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Some Basic Results in Probability & Statistics'
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e Statistical Inference about Normal Disbributions

Linear Algebra.

e Summation and Product Operators
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e Matrix: a rectangular display and organization of data. You
can treat matrix as data with two subscripts, e.g. x;;, the first
subscript is row index and the second is the column index. We
note the matrix as X, xp = (2;), and call it a n by p matrix.



Matrix Operations I

Transpose: reverse the row and column index. So ¢(X);; = xj;.
Summation: element-wise summation

Product: for X,,x, = (2i;); Bpxm = (Bjk), their product ¥ =
X B = (y;r) is a n by m matrix with y;; = Z§:1 ziiBjk-
Identity matrix I: square (n = p), diagonal equal to 1 and 0

elsewhere.

Inverse: the product of a matrix X and its inverse X ~! is identity
matrix.

Trace: for square matrix X, ., tr(X) = > 1| T

Some Notes about Matrix'

When doing matrix product X B, always make sure the number
of columns of X and rows of B are equal.

Matrix product has orders, X B and BX are different. For in-
verse matrix we have XX ! = X~!X = I. So only square

matrix has inverse.
Only square matrix has trace, and tr(XB) = tr(BX).

If X—1 =¢#(X), we call X an orthogonal matrix.



Probability I

e Sample space, events (sets) A,B

e Basic rules

Pr(?)=1; Pr(®)=0
AUB ) + Pr(B) — Pr(A(B)
Pr(A()B) = Pr(A)Pr(B|A) = Pr(B) Pr(A|B)

e Complementary events: Pr(A) = 1 — Pr(A)

Random Variables '

A mapping (function) Y from sample space to R'. For continu-

ous random variables, the distribution and density functions are
defined as F(y) = Pr(Y < v); f(y) = lime—o{F(y+€)—F(y)}/e.

Joint, Marginal, and Conditional Probability Distributions

= ZPr(yi,zj); Pr(yi|zj) = Pr(yi, z;)/ Pr(z;)

Expectation: E(Y) ="y Pr(y;) = [yf(y)
Variance: Var(Y) = E[Y — E(Y)]? = BE(Y?) — E(Y)2



Random Variables: Contd. '

Covariance: Cov(Y,Z) = E|lY —E(Y)||[Z - E(Z)]=E(YZ) —
E(Y)E(Z)

Cov(Y,2)
\/Var(Y)Var(Z)

Correlation: p(Y,Z) =
Independent Random Variables

Y and Z are independent <« Pr(y;, z;) = Pr(y;) Pr(z;)
= Cov(Y,Z)=0

Central Limit Theorem: If Y7,--- Y], are iid (independent and
identically distributed) random variables with mean p and vari-
ance o2, then the sample mean Y = 1" | Y;/n is approximately
N(p, 0% /n) when the sample size n is reasonably large.

Common Statistical Distribution'
1 (y—n)

Normal Distribution N (p, 02): density Wexp{— o

}, where

2
p and o2 are the mean and variance for Y. We have E(Y) = p,
E(Y — p)? =02, E(Y — u)* = 30*. More generally

EY —w?* 1 =0, BY —p? =% 2k - 1)
where (2k — 1)!! = (2k —1) x (2k —3) x --- x 3 x 1.

Linear functions of normal random variables are still normal.
(Y — p)/o is standard normal with mean 0 and variance 1. ¢(+)
and @(-) are commonly used to code the standard normal density

and distribution functions.
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Common Statistical Distribution: Contd.'

e x? Random Variable: x?(n) = Y7 | 27 , where z; are iid stan-

dard normal random variables and n is called the degree of free-
dom. We have

E(x*(n)) =n; Var(x*(n)) = 2n

e ¢ Random Variable: t(n) = z/y/x?(n)/n, where z is standard
normal and independent of x2(n).

e I Random Variable: F(n,m) = %, where x?(n) and

x2(m) are two independent chi? random variables.
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Common Distribution Densities'
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Statistical Estimations'

e Estimator Properties: an estimator 0 is a function of the sam-
ple observations (y1, - , yn), which estimates some parameter ¢
associated with the distribution of Y .

e Estimation Technique:

— Maximum Likelihood Estimation
— Least Squares Estimation

— A lot of others ......
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Estimator Properties I

Unbiasedness: E(0) = 0

Consistency: lim, .o Pr(|§ — 0] > ¢€) = 0; Ve > 0

Sufficiency: Pr(yi,--- ,yn|f) doesn’t depend on 6

~ ~

Minimum variance estimator : Var(d) < Var(d); V6
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Maximum Likelihood Estimators (MLE) I

Maximum Likelihood is a general method of finding estimators. Sup-
pose (y1,---,yn) are n iid samples from distribution f(y;60) with
parameter . The “probability of observing these samples” is

n

L) = [ f(wi; 0);
i=1
which is called the likelihood function. Maximize L(f#) with respect
to 6 yields the MLE

0 = argmax L(6).
6

Under very general conditions, MLE’s are consistent and sufficient.

MLE for Normal Distributions'

Suppose (y1,- -+ , yn) are iid samples from normal distribution N (u, o).
What’s the MLE for parameters p and o2?

Hono®) =[] s e { -0

202

Maximize L(u,0?) is equivalent to maximize log(L(u, 0?)), the “Log
Likelihood”, and we can easily get the following MLE:
> i1 Yi 52 — > iy —9)?

fi = =
n n




Least Squares Estimators (LS) I

LS is another general method of finding estimators. The sample
observations are assumed to be of the form y; = f;(0) + ¢; i =
1,-+-,n, where f;(0) is a known function of the parameter 6§ and
the €; are random variables, usually assumed to have expectation
E(e;) = 0. LS estimators are obtained by minimizing the sum of

squares
Q=" (y:— fi(0))?
i=1

Here Lo distance is used; more generally L, distance can be consid-
ered.
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Hypothesis Testing I

Hypothesis testing is concerned with the state of population, which
is usually characterized by some parameters, e.g. we're interested in
testing the mean and variance of a normal distribution. There are
several components

e Null hypothesis Hp: the postulated “default” state (value)
e Alternative hypothesis H,: “abnormal” state

e Test statistics: the empirical information from observed data
(usually some functions of data)

e Rejection rules: Type-I error a = Pr(reject Ho|Hgy true) and
Type-1T error 1 — 8 = Pr(don’t reject Hy|H false)
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P-value for a hypothesis test is defined as the probability that
the sample outcome is more extreme than the observed one

when Hj is true.

Large P-values support Hy while small P-values support H,. A test
can be carried out by comparing the P-value with the specified type-1
error . If P-value < a, then Hy is rejected.

Note that the calculation of P-value depends on the rejection rules:
the selection of rejection regions, which defines what is “more ex-

treme”.

P-value is usually a function of the test statistic. It is just another
test statistic and has uniform distribution when Hj is true.
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One Sample Inference about Normal Distribution'

e Test Hy: 0 =09 vs H, : 0 # 0¢, under Hy,

> i1 (Wi —9)°

2
99

T: NXQ(TL_]_>.

Control Type-I error at level «, rejection regions are constructed
as (x2(/2,n — 1), x*(1 — a/2,n — 1)).

o Test Hy: pu= g vs Hy : p # g, under Hy,

T =n_-1t—Ho

o

Control Type-I error at «, choose rejection regions as (t(a/2,n—
1),t(1—a/2,n—1)). This test is commonly known as one sample
t-test.
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