
Some Basic Results in Probability & Statistics
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• Statistical Estimation

• Statistical Inference about Normal Disbributions
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Linear Algebra

• Summation and Product Operators

n
∑

i=1

xi = x1 + x2 + · · · + xn;
n

∏

i=1

Yi = Y1 · Y2 · · ·Yn

n
∑

i=1

p
∑

j=1

xij =
n

∑

i=1

{xi1+· · ·xip} = x11+· · ·x1p+· · ·+xn1+· · ·xnp

• Matrix: a rectangular display and organization of data. You

can treat matrix as data with two subscripts, e.g. xij , the first

subscript is row index and the second is the column index. We

note the matrix as Xn×p = (xij), and call it a n by p matrix.
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Matrix Operations

• Transpose: reverse the row and column index. So t(X)ij = xji.

• Summation: element-wise summation

• Product: for Xn×p = (xij); Bp×m = (βjk), their product Y =

XB = (yik) is a n by m matrix with yik =
∑p

j=1 xijβjk.

• Identity matrix I: square (n = p), diagonal equal to 1 and 0

elsewhere.

• Inverse: the product of a matrix X and its inverse X−1 is identity

matrix.

• Trace: for square matrix Xn×n, tr(X) =
∑n

i=1 xii.
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Some Notes about Matrix

• When doing matrix product XB, always make sure the number

of columns of X and rows of B are equal.

• Matrix product has orders, XB and BX are different. For in-

verse matrix we have XX−1 = X−1X = I. So only square

matrix has inverse.

• Only square matrix has trace, and tr(XB) = tr(BX).

• If X−1 = t(X), we call X an orthogonal matrix.
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Probability

• Sample space, events (sets) A,B

• Basic rules

Pr(Ω) = 1; Pr(Φ) = 0

Pr(A
⋃

B) = Pr(A) + Pr(B) − Pr(A
⋂

B)

Pr(A
⋂

B) = Pr(A)Pr(B|A) = Pr(B) Pr(A|B)

• Complementary events: Pr(Ā) = 1 − Pr(A)
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Random Variables

• A mapping (function) Y from sample space to R1. For continu-

ous random variables, the distribution and density functions are

defined as F (y) = Pr(Y ≤ y); f(y) = limε→0{F (y+ε)−F (y)}/ε.

• Joint, Marginal, and Conditional Probability Distributions

Pr(yi) =
∑

j

Pr(yi, zj); Pr(yi|zj) = Pr(yi, zj)/ Pr(zj)

• Expectation: E(Y ) =
∑

i yi Pr(yi) =
∫

yf(y)dy

• Variance: V ar(Y ) = E[Y − E(Y )]2 = E(Y 2) − E(Y )2
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Random Variables: Contd.

• Covariance: Cov(Y, Z) = E[Y − E(Y )][Z − E(Z)] = E(Y Z) −
E(Y )E(Z)

• Correlation: ρ(Y, Z) = Cov(Y,Z)√
V ar(Y )V ar(Z)

• Independent Random Variables

Y and Z are independent ⇔ Pr(yi, zj) = Pr(yi) Pr(zj)

⇒ Cov(Y, Z) = 0

• Central Limit Theorem: If Y1, · · · , Yn are iid (independent and

identically distributed) random variables with mean µ and vari-

ance σ2, then the sample mean Ȳ =
∑n

i=1 Yi/n is approximately

N(µ, σ2/n) when the sample size n is reasonably large.

8

Common Statistical Distribution

• Normal Distribution N(µ, σ2): density 1√
2πσ2

exp{− (y−µ)2

2σ2 }, where

µ and σ2 are the mean and variance for Y . We have E(Y ) = µ,

E(Y − µ)2 = σ2, E(Y − µ)4 = 3σ4. More generally

E(Y − µ)2k−1 = 0; E(Y − µ)2k = σ2k(2k − 1)!!

where (2k − 1)!! = (2k − 1) × (2k − 3) × · · ·× 3 × 1.

• Linear functions of normal random variables are still normal.

(Y − µ)/σ is standard normal with mean 0 and variance 1. φ(·)
and Φ(·) are commonly used to code the standard normal density

and distribution functions.
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Common Statistical Distribution: Contd.

