Some Basic Results in Probability \& Statistics

- Linear Algebra
- Probability
- Random Variables
- Common Statistical Distributions
- Statistical Estimation
- Statistical Inference about Normal Disbributions

2

Linear Algebra

- Summation and Product Operators

$$
\begin{gathered}
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n} ; \quad \prod_{i=1}^{n} Y_{i}=Y_{1} \cdot Y_{2} \cdots Y_{n} \\
\sum_{i=1}^{n} \sum_{j=1}^{p} x_{i j}=\sum_{i=1}^{n}\left\{x_{i 1}+\cdots x_{i p}\right\}=x_{11}+\cdots x_{1 p}+\cdots+x_{n 1}+\cdots x_{n p}
\end{gathered}
$$

- Matrix: a rectangular display and organization of data. You can treat matrix as data with two subscripts, e.g. $x_{i j}$, the first subscript is row index and the second is the column index. We note the matrix as $X_{n \times p}=\left(x_{i j}\right)$, and call it a n by p matrix.

Matrix Operations

- Transpose: reverse the row and column index. So $t(X)_{i j}=x_{j i}$.
- Summation: element-wise summation
- Product: for $X_{n \times p}=\left(x_{i j}\right) ; B_{p \times m}=\left(\beta_{j k}\right)$, their product $Y=$ $X B=\left(y_{i k}\right)$ is a n by m matrix with $y_{i k}=\sum_{j=1}^{p} x_{i j} \beta_{j k}$.
- Identity matrix I : square $(n=p)$, diagonal equal to 1 and 0 elsewhere.
- Inverse: the product of a matrix X and its inverse X^{-1} is identity matrix.
- Trace: for square matrix $X_{n \times n}, \operatorname{tr}(X)=\sum_{i=1}^{n} x_{i i}$.

Some Notes about Matrix

- When doing matrix product $X B$, always make sure the number of columns of X and rows of B are equal.
- Matrix product has orders, $X B$ and $B X$ are different. For inverse matrix we have $X X^{-1}=X^{-1} X=I$. So only square matrix has inverse.
- Only square matrix has trace, and $\operatorname{tr}(X B)=\operatorname{tr}(B X)$.
- If $X^{-1}=t(X)$, we call X an orthogonal matrix.

Probability

- Sample space, events (sets) A,B
- Basic rules

$$
\begin{gathered}
\operatorname{Pr}(\Omega)=1 ; \quad \operatorname{Pr}(\Phi)=0 \\
\operatorname{Pr}(A \bigcup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \bigcap B) \\
\operatorname{Pr}(A \bigcap B)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A)=\operatorname{Pr}(B) \operatorname{Pr}(A \mid B)
\end{gathered}
$$

- Complementary events: $\operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A)$

Random Variables

- A mapping (function) Y from sample space to R^{1}. For continuous random variables, the distribution and density functions are defined as $F(y)=\operatorname{Pr}(Y \leq y) ; f(y)=\lim _{\epsilon \rightarrow 0}\{F(y+\epsilon)-F(y)\} / \epsilon$.
- Joint, Marginal, and Conditional Probability Distributions

$$
\operatorname{Pr}\left(y_{i}\right)=\sum_{j} \operatorname{Pr}\left(y_{i}, z_{j}\right) ; \quad \operatorname{Pr}\left(y_{i} \mid z_{j}\right)=\operatorname{Pr}\left(y_{i}, z_{j}\right) / \operatorname{Pr}\left(z_{j}\right)
$$

- Expectation: $E(Y)=\sum_{i} y_{i} \operatorname{Pr}\left(y_{i}\right)=\int y f(y) d y$
- Variance: $\operatorname{Var}(Y)=E[Y-E(Y)]^{2}=E\left(Y^{2}\right)-E(Y)^{2}$

Random Variables: Contd.

