any fixed dimension, and metric spaces of bounded dou-
bling dimension, for the case of fat, (weakly) disjoint
regions [5]. The TSPN for arbitrary connected regions
in the plane has an O(log n)-approximation [18, 22]; if
the regions are (weakly) disjoint, there is a recent O(1)-
approximation [27]. The WRP can be viewed as the
TSPN in the case that the set of regions are the vis-
ibility polygons, V P (p), associated with every point p
of the domain P ; thus, the regions are not necessarily
fat, they are not disjoint, and the number of regions is
uncountably infinite. Further, the WRP is a TSPN in-
stance with obstacles, since the tour is required to stay
within the region P .

The WRP and TSPN are related also to the group
(or “one-of-a-set”) Steiner tree problem (and the group
TSP), in which one is given an undirected graph G =
(V,E) with weighted edges and n vertices, and k subsets
of V (called groups of vertices), and one must find a
minimum-weight tree that has at least one vertex from
each of the groups. The best approximation bound
is obtained by Fakcharoenphol et al. [15], who apply
their method of approximating arbitrary metrics by tree
metrics to the O(log k log n)-approximation algorithm
for trees given by Garg, Konjevod, and Ravi [17];
the result is an O(log2 n log k)-approximation algorithm
for the group Steiner tree problem in metric spaces.
Halperin and Krauthgamer [19] show that the problem
cannot be approximated within ratio O(log2−ǫ k) for
any ǫ > 0.

1.2 Our Contribution, Outline of Our Ap-
proach. Our main result is the first approximation al-
gorithm for the general watchman route problem in the
plane. To achieve this, we have to overcome at least two
main difficulties:

(1) The continuum – the watchman is required to
see every point of a continuous two-dimensional
domain, making the TSPN methods not directly
applicable, since the number of regions that must
be visited is uncountable. This difficulty arises also
in attempts to approximate the minimum guard
problem in polygons: We know of no polynomial-
size “sufficiency set” for searching for guards, and,
thus, there are no nontrivial approximations known
for guarding using any point in the continuum of a
polygon or polygonal domain. A similar situation

arises for the WRP, since vertices of an optimal tour
may be “reflection” points along construction lines
that are not passing through a pair of vertices of P ;
indeed, we know of no polynomial-size set of points
within P that suffice for vertices of an optimal tour.
See Figure 1.

(2) The obstacles – the corresponding TSPN problem
is not in the Euclidean metric, but rather in the
geodesic metric induced by the domain P . While
many instances of TSPN have constant-factor ap-
proximations, or even a PTAS, the presence of ob-
stacles makes the approximation significantly more
difficult. In fact, we prove that the TSPN with ob-
stacles as well as the WRP has no polynomial-time
approximation better than logarithmic, assuming
P 6=NP.
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Figure 1: An example WRP tour (red) with reflection
points a, b that allow the tour to “just” see point p. The
“tiny caves” q1, . . . , q7 are holes of P ; the tour must visit
each cave, but must also make a slight detour to points
a and b to be able to see all of P .

We overcome challenge (1) by showing how to lo-
calize (approximately) and discretize the domain. In
particular, we first enumerate the minimal squares, B,
each of which is minimal in size, while seeing all of P
that lies outside of it. We show that any optimal solu-
tion whose bounding box contains a particular minimal
square B must lie within a larger square centered on B,
larger by a factor O(n). This allows us to discretize the
portion of P that lies inside the larger square, and fo-
cus on solving discrete optimization problems. (At this
point, we could apply the known group TSP results to
obtain a polylogarithmic approximation bound; how-
ever, our methods exploit geometry to obtain an even



better (by a logarithmic factor) approximation bound.)
We then address challenge (2) by partitioning the

problem into two new problems, each of which may be
of interest in their own right: the “outer watchman
route problem” (OWRP) and the “inner watchman
route problem” (IWRP). The OWRP seeks a tour that
sees all of P that is outside the tour, while the IWRP
takes as input a given simple cycle in P and asks that
we augment it with a minimum-length network in order
that the augmented network sees all of P that lies within
the given cycle.

We show that the OWRP has an efficient approxi-
mation algorithm (in fact, a PTAS). To do so, we show
that it can be solved exactly in polynomial time, using
dynamic programming, if there is a given polynomial-
size set of points and we require that the tour be polyg-
onal on this set of points.

We give an approximation to the IWRP, with input
cycle given by our solutions to the OWRP for each
choice of B, by formulating it as a weighted set cover
problem on a discrete set of “geodesic triangles”; we
prove that this results in an O(log2 n)-approximation
for the IWRP.

We then prove that we can produce a single tour
with the claimed approximation bound, O(log2 n), for
the original WRP instance. We note that this approxi-
mation factor is somewhat better than that known for
the group Steiner tree problem in graphs; we attribute
this to the fact that we are exploiting geometry.

We also provide hardness of approximation, from
Set Cover, showing that the WRP cannot be approx-
imated in polynomial time to within a factor of c log n,
for a constant c > 0, assuming that P 6=NP.

2 Preliminaries

We let ∂X denote the boundary and let diam(X) denote
the diameter of a set X ⊂ ℜ2. We abuse notation
slightly by using “| · |” in two different ways: for a curve
(or tree, or one-dimensional manifold) γ, |γ| denotes
the (Euclidean) length of γ, and for a finite set, S, |S|
denotes the cardinality of S. The meaning should be
clear from the context.

