6.2. Independent Random Variables

The random variables \(X \) and \(Y \) are said to be independent if for any two sets of real numbers \(A \) and \(B \), \(P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\} \). Another way to define random variables \(X \) and \(Y \) to be independent is that the conditional distribution of \(X \) given \(Y = y \) is irrelevant to the value of \(y \), and equals the marginal distribution of \(X \); and the conditional distribution of \(Y \) given \(X = x \) equals the marginal distribution of \(Y \). From the definition of conditional distribution, this is equivalent to \(f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)} = f_X(x) \). Therefore

Their joint cdf is the product of their marginal cdfs \(f(x, y) = f_X(x)f_Y(y) \).

Proposition 2.1: The continuous (discrete) random variables \(X \) and \(Y \) are independent if and only if their joint probability density (mass) function can be expressed as \(f_{X,Y}(x, y) = h(x)g(y), -\infty < x < \infty, -\infty < y < \infty \).

If two random variables \(X \) and \(Y \) are independent, functions of \(X \) are independent of functions of \(Y \).

If two random variables \(X \) and \(Y \) are independent, expectations of the product of a function of \(X \) and of a function of \(Y \) are the product of the expectations.

Example 2f. If the joint density function of \(X \) and \(Y \) is \(f_{X,Y}(x, y) = 24xy, 0 < x < 1, 0 < y < 1, 0 < x + y < 1 \), and zero otherwise, are \(X \) and \(Y \) independent?

Example 2h. Let \(X, Y, \) and \(Z \) be independent and uniformly distributed over \(0,1 \). Compute \(P\{X < YZ\} \).

6.3. Sums of Independent Random Variables

In a gambling problem, let \(X \) be the winnings from one play of a game of chance and have pdf \(f_X \), and \(Y \) be the winnings from one play of another game of chance with pdf \(f_Y \), with \(X \) and \(Y \) independent. The random variable \(S = X + Y \) represents the total winnings from the two games.

Then \(F_S(s) = F_{X+Y}(s) = P\{X + Y \leq s\} = \int_{-\infty}^{s} F_X(s-y)f_Y(y)dy \). Further, \(f_{X+Y}(s) = \int_{-\infty}^{s} f_X(s-y)f_Y(y)dy \).

Example 3a. Sum of two independent uniform random variables. If \(X \) and \(Y \) are two independent random variables, both uniformly distributed on \((0,1)\) calculate the probability density of \(S = X + Y \).
Example 3e. Sums of independent Poisson random variables. If X and Y are independent Poisson random variables with respective parameters λ_1 and λ_2, compute the distribution of $X + Y$.

Proposition 3.1.
If X and Y are independent gamma random variables with respective parameters (s, λ) and (t, λ), then $S = X + Y$ is a gamma distribution with parameters $(s + t, \lambda)$.

If $X_i, i = 1, \ldots, n$ are independent gamma random variables with respective parameters (t_i, λ), then $S_n = \sum_{i=1}^{n} X_i$ is gamma with parameters $(\sum_{i=1}^{n} t_i, \lambda)$.

Special cases of Gamma distribution

- **Gamma(1,2/2):** Chi-Squared distribution with n degrees of freedoms
- **Gamma(1,\lambda):** Exponential distribution with parameter λ

Example 3b. Let X_1, X_2, \ldots, X_n be n independent exponential random variable, then $S = X_1 + X_2 + \ldots + X_n$ is a gamma random variable with parameters (n, λ)

Proposition 3.2.
If $X_i, i = 1, \ldots, n$ are independent normally distributed random variables with respective parameters (μ_i, σ_i^2), then $S_n = \sum_{i=1}^{n} X_i$ is normal with expected value $\sum_{i=1}^{n} \mu_i$ and variance $\sum_{i=1}^{n} \sigma_i^2$.

End of handout