AMS 210 Practice Final A Prof Tucker

1. Consider the following growth model $S' = 1.2S - .4T$, $T' = .2S + .6T$
 a) Find the eigenvalues and vectors for the associated matrix A.
 b) Write A in the form UDU^{-1}

2. Given $Ax = b$, where $A = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 1 & 1 \\ 1 & -5 & 5 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} -5 & -5 & 1 \\ -3 & -5/2 & 1/2 \\ -2 & -3/2 & 1/2 \end{bmatrix}$
 a) Find x when $b = [100, 100, 100]$.
 b) If b_2, the second component of right-side vector b, is increased by 10, how will x_1, the first component in the solution x, change?
 c) Give the LU decomposition of A and write A as a sum of simple matrices.
 d) What is the determinant of A? Explain how you found it from part c).

3. Find the steady vector p, such that $Ap = p$ for the following Markov chain matrix

\[
A = \begin{bmatrix}
1/2 & 1/2 & 0 & 0 & 0 \\
1/2 & 1/4 & 1/2 & 0 & 0 \\
0 & 1/4 & 1/4 & 1/2 & 0 \\
0 & 0 & 1/4 & 1/4 & 1/2 \\
0 & 0 & 0 & 1/4 & 1/2
\end{bmatrix}
\]

4. a) Find the condition number of $A = \begin{bmatrix} 5 & -2 \\ -6 & 3 \end{bmatrix}$ using the sum norm.
 b) If the 5 in A is changed to 4 to get A', give bound (using the sum norm) on the ratio $|e|/|x+e|$, where x is the solution to $Ax = b$ for some b, and $x+e$ is the solution to $A'(x+e) = b$.

5. Suppose that the first and fifth state in the Markov chain in Question #3 are made into absorbing states.
 If Q is the submatrix of non-absorbing states (states 2,3,4), then $N=(I-Q)^{-1}=\begin{bmatrix} 28 & 24 & 16 \\ 12 & 36 & 24 \\ 4 & 12 & 28 \end{bmatrix}$
 If you start in the middle state (state 3 in the original Markov chain),
 a) What is the expected number of times you visit state 2?
 b) What is the expected number of rounds before you are absorbed in states 1 or 5
 c) What is the probability of being absorbed in state 5?
6. Supply the following information about $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & -1 \\ -3 & -1 & 1 & 8 \\ -1 & 1 & 1 & 6 \end{bmatrix}$

a) The basis for the range of \mathbf{A}.

b) The basis for the null space of \mathbf{A}.

c) Constraint(s) on vectors in the range of \mathbf{A}.

d) The rank of \mathbf{A}.

7. Which of the following properties guarantees that the 4-by-4 matrix \mathbf{A} is invertible, which guarantee that \mathbf{A} is not invertible (possibly, some may guarantee neither).

a) The range of \mathbf{A} has dimension 4.

b) The determinant of \mathbf{A} equals 0.

c) The null space of \mathbf{A}^T has dimension 1.

d) The rows of \mathbf{A} are linearly independent.

e) The columns of \mathbf{A} are linearly dependent.

8. In a medical experiment, levels of Drug A and Drug B are set and the level of protein P in the blood is measured. The data is:

<table>
<thead>
<tr>
<th>Protein A</th>
<th>Drug A</th>
<th>Drug B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-3</td>
</tr>
</tbody>
</table>

a) For the regression model $P = qA + rB + s1$, find the pseudoinverse of the coefficient matrix \mathbf{A} for q, r and s (recall that s's column is all 1's), and then find the values of the regression coefficients $q, r,$ and s (Hint: columns are orthogonal on the right side of the regression equation).

b) What is the correlation coefficient between drug A and drug B?
1. Consider the following growth model \(S' = 1.3S - .2T, T' = .15S + .9T \)
 a) Find the eigenvalues and vectors for the associated matrix \(A \).
 b) Write \(A \) in the form \(\text{UDU}^{-1} \).