A polygonal domain, P , in the plane (ℜ2) is a
connected subset of the plane whose boundary is the
union of a finite number, n, of (noncrossing) line
segments; i.e., P is a polygon with holes. The boundary
of P consists of an outer boundary polygonal cycle,
separating P from the unbounded face at infinity, and a
set of h inner boundary polygonal cycles. Let VP denote
the set of vertices of P . Here, h denotes the number of
holes (the genus of P ), and n = |VP | is the total number
of vertices of P . (Equivalently, n is the total number of
edges of P .)

We let πP (s, t) denote a (geodesic) shortest path
from s ∈ P to t ∈ P ; i.e., πP (s, t) is a shortest path from
s to t that is constrained to stay within the domain P .
(In general, there is not a unique shortest path from s to
t.) Given a finite point set S ⊂ P , the geodesic convex
hull of S, denoted GCH(S), is the minimal subset of
P that contains S and is closed under taking shortest
paths (i.e., for every s, t ∈ GCH(S), every shortest
path between s and t is contained in GCH(S)). The
boundary of GCH(S) is the boundary of the face at
infinity in the arrangement of all shortest paths between
pairs of points of S. Shortest paths, as well as geodesic
convex hulls, can be computed efficiently (in polynomial
time); see [24, 25].

We say that point p ∈ P sees (or is visible from)
point q ∈ P if the line segment pq is a subset of the
domain P . The visibility region, V P (p), of a point p ∈ P
is the (polygonal) set of all points of P that p sees; i.e.,
V P (p) = {q ∈ P : pq ⊆ P}. The visibility region,
V P (X), of a subset, X ⊆ P , is the set of all points
of P that are seen by some point of X; equivalently,
V P (X) =

⋃
p∈X V P (p). A tour/tree T ⊆ P is a

visibility covering tour/tree for P if V P (T ) = P , i.e., if
every point of P is seen by some point of the tour/tree
T .

The watchman route problem (WRP) is to com-
pute a minimum-length visibility covering tour for P .
The watchman tree problem (WTP) is to compute a
minimum-length visibility covering tree for P . Note
that any visibility covering tree can be converted into a
visibility covering tour, of length twice that of the tree,
by walking around the tree, traversing each edge exactly
twice. Thus, for purposes of approximation, the WRP
and WTP are equivalent up to a constant factor.

For a simple closed (Jordan) curve γ ⊂ P , we let Pγ

denote the simply connected subset of ℜ2 bounded by γ;
if γ is polygonal (piecewise-linear with a finite number
of vertices), then Pγ is a simple polygon. We say that
a simple closed curve γ ⊂ P is outer-illuminating for P
if all points of P outside of the region Pγ are seen by γ.
More generally, we say that a region X ⊂ ℜ2 is outer-
illuminating with respect to P if all points of P outside
of X are seen by X ∩ P . (Note that X need not be a
subset of P .) Most often, we will be dealing with the
case of outer-illuminating squares, B, whenX = B is an
axis-parallel square in the plane. Similarly, we say that
X is inner-illuminating with respect to P if all points of
P ∩X are seen by the boundary, ∂X, of X.

For a given polygonal domain P , the outer watch-
man route problem (OWRP) is that of computing a
shortest outer-illuminating simple closed curve within
P . In the discrete outer watchman route problem
(Discrete-OWRP), we are given also a finite point set



S ⊂ P , with S ⊇ VP , and we must find a shortest sim-
ple closed curve, γ, within P so that all of P outside of
γ is seen by γ and such that γ is a polygonal curve with
vertices among the set S.

For a given polygonal domain P , and a given simple
closed polygonal curve γ ⊂ P , the inner watchman
route problem (IWRP) is that of computing a minimum-
length connected network, N ⊃ γ, such that all of P
within γ (i.e., all of Pγ ∩P ) is seen by N . Observe that
an optimal solution for IWRP is a network consisting
of a union of γ and a finite set of pairwise-disjoint trees
(i.e., a forest), each within the region bounded by γ and
each connected to γ at a single point. (If a cycle were
formed, then an edge could be deleted, shortening the
network while still maintaining visibility coverage.)

For the given domain P , an outer-illuminating
square, B, is minimal if there is no outer-illuminating
square, B′, with B′ a strict subset of B (i.e., with
B′ ⊂ B). We then refer to B as a minimal outer-
illuminating square (MOIS) for P .

The following lemma follows from standard critical
placement arguments.

Lemma 2.1. There are a polynomial (in n) number of
minimal outer-illuminating squares associated with an
n-vertex polygonal domain P .

Proof. This follows from standard critical placement
arguments, since a square has three degrees of freedom.
Briefly, an outer-illuminating square, Σ, can be shrunk,
and then translated, until three critical contacts occur,
at which Σ is just in contact with V P (p1), V P (p2),
and V P (p3), for three (not necessarily distinct) points
p1, p2, p3 ∈ P .

If p1 6= p2, p3, we claim that p1 ∈ ∂P , so that the
critical contact is defined by Σ being in contact with an
edge extension of P (an edge of P extended through the
interior of P to form a chord). Assume, to the contrary,
that p1 is interior to P . Now, Σ is just in contact with
V P (p1) either because (1) a corner of Σ is touching a
window edge of V P (p1) or because (2) an edge of Σ is in
contact with the endpoint of a window edge of V P (p1).
In either case, let v1 be the vertex of P determining the
window edge from p1, and let ℓ1 be the line through
p1 and v1. Consider an arbitrarily small neighborhood,
Bǫ(p1) ⊂ P , of p1. Consider a point q1 ∈ Bǫ(p1) that
lies just off the line ℓ1, on the same side as the obstacle
supporting at v1. Then, the window defined by q1 and
v1 fails to intersect Σ; further, ǫ > 0 can be chosen
small enough so that q1 can be chosen in Bǫ(p1) so that
q1 does not see Σ at all, contradicting the fact that Σ is
outer-illuminating.

