1. a) Show a minimal face coloring of this graph? Explain why fewer colors will not suffice.
 b) Show a minimal edge coloring of this graph? Explain why fewer colors will not suffice.

2. Re-state the following statement about a planar graph G in the dual: If G is a planar graph with every vertex of degree at least 4, then G has at least two faces with bdy ≤ 5. (JUST RESTATE FOR DUAL)

3. Find the chromatic polynomial of the following graph at the right.
4. What is the effect in the dual G^* when the following operations are made in the planar graph G
 a) Delete a vertex of G of degree 2 b) Contract a face of G with 5 boundary edges.

5. Suppose that a graph G has two different circuits C and C' that each contain the edge e. Show that G must have a third circuit C'' that does not contain e. That is, explain how some of edges in C and C' can be used to construct a new circuit that does not contain e. Do not give an example but rather a general argument of how to construct such a C''. A general picture may help.

6. Show if a cubic (deg=3), planar graph G is face 3-colorable, then every vertex has even degree in the dual. YOU CANNOT CITE ANY THEOREMS.

7. If G is a simple, connected planar graph with all deg ≥ 3 and less than 6 faces, prove that G has a triangular face (bdy = 3). You may only assume Euler's formula $n-m+f=2$; prove everything else yourself.