• χ2 Random Variable: χ2(n) =
∑n

i=1 z2
i , where zi are iid stan-

dard normal random variables and n is called the degree of free-

dom. We have

E(χ2(n)) = n; Var(χ2(n)) = 2n

• t Random Variable: t(n) = z/
√

χ2(n)/n, where z is standard

normal and independent of χ2(n).

• F Random Variable: F (n,m) = χ2(n)/n
χ2(m)/m , where χ2(n) and

χ2(m) are two independent chi2 random variables.
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Common Distribution Densities
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Statistical Estimations

• Estimator Properties: an estimator θ̂ is a function of the sam-

ple observations (y1, · · · , yn), which estimates some parameter θ

associated with the distribution of Y .

• Estimation Technique:

– Maximum Likelihood Estimation

– Least Squares Estimation

– A lot of others ......
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Estimator Properties

• Unbiasedness: E(θ̂) = θ

• Consistency: limn→∞ Pr(|θ̂ − θ| ≥ ε) = 0; ∀ε > 0

• Sufficiency: Pr(y1, · · · , yn|θ̂) doesn’t depend on θ

• Minimum variance estimator : Var(θ̂) ≤ Var(θ̃); ∀θ̃
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Maximum Likelihood Estimators (MLE)

Maximum Likelihood is a general method of finding estimators. Sup-

pose (y1, · · · , yn) are n iid samples from distribution f(y; θ) with

parameter θ. The “probability of observing these samples” is

L(θ) =
n

∏

i=1

f(yi; θ);

which is called the likelihood function. Maximize L(θ) with respect

to θ yields the MLE

θ̂ = argmax
θ

L(θ).

Under very general conditions, MLE’s are consistent and sufficient.
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MLE for Normal Distributions

Suppose (y1, · · · , yn) are iid samples from normal distribution N(µ, σ2).

What’s the MLE for parameters µ and σ2?

L(µ, σ2) =
n

∏

i=1

1√
2πσ2

exp

{

−
(yi − µ)2

2σ2

}

Maximize L(µ, σ2) is equivalent to maximize log(L(µ, σ2)), the “Log

Likelihood”, and we can easily get the following MLE:

µ̂ =

∑n
i=1 yi

n
; σ̂2 =

∑n
i=1(yi − ȳ)2

n
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Least Squares Estimators (LS)

LS is another general method of finding estimators. The sample

observations are assumed to be of the form yi = fi(θ) + εi; i =

1, · · · , n, where fi(θ) is a known function of the parameter θ and

the εi are random variables, usually assumed to have expectation

E(εi) = 0. LS estimators are obtained by minimizing the sum of

squares

Q =
n

∑

i=1

(yi − fi(θ))
2

Here L2 distance is used; more generally Lq distance can be consid-

ered.
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Hypothesis Testing

Hypothesis testing is concerned with the state of population, which

is usually characterized by some parameters, e.g. we’re interested in

testing the mean and variance of a normal distribution. There are

several components

• Null hypothesis H0: the postulated “default” state (value)

• Alternative hypothesis Ha: “abnormal” state

• Test statistics: the empirical information from observed data

(usually some functions of data)

• Rejection rules: Type-I error α = Pr(reject H0|H0 true) and

Type-II error 1 − β = Pr(don’t reject H0|H0 false)
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P-value

P-value for a hypothesis test is defined as the probability that

the sample outcome is more extreme than the observed one

when H0 is true.

Large P-values support H0 while small P-values support Ha. A test

can be carried out by comparing the P-value with the specified type-I

error α. If P-value < α, then H0 is rejected.

Note that the calculation of P-value depends on the rejection rules:

the selection of rejection regions, which defines what is “more ex-

treme”.

P-value is usually a function of the test statistic. It is just another

test statistic and has uniform distribution when H0 is true.
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One Sample Inference about Normal Distribution

• Test H0 : σ = σ0 vs Ha : σ )= σ0, under H0,

T =

∑n
i=1(yi − ȳ)2

σ2
0

∼ χ2(n − 1).

Control Type-I error at level α, rejection regions are constructed

as (χ2(α/2, n − 1), χ2(1 − α/2, n − 1)).

• Test H0 : µ = µ0 vs Ha : µ )= µ0, under H0,

T =
√

n − 1
µ̂ − µ0

σ̂
.

Control Type-I error at α, choose rejection regions as (t(α/2, n−
1), t(1−α/2, n−1)). This test is commonly known as one sample

t-test.
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