If p1 = p2 6= p3, then V P (p1) contacts Σ at two
distinct places. Let v1 and v2 be the (distinct) vertices

of P corresponding to the windows of V P (p1) in contact
with Σ. We claim that p1 ∈ ∂P . Assume to the contrary
that p1 is interior to P . Again we consider a small
enough neighborhood, Bǫ(p1) ⊂ P and observe that
there must be a point q1 ∈ Bǫ(p1) such that q1 is not
seen by Σ (e.g., within the convex cone defined by the
rays ρ1 = p1v1 and ρ2 = p1v2), contradicting the outer-
illumination property of Σ.

If p1 = p2 = p3, so that p1 is a triple-pinned point,
with three contacts between Σ and V P (p1), then we
argue similarly to above, exploiting the fact that the
three rays, ρ1 = p1v1, ρ2 = p1v2, and ρ3 = p1v3, lie
within a convex cone (since they all meet the (convex)
square Σ), implying the existence of a pair of rays, one
supported by an obstacle on the left, one supported
by an obstacle on the right, that bound a convex cone
intersecting Σ, within which a point q1 ∈ Bǫ(p1) can be
chosen so that q1 does not see Σ. Thus, we again get a
contradiction to the outer-illumination property of Σ.

In summary, a minimal outer-illuminating square,
Σ, must be in contact with three extension edges of
P , and these three edges are enough to determine the
square. �

3 Localization and Discretization

In this section, we describe how we utilize the minimal
outer-illuminating squares to localize and discretize our
watchman route problems.

Lemma 3.1. Let γ∗ be an optimal solution to the WRP
in domain P . Let B be a minimal outer-illuminating
square (MOIS) within the axis-aligned bounding box of
γ∗. (Such a MOIS must exist, since γ∗, and therefore
its bounding box, is outer-illuminating.) Then, |γ∗| =
O(n · diam(B)), implying that γ∗ lies within a square,
B̄, of side length O(n · diam(B)), concentric with B.

Proof. First, by definition of a MOIS, B illuminates
all of P outside of B; in particular, the portion,
∂B ∩ P , of B’s boundary within P illuminates all of
P outside of B. Now consider illuminating that part
of P within B. Consider a vertical decomposition of
B ∩ P (obtained by extending maximal vertical chords
within B ∩ P , through each vertex of P within B); the
decomposition consists ofO(n) (convex) trapezoid faces,
each of diameter O(diam(B)). The edge set, E, of all
trapezoids of the decomposition is a connected planar
straight-line graph and includes ∂B ∩ P . (Connectivity
follows from the connectivity of the planar dual, which
in turn follows from the fact that P is (multiply)
connected.) Thus, E illuminates all of B ∩ P (since
any point p ∈ B ∩ P lies within a trapezoid, whose
boundary is illuminated), and also illuminates all of P
that is outside B. Further, since there are O(n) faces,



each of diameter O(diam(B)), we know that the total
length, |E|, of edges E is O(n · diam(B)). Thus, an
optimal solution has length |γ∗| ≤ |E| = O(n ·diam(B))
and must, therefore, stay within the enlarged square, B̄,
of size O(n · diam(B)), concentric with B. �

For a given MOIS, B, we refer to the square B̄ from
the proof of Lemma 3.1, concentric with B and of size
O(n · diam(B)), as the enlargement of B. Lemma 3.1
tells us that if B is any MOIS within the bounding
box of an optimal tour γ∗, then we have approximately
localized γ∗ (it passes near B) and know its length
approximately: γ∗ lies within the enlargement, B̄, and
has length between Ω(diam(B)) and O(n · diam(B)).

Using this approximate localization in terms of a
MOIS, B, we define a partitioning, Gǫ

B , of P into convex
cells, such that, for approximation purposes (within
factor (1 + ǫ)), it will suffice to search for tours (for
WRP, OWRP, and IWRP) whose vertices come from
the polynomial-size set of vertices of Gǫ

B . Specifically,
Gǫ
B is defined to be the vertical decomposition of P (into

trapezoids, using vertical maximal chords through each
vertex of P ), refined by an overlay of a regular square
grid partitioning B̄ (of size O(n·diam(B))) into pixels of
size ǫ ·diam(B)/n2. Thus, the grid Gǫ

B has a polynomial
complexity, O((n3/ǫ)2).

Our discretization lemma below (Lemma 3.3) uti-
lizes the following fact about the structure of optimal
solutions.

Lemma 3.2. An optimal solution, γ∗, for the WRP (or
the OWRP) is a polygonal tour, with O(n2) vertices.
Also, an optimal solution for the IWRP is a polygonal
network (forest of trees each attached to the input cycle
γ at a single point), having O(n2) vertices.

Proof. We give the proof of the claim for the WRP;
the proofs for the OWRP and IWRP are essentially the
same.