2. Given \(Ax = b \) where \(A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 4 \\ 1 & 4 & 3 \end{bmatrix} \) and \(A^{-1} = \begin{bmatrix} 5/2 & -1 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ -3/2 & 1 & -1/2 \end{bmatrix} \)
 a) Find \(x \) when \(b = [200, 200, 200] \).
 b) If \(b_1 \), the first component of right-side vector \(b \), is increased by 1, how will \(x_3 \), the third component in the solution \(x \), change?
 c) Give the LU decomposition of \(A \) and write \(A \) as a sum of simple matrices.
 d) What is the determinant of \(A \)? Explain how you found it from partc).

3. Find the steady vector \(p \), such that \(Ap = p \) for the following Markov chain matrix
 \[
 A = \begin{bmatrix}
 1/3 & 1/3 & 0 & 0 & 0 \\
 2/3 & 1/2 & 1/3 & 0 & 0 \\
 0 & 1/6 & 1/2 & 1/3 & 0 \\
 0 & 0 & 1/6 & 1/2 & 2/3 \\
 0 & 0 & 0 & 1/6 & 1/3 \\
 \end{bmatrix}
 \]
 a) Find the condition number of \(A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \) using the sum norm.
 b) If the 3 in \(A \) is changed to 2 to get \(A' \), give bound (using the sum norm) on the ratio \(|e|/|x+e| \), where \(x \) is the solution to \(Ax = b \) for some \(b \), and \(x+e \) is the solution to \(A'(x+e) = b \).

4. Suppose that the first and fifth state in the Markov chain in Question #3 are made into absorbing states.
 If \(Q \) is the submatrix of non-absorbing states (states 2,3,4), then \(N=(I-Q)^{-1}=1/5 \begin{bmatrix} 14 & 12 & 8 \\ 6 & 18 & 12 \\ 2 & 6 & 14 \end{bmatrix} \)
 If you start in the middle state (state 3 in the original Markov chain),
 a) What is the expected number of times you visit state 4?
 b) What is the expected number of rounds before you are absorbed in states 1 or 5?
 c) What is the probability of being absorbed in state 1?
6. Supply the following information about \(A = \begin{bmatrix} 2 & 0 & 1 & 6 \\ 2 & 4 & 3 & 2 \\ 1 & 3 & 2 & 0 \end{bmatrix} \)

a) Columns generating the range of \(A \).
b) Vector(s) generating the null space of \(A \).
c) Constraint(s) on vectors in the range of \(A \).
d) The rank of \(A \).

7. Which of the following properties guarantees that the \(n \)-by-\(n \) matrix \(A \) is invertible, which guarantee that \(A \) is not invertible (possibly, some may guarantee neither).

a) \(\text{Rank}(A) = n \).
b) The dimension of the column space equals the dimension of the row space.
c) The null space of \(A^T \) has dimension 0.
d) The columns of \(A \) are linearly dependent.
e) The matrix \(A^T A \) is invertible.

8. A statistical experiment is run on a machine that makes paper bags. The settings of dial A and dial B effect the quality of the bags. We use the regression model \(z = qx + ry + s \), where \(z \) is the quality of a bag, \(x \) is dial A's setting, \(y \) is dial B's setting. The results of the experiment are

\[
\begin{array}{ccc}
2 & x & y \\
4 & 0 & 0 \\
5 & 4 & 1 \\
9 & -2 & -1 \\
8 & 0 & -3 \\
4 & -2 & 3 \\
\end{array}
\]

a) For the regression model \(P = qA + rB + s1 \), find the pseudoinverse of coefficient matrix \(A \) for \(q, r \) and \(s \) (recall that \(s \)'s column is all 1's), and then find the values of the regression coefficients \(q, r, \) and \(s \) (Hint: columns are orthogonal on the right side of the regression equation).
b) What is the correlation coefficient between \(x \) and \(z \) (note: these two columns are NOT orthogonal)?