Consider the visibility arrangement obtained by
overlaying the visibility polygons, V P (vi), of all vertices
of P . (Alternatively, the arrangement is defined by
the visibility graph, with maximally extended edges.)
Consider any single (convex) cell, σ ⊂ P , in the
arrangement. (There are O(n4) cells in the arrangement
of O(n2) segments that make up the windows of all
polygons V P (vi).) For all points p ∈ σ, the visibility
polygon V P (p) has constant combinatorial type; its
boundary consists of portions of ∂P , together with
window edges defined by vertices v that are visible
from p, and the extension of the segment pv to yield
a maximal chord. The intersection of γ∗ with σ is
a discrete (possibly countably infinite) set of curves,
γ1, γ2, . . . . As p ∈ γ∗ ∩ σ varies along a curve γi, its

visibility polygon V P (p) varies continuously in a very
controlled way – the windows pivot about their defining
vertices v. Thus, associated with each vertex v visible
from σ, there is an extreme point, pv ∈ γ∗ ∩ σ, which
maximizes the visibility with respect to v, pivoting
the window as far as possible in the clockwise (resp.,
counterclockwise) direction if v supports the window
on the right (resp., left). See Figure 2(top). The
union of the visibility polygons V P (pv) over vertices v
visible from σ is therefore equal to the union of visibility
polygons V P (p) over all points p ∈ γ∗∩σ. Thus, γ∗∩σ
can be replaced by a single polygonal curve within σ
that visits all of the extreme points pv. Specifically,, γ1
can be replaced by a (polygonal) TSP path, having the
same endpoints (along ∂σ) as γ1, through the extreme
points within σ, while all other curves γi, i ≥ 2, are
replaced by single segments joining their entry points
to exit points. This replacement preserves the visibility
coverage of γ∗ ∩ σ, while making γ∗ ∩ σ polygonal. In
fact, if we consider the set of all extreme points of
γ∗, over all cells σ, we obtain a set of O(n5) extreme
points in total (O(n) per cell of the arrangement), and
any polygonal tour visiting all of these extreme points
suffices to see all of P . Thus, since γ∗ is the shortest
possible tour seeing all of P , γ∗ must be a TSP tour of
the extreme points, and thus γ∗ must be polygonal.

v

p

σ pv

γ∗

vi
p

u
w

a

b

Figure 2: Proof of Lemma 3.2

The above argument gives a rather weak bound
on the number of vertices of γ∗. To obtain a better
bound of O(n2), we argue as follows. We know that γ∗

is polygonal; it has two types of vertices – those that



are vertices of P and those that are not. The vertices
of γ∗ that are not vertices of P must be reflection
points that lie interior to window edges; these are the
extreme points in the argument above. Note that local
optimality implies that the angle of incidence equals the
angle of reflection when γ∗ enters and leaves a reflection
point. For each visibility polygon V P (vi) corresponding
to a vertex vi ∈ VP , we can partition V P (vi) into
visibility triangles, ∆viab, where ab ⊂ ∂V P (vi) and a
and b are vertices of the star-shaped polygon V P (vi).
(Assuming no three vertices of P are collinear, if vi
sees ki vertices of P , then there are exactly ki visibility
triangles ∆viab incident to vi.) We claim that within
each visibility triangle ∆viab there can be at most
one reflection point of γ∗ that reflects off of a window
incident to vi (i.e., off of a window edge bounding
V P (p), for some p that sees vi, having corresponding
window edge within the triangle ∆viab). If, instead,
γ∗ had two or more reflection points within ∆viab,
with respect to windows incident on vi, then one of
them (say, u) dominates the other one (say, w), in
that the connected component of γ∗ ∩∆viab that visits
u must cross the window incident to vi that passes
through w. See Figure 2(bottom). Thus, γ∗ can be
locally shortened by clipping off w, a contradiction to
its optimality. Thus, γ∗ has at most one reflection point
with respect to vi (i.e., on a window incident to vi)
per visibility triangle ∆viab. Overall, there are O(n2)
visibility triangles, so γ∗ has O(n2) vertices. �

Remark: While it suffices for our purposes to show
a polynomial bound on the number of vertices of an
optimal solution γ∗, we believe that the quadratic
bound of Lemma 3.2 is weak; we conjecture that γ∗ has
complexity O(n). (There are simple examples in which
γ∗ has complexity Ω(n) within an n-vertex domain P .)

Lemma 3.3. Let γ∗ be an optimal solution to the WRP
and let ǫ > 0 be fixed. We can compute, in polynomial
time, a polynomial-size set, G, of points within P such
that there exists a polygonal tour, γG, with vertices
among G, whose length is at most (1+ ǫ)|γ∗|. The same
statement holds for the OWRP/IWRP.

Proof. We begin with the WRP. Let B be a MOIS
within the bounding box of γ∗, and let B̄ be the asso-
ciated enlarged square of size O(n · diam(B)), centered
on B. Let G be the vertices of Gǫ

B , the partitioning of
P defined above. We do not know B in advance, so our
algorithm will iteratively try each choice of MOIS, B.
(Alternatively, we can compute the partitionings Gǫ

B for
each choice of B, and then define G to be one large set
of all vertices in all of these partitionings.)

We now show how to replace γ∗ with γG , having
vertices among G. For each edge uiui+1 of γ∗, we

“encase” the edge in a simple polygon, Qi, whose
vertices are in G. Specifically, let σi and σi+1 denote
the (convex) cells of the partition Gǫ

B that contain ui

and ui+1, respectively. If σi = σi+1, then we replace
uiui+1 with the cycle ∂σi (whose vertices are from G, by
definition). If σi 6= σi+1, then we let u′

i ∈ ∂σi denote the
point where uiui+1 exits σi (through its bounding edge
aibi, oriented clockwise around σi), and let u′

i+1 ∈ ∂σi+1

denote the point where uiui+1 enters σi+1 (through
its bounding edge ai+1bi+1, oriented clockwise around
σi+1). Now, consider the cycle that starts at grid
vertex ai ∈ ∂σi, goes along aibi to u′

i, then goes along
u′
iu

′
i+1 to u′

i+1, then goes clockwise around ∂σi+1 to
bi+1, ai+1, and back to u′

i+1, then back along u′
i+1u

′
i

to ui, then back around ∂σi to the starting point, ai.
We “pull taut” (with respect to P ) the two subpaths
(ai, u

′
i, u

′
i+1, bi+1) and (ai+1, u

′
i+1, u

′
i, bi), resulting in

polygonal paths that bend at vertices of P , resulting
in an overall polygonal cycle, Ci, that encloses segment
uiui+1 and has vertices among G. Further, the length
of Ci is at most 2|uiui+1| + O(ǫ · diam(B)/n2), since
the sizes of cells σi and σi+1 are O(ǫ · diam(B)/n2).
Note too, by construction, that Ci does not surround
any holes of P . Refer to Figure 3.

ui

ai

u′
i

bi

bi+1

u′
i+1

ui+1

ai+1

Figure 3: Proof of Lemma 3.3

Now, all points of P that are inside of Ci are seen
by Ci, and all points of P outside of Ci that are seen by
uiui+1 are seen by Ci (by the Jordan Curve Theorem,
since Ci is a simple closed curve). Thus, the cycle Ci

sees every point of P that the edge uiui+1 does. Thus,
taking the union of all such cycles Ci over all edges of γ

∗

results in a connected polygonal network whose vertices
are among the grid points G. By summing the bounds
on the lengths of the cycles Ci, over all O(n2) edges of
γ∗, we get that the length of the network is at most
2|γ∗|+O(ǫ · diam(B)), which is at most (2+ ǫ′)|γ∗|, for
an appropriate choice of ǫ′ > 0 (since |γ∗| ≥ diam(B)).

In fact, for visibility coverage it suffices to remove
from each cycle Ci one of the two taut subpaths, say
the one from ai+1 to bi. To see this, note that any line-
of-sight segment joining a point p ∈ P to edge uiui+1

must either cross the remaining portion of cycle Ci or



can be extended to meet with the remaining portion of
Ci. Thus, the total length of the resulting connected
graph we obtain is at most (1 + ǫ)|γ∗|.

For the OWRP/IWRP, the same strategy holds for
obtaining a grid-rounded solution. �

4 The Outer Watchman Route Problem
(OWRP)

We turn now to the outer watchman route problem, for
which we will give an exact solution for the discrete
version. Combining this with our discretization from
Lemma 3.3, we obtain a PTAS for OWRP.

Lemma 4.1. An optimal solution to the Discrete-
OWRP with respect to P is a polygonal curve, γ∗,
bounding a simple polygon Pγ∗ , with the follow-
ing properties: (a). the region Pγ∗ is geodesi-
cally convex with respect to P ; and (b). γ∗

consists of a union of shortest paths within P ,
πP (p1, p2), πP (p2, p3), . . . , πP (ph−1, ph), πP (ph, p1).

Proof. By the definition of the Discrete-OWRP, γ∗ has
vertices among S.

For claim (a), consider the geodesic convex hull,
GCH(γ∗), of the vertices (points of S) that appear on
γ∗. Since Pγ∗ ⊆ GCH(γ∗), by definition of geodesic
convex hull, we know that the boundary of GCH(γ∗)
also sees all of the points of P outside of it. More
formally, this follows from the Jordan Curve Theorem,
since any point p ∈ P outside of GCH(γ∗) can see γ∗,
and ∂GCH(γ∗) is a simple closed curve separating p
from γ∗.

Claim (b) follows from claim (a) and the definition
of geodesic convex hull. �

Theorem 4.1. The Discrete-OWRP within a polygonal
domain P , and for a given input set S ⊇ VP , can be
solved exactly in polynomial (in |S|) time.

Proof. We give a dynamic programming algorithm. We
let n = |S| in this proof; |VP | ≤ n.

For each pi ∈ S, we compute the tree, SPT (pi),
of shortest paths within P from pi to all points of S.
This can be done in time O(n log n), where n is the total
number of vertices of P and points of S [21]. The overlay
of these trees forms an arrangement of line segments of
total complexity O(n4).

We define the wedge, Wijk, associated with points
pi, pj , pk ∈ S, to be the subset of P consisting of
points p ∈ P for which the shortest path πP (pj , p) lies
strictly to the right (clockwise) of the shortest path
πP (pj , pi) and strictly to the left (counterclockwise)
of the shortest path πP (pj , pk). (For points p, q, r ∈
P , we say that shortest path πP (p, q) is to the right

(resp., left) of shortest path πP (p, r) if the region to
the right (resp., left) of the shortest path triangle cycle
(πP (p, r), πP (r, q), πP (q, p)) is bounded.)

A subproblem is specified by four points,
pi′ , pj′ , pi, pj ∈ S, and is indexed by the tuple
(i′, j′, i, j). Here, we assume that pi′ 6= pj′ and pi 6= pj ,
but we allow the possibility that pj′ = pi or that
pj = pi′ . One can think of the subproblem this way:
The objective is to “complete” a geodesically convex
cycle, counterclockwise, from pj to pi′ , knowing the two
“edges” of the geodesically convex hull, πP (pi′ , pj′) and
πP (pi, pj), which specify the boundary conditions of
geodesic convexity. (Path πP (pi, pj) specifies the first
“edge” and πP (pi′ , pj′) specifies the last “edge” in a
geodesically convex curve (dashed blue in Figure 4) from
pi counterclockwise around to pj′ .) The “done” portion
of the problem is the curve going counterclockwise from
pi′ to pj′ (along πP (pi′ , pj′)), then along an unspecified
geodesically convex curve to pi, then from pi to pj
(along πP (pi, pj)); the subproblem is to complete the
cycle in an optimal manner, from pj to pi′ , while mak-
ing certain that the cycle obeys the outer-illumination
property. More formally, SubProblem(i′, j′, i, j) is to
find a minimum-length curve, µ ⊂ P , from pj to pi′

such that µ sees all points of Ri′j′ij = P ∩Wi′j′i∩Wj′ij

that are outside of the region bounded by the cy-
cle (πP (pi′ , pj′), πP (pj′ , pi), πP (pi, pj), µ). Refer to
Figure 4.

πP (pi′ , pj′)

πP (pi, pj)

πP (pj , pk)

pk

pj

pi

pj′

pi′

πP (pi, pj′)

Wj′ij

Figure 4: Dynamic programming SubProblem(i′, j′, i, j)
for solving the Discrete-OWRP. The red shaded region
depicts the wedge Wj′ij ; the subregion of Wj′ij corre-
sponding to the wedge Wj′jk is bounded by the path
πP (pj , pk) and the green dashed path from pk to pi′ .
(The boundary of P is not shown here, to avoid clut-
ter.)

We say that point pk ∈ S is a valid extension
point for SubProblem(i′, j′, i, j) if every point of Ri′j′ij \



Ri′j′jk is seen by πP (pj , pk); i.e., pk is a valid ex-
tension point if it remains possible, with respect to
the outer-illumination requirement for µ, to complete
a geodesically convex curve µ from pj to pi′ , if the
first portion of µ is the shortest path πP (pj , pk). We
let Si′,j′,i,j denote the set of all valid extension points
for SubProblem(i′, j′, i, j). We are able to compute
these sets in polynomial time using standard methods
of computing visibility regions for points and segments
in polygonal domains (e.g., using the visibility graph or
the visibility complex).

We let f(i′, j′, i, j) denote the optimal value (mini-
mum length of µ) for SubProblem(i′, j′, i, j).

Our main recursion, then, is

f(i′, j′, i, j) = min
pk∈Si′,j′,i,j

{|πP (pj , pk)|+ f(i′, j′, j, k)},

and the base of the recursion is f(i′, j′, i, j) = 0 if i′ = j
(i.e., pj = pi′ , so that a zero-length curve µ closes the
cycle by connecting pj to pi′).

Our algorithm tabulates the values f(i′, j′, i, j) for
all subproblems (i′, j′, i, j) with i′ 6= j′, i 6= j (but pos-
sibly j′ = i or i′ = j), in order of increasing cardi-
nality of the set S ∩ Ri′j′ij , so that the values of the
relevant terms f(i′, j′, j, k) are known before they are
needed in solving the recursion for f(i′, j′, i, j). Our
overall objective, then, is to minimize over all O(n3)
choices of (i′, j′, i = j′, j) that are feasible the to-
tal length, |πP (pi′ , pj′)| + |πP (pj′=i, pj)| + f(i′, j′, i, j),
of the closed cycle (πP (pi′ , pj′), πP (pj′=i, pj), µ

∗
i′j′ij),

corresponding to the optimal solution, µi′j′ij , of
SubProblem(i′, j′, i, j). A triple (pi′ , pj′=i, pj) is feasible
if there exists an outer-illuminating (geodesically con-
vex) cycle of the form (πP (pi′ , pj′), πj′=i, pj), µ), i.e., if
the geodesic convex hull of (S ∩ Wi′j′j) ∪ {pi′ , pj′ , pj}
illuminates all of P outside of the hull.

Correctness follows from Lemma 4.1 and the prin-
ciple of optimality, since an optimal solution µ for
SubProblem(i′, j′, i, j) must connect pj to some pk along
a shortest path, with pk a valid extension point (in order
to guarantee visibility coverage outside of the solution
curve), and then connect pk to pi′ along a curve that is
optimal for SubProblem(i′, j′, j, k). Our recursion opti-
mizes over all valid choices of pk. The running time is
clearly polynomial, since there are O(n4) subproblems,
and each of the visibility computations can be done ef-
ficiently using standard tools. �

As a corollary, we solve an open problem posed
in [13]: Is there a polynomial-time algorithm for the
watchman route on an arrangement of rays in the plane?
With S equal to the vertex set of the arrangement of
rays, and considering P to be the union of the rays (an

unbounded version of a polygonal domain), we see that
the problem is a Discrete-OWRP.

Corollary 4.1. The WRP on an arrangement of rays
in the plane can be solved exactly in polynomial time.

Further, for the general case of the OWRP, without
a given set S constraining the vertex set of a polygonal
tour, we obtain a PTAS.

Theorem 4.2. The OWRP has a PTAS.

Proof. We know from Lemma 3.3 that there exists a
grid-rounded solution to OWRP whose length is at most
(1 + ǫ) times optimal. Thus, we apply our Discrete-
OWRP algorithm to the set S = G of grid points
(vertices of Gǫ

B), for each choice of MOIS B. �

5 The Inner Watchman Route Problem
(IWRP)

The IWRP seeks a minimum-length network that illu-
minates all of P that is within a given polygonal cycle
γ ⊂ P . Our approximation result is given in the follow-
ing theorem:

Theorem 5.1. Given a polygonal domain P and a
simple polygonal cycle γ ⊂ P , having in total n vertices,
the IWRP has an O(log2 n)-approximation algorithm.

Proof. Let N ∗ denote an optimal solution for IWRP
and let F∗ denote a forest that, together with γ, con-
stitutes a nearly optimal grid-rounded solution for the
IWRP, with vertices from the polynomial-size grid G
given by Lemma 3.3. Thus, γ ∪F∗ partitions the plane
into two connected components, an unbounded compo-
nent (outside of γ) and a bounded component, Q, which
is simply connected. Let Γ∗ be the (degenerate) simple
polygonal cycle obtained by traversing the boundary of
Q; let k denote the number of vertices of Γ∗. (Such a
traversal has each edge of F∗ traversed twice, once in
each direction.)

Our proof now consists of two parts: (1) We
argue that Γ∗ can be converted to a “hierarchi-
cal geodesic (shortest path) triangulation”, consisting
of O(k) “inner-illuminating geodesic (shortest path)
triangles” covering Pγ and having total perimeter
O(|Γ∗| log k) = O(|Γ∗| log n) (since k is polynomial in
n). (2) We give an O(log n)-approximation algorithm,
based on weighted set cover, for computing a minimum-
weight covering of Pγ using “inner-illuminating geodesic
(shortest path) triangles”, where the weight of a cover
is the sum of the perimeters of the geodesic triangles.
We argue that the corresponding network of boundaries
of geodesic triangles in our covering is a connected net-
work that illuminates all of Pγ . Thus, our solution net-
work has length O(w∗ log n), where w∗ is the weight



of a minimum-weight covering. Since Γ∗ can be con-
verted to a covering of weight O(|Γ∗| log n), we know
that w∗ = O(|Γ∗| log n) = O(|N ∗| log n), so our solu-
tion has length O(|N ∗| log2 n).

For (1), we need to give some definitions. Given
a simple polygonal curve µ ⊂ P , specified by a cyclic
sequence of m vertices (v1, v2, . . . , vm), we will define
the “hierarchical geodesic triangulation” of µ with re-
spect to P . For points u, v, w ∈ Pµ ∩ P , the geodesic
triangle, ∆(u, v, w), with respect to µ and P is the
simple polygonal subset of Pµ bounded by the cy-
cle formed by the three shortest paths πPµ∩P (u, v),
πPµ∩P (v, w), and πPµ∩P (w, u), where πPµ∩P (p, q) de-
notes the shortest path from p to q within the polyg-
onal domain Pµ ∩ P . (For clarity of exposition, we
assume that shortest paths are unique; we can read-
ily account for degenerate cases by defining the notion
of a “maximal” geodesic triangle, etc.) We say that
a geodesic triangle ∆(u, v, w) with respect to µ and P
is inner-illuminating if every point within ∆(u, v, w) ∩
P is seen by some point on the triangle’s boundary,
πPµ∩P (u, v) ∪ πPµ∩P (v, w) ∪ πPµ∩P (w, u). The hierar-
chical geodesic triangulation of µ with respect to P is
defined to be the decomposition of Pµ into geodesic tri-
angles (with respect to µ and P ) given by the geodesic
triangles ∆(v1, v2, v3), ∆(v3, v4, v5), . . . , ∆(v1, v3, v5),
∆(v5, v7, v9), . . . , ∆(v1, v5, v9), ∆(v9, v13, v17), . . . , etc.
In other words, the hierarchical geodesic triangulation
is given by connecting every 2nd vertex, every 4th ver-
tex, every 8th vertex, etc, of µ with a shortest path
(a geodesic “chord”) within Pµ ∩ P . The geodesic
chords comprise a nested set of O(logm) simple poly-
gons, µ0 = µ, µ1, µ2, . . . , µ⌈logm⌉−1, with µi defined by
shortest paths connecting every 2ith vertex of µ. By
the triangle inequality, we see that the length, |µi+1|, of
µi+1 is at most the length, |µi|, of µi; thus, the total
length of all of the boundaries of geodesic triangles in a
hierarchical geodesic triangulation is O(|µ| logm). Fur-
ther, if µ is an inner-illuminating curve (i.e., Pµ is inner-
illuminating) with respect to P , then every geodesic tri-
angle within µ is also inner-illuminating, since any sim-
ple closed within Pµ ∩ P is inner-illuminating (by the
Jordan Curve Theorem). To complete part (1) of the
argument, we use the hierarchical geodesic triangulation
of µ = Γ∗. The resulting geodesic triangles are inner-
illuminating and cover all of Pγ , and the total length is
O(|Γ∗| log n).

For part (2) of the proof, we use the greedy set
cover algorithm to solve approximately a weighted set
cover instance, which we now describe. Consider all
inner-illuminating geodesic triangles within Pγ defined
by a triple of grid points of G. Their overlay yields an
arrangement of line segments that partitions Pγ into

polygonal cells. In fact, since the grid G includes all
vertices of P within Pγ , we can observe that the cells
of the arrangement are convex. (Note too that this
implies that there exists a covering of Pγ by inner-
illuminating geodesic triangles, since a triangulation of
Pγ ∩ P is such a covering – every triangle contained
in P is trivially inner-illuminating.) Our weighted set
cover instance has elements corresponding to the cells,
and sets corresponding to inner-illuminating geodesic
triangles within Pγ , with weight equal to the perimeter
length. The standard greedy set-cover algorithm [9]
yields an O(log n)-approximation to a minimum-weight
cover. Finally, we delete any (redundant) geodesic
triangle that lies within another geodesic triangle of our
cover.

To complete the proof, we argue that the covering
by inner-illuminating geodesic triangles given by our
algorithm yields a valid solution to the IWRP. First,
the network consisting of the union of the boundaries
of all geodesic triangles of the covering is connected –
if not, since the geodesic triangles fully cover Pγ ∩ P ,
the only possible disconnection arises if some geodesic
triangle lies fully inside another, implying that it is
deleted in the final phase of the algorithm. Second,
the network illuminates all of Pγ ∩ P , since the inner-
illuminating geodesic triangles form a cover Pγ ∩P , and
thus illuminate all of Pγ ∩ P . �

6 The Main Result

Our main result is based on the following algorithm:
We enumerate each choice of MOIS, B, and consider
the possibility that B is a MOIS within the bounding
(square) box of an optimal watchman route, γ∗. This
allows us to compute the grid partition Gǫ

B , for any
fixed ǫ > 0, and know, from the localization Lemma 3.1
and discretization Lemma 3.3, that our search can be
restricted to grid-rounded solutions within the enlarged
square, B̄. We solve the corresponding Discrete-OWRP,
yielding a cycle γ, which is then used as the input
cycle in the IWRP. Our theorem below proves that this
algorithm gives the claimed approximation guarantee.

Theorem 6.1. The WRP has an O(log2 n)-
approximation algorithm.

Proof. Let γ∗ be an optimal watchman tour. Its
bounding (square) box is outer-illuminating (since it
contains γ∗, which must be outer-illuminating), and
therefore contains at least one MOIS, B. We know from
Lemma 3.1 that γ∗ lies within the enlarged box, B̄, and
we know by Lemma 3.3 that there exists a visibility
covering tour, γG , of length at most (2 + ǫ)|γ∗|, that is
polygonal with vertices among the vertices G of Gǫ

B



Since the geodesic convex hull of any closed curve
has length at most that of the curve, we know that
|GCH(γG)| ≤ |γG | = O(|γ∗|). Also, GCH(γG) is
polygonal, with vertices among G. Further, since the
geodesic convex hull GCH(γG) encloses γG , and γG sees
all of P , we know that the boundary of GCH(γG) sees
all of P that is outside ofGCH(γG). Since our algorithm
iterates over all choices of MOIS, we know that it
considered B, and therefore it solved the Discrete-
OWRP corresponding to it, and this yielded a tour, γ,
whose length obeys |γ| ≤ |GCH(γG)| ≤ |γG | = O(γ∗).

Our algorithm augments γ with a network (specif-
ically, the union of inner-illuminating geodesic trian-
gle boundaries) to give a network N ⊇ γ that sees
all of P within γ. By Theorem 5.1, we know that
|N | ≤ C · |IWRP ∗

γ | log2 n, where IWRP ∗
γ is an opti-

mal solution to the IWRP for curve γ.
We now claim that γ, together with γ∗ ∩ Pγ (the

restriction of the optimal solution γ∗ to the region
surrounded by γ) yields a connected network that
illuminates all of P within γ (i.e., is a feasible solution
for the IWRP problem specified by γ and P ). To see
this, note that any point p ∈ Pγ that is not seen by a
point of γ∗ ∩ Pγ must be seen by a point of γ∗ that is
outside of γ, implying that it is seen by γ.

Thus, by the claim above, |IWRP ∗
γ | ≤ |γ∗∩Pγ |+|γ|.

Since |γ∗ ∩ Pγ | ≤ |γ∗| and |γ| = O(γ∗), we get that
|N | ≤ O(|γ∗| log2 n). �

7 Hardness of Approximation

Theorem 7.1. The watchman route problem in a pla-
nar polygonal domain cannot be approximated in poly-
nomial time within a factor c log n, for some constant
c > 0, assuming P 6= NP .

Proof. Our reduction is from Set-Cover, which is
known (see, e.g., [1]) not to have a polynomial-time ap-
proximation algorithm with factor c log n, for some con-
stant c > 0, assuming P 6= NP . Consider an instance
of Set-Cover, with universe set U = {x1, x2, . . . , xn},
and collection of subsets S = {S1, S2, . . . , Sm}, with
Sj ⊆ U .

Our construction is based on a polygonal domain
P shown in Figure 5 (not to scale). The black lines in
the figure on the right are narrow corridors; we scale
the construction so that the corridors are width 1. We
use hollow circles to represent the m sets Sj , which lie
on a horizontal row at height L above the base corridor
(the “backbone” of a “comb” whose “teeth” correspond
to the sets Sj), of width O(L). The n elements xi

are represented by hollow circles closely spaced along
a horizontal line at height L + 3mL above the base.
(The circles are not part of the construction – corridors

remain straight at their crossings.) Corridors link Sj

with each element xi ∈ Sj . In the right figure, it is
not possible to discern the connections, so we spread
out the xi’s in the middle corridor. Here, the distance
of 3mL from sets to elements has been distorted – we
are depicting the fact that all of the crossings among
the corridors are to take place at a height of (about)
3mL above the sets. In addition, in the middle figure
we highlight in red one additional corridor, the “back
hallway”, extending from each xi to the base. Finally,
the left figure zooms in on vicinity of an element xi,
showing the presence of a line segment obstacle/hole,
ab. The shaded region, Ri, is the locus of points with
the corridors incident on xi that see a point on the right
side of ab, very close to a; all of the left side of ab is seen
along the back hallway associated with xi.

In order for a watchman to see the base corridor,
he must visit the base. In order to visit each of the
visibility polygons Ri, a watchman must venture up to
the Sj level of at least one set Sj that contains xi. While
corridors cross, they do so at positions that are very far
above the Sj ’s – so far that it is surely not worth it to
travel there (as a watchman can traverse the base and go
up each of them corridors to every single set Sj at a cost
of only about O(L) + 2mL). Thus, an approximating
watchman route must traverse the base corridor, and
selectively venture up to the Sj level in other corridors,
in order to yield a covering of the xi’s. The length of the
tour is roughly O(L)+2kL, if the watchman ventures up
to k sets Sj to see all of the domain (in which case the
Sj ’s form a cover). Thus, an approximating watchman
tour better than factor c log n would imply a similar
approximation factor for set cover. �
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