- Covariance: $\operatorname{Cov}(Y, Z)=E[Y-E(Y)][Z-E(Z)]=E(Y Z)-$ $E(Y) E(Z)$
- Correlation: $\rho(Y, Z)=\frac{\operatorname{Cov}(Y, Z)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}(Z)}}$
- Independent Random Variables

$$
\begin{aligned}
Y \text { and } Z \text { are independent } & \Leftrightarrow \operatorname{Pr}\left(y_{i}, z_{j}\right)=\operatorname{Pr}\left(y_{i}\right) \operatorname{Pr}\left(z_{j}\right) \\
& \Rightarrow \operatorname{Cov}(Y, Z)=0
\end{aligned}
$$

- Central Limit Theorem: If Y_{1}, \cdots, Y_{n} are iid (independent and identically distributed) random variables with mean μ and variance σ^{2}, then the sample mean $\bar{Y}=\sum_{i=1}^{n} Y_{i} / n$ is approximately $N\left(\mu, \sigma^{2} / n\right)$ when the sample size n is reasonably large.

Common Statistical Distribution

- Normal Distribution $N\left(\mu, \sigma^{2}\right)$: density $\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}$, where μ and σ^{2} are the mean and variance for Y. We have $E(Y)=\mu$, $E(Y-\mu)^{2}=\sigma^{2}, E(Y-\mu)^{4}=3 \sigma^{4}$. More generally

$$
E(Y-\mu)^{2 k-1}=0 ; \quad E(Y-\mu)^{2 k}=\sigma^{2 k}(2 k-1)!!
$$

where $(2 k-1)!!=(2 k-1) \times(2 k-3) \times \cdots \times 3 \times 1$.

- Linear functions of normal random variables are still normal. $(Y-\mu) / \sigma$ is standard normal with mean 0 and variance 1. $\phi(\cdot)$ and $\Phi(\cdot)$ are commonly used to code the standard normal density and distribution functions.

Common Statistical Distribution: Contd.

- χ^{2} Random Variable: $\chi^{2}(n)=\sum_{i=1}^{n} z_{i}^{2}$, where z_{i} are iid standard normal random variables and n is called the degree of freedom. We have

$$
E\left(\chi^{2}(n)\right)=n ; \quad \operatorname{Var}\left(\chi^{2}(n)\right)=2 n
$$

- t Random Variable: $t(n)=z / \sqrt{\chi^{2}(n) / n}$, where z is standard normal and independent of $\chi^{2}(n)$.
- F Random Variable: $F(n, m)=\frac{\chi^{2}(n) / n}{\chi^{2}(m) / m}$, where $\chi^{2}(n)$ and $\chi^{2}(m)$ are two independent $c h i^{2}$ random variables.

Common Distribution Densities

Statistical Estimations

- Estimator Properties: an estimator $\hat{\theta}$ is a function of the sample observations $\left(y_{1}, \cdots, y_{n}\right)$, which estimates some parameter θ associated with the distribution of Y.
- Estimation Technique:
- Maximum Likelihood Estimation
- Least Squares Estimation
- A lot of others

Estimator Properties

- Unbiasedness: $E(\hat{\theta})=\theta$
- Consistency: $\lim _{n \rightarrow \infty} \operatorname{Pr}(|\hat{\theta}-\theta| \geq \epsilon)=0 ; \forall \epsilon>0$
- Sufficiency: $\operatorname{Pr}\left(y_{1}, \cdots, y_{n} \mid \hat{\theta}\right)$ doesn't depend on θ
- Minimum variance estimator : $\operatorname{Var}(\hat{\theta}) \leq \operatorname{Var}(\tilde{\theta}) ; \forall \tilde{\theta}$

Maximum Likelihood Estimators (MLE)

Maximum Likelihood is a general method of finding estimators. Suppose $\left(y_{1}, \cdots, y_{n}\right)$ are n iid samples from distribution $f(y ; \theta)$ with parameter θ. The "probability of observing these samples" is

$$
L(\theta)=\prod_{i=1}^{n} f\left(y_{i} ; \theta\right)
$$

which is called the likelihood function. Maximize $L(\theta)$ with respect to θ yields the MLE

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} L(\theta) .
$$

Under very general conditions, MLE's are consistent and sufficient.

MLE for Normal Distributions

Suppose $\left(y_{1}, \cdots, y_{n}\right)$ are iid samples from normal distribution $N\left(\mu, \sigma^{2}\right)$. What's the MLE for parameters μ and σ^{2} ?

$$
L\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right\}
$$

Maximize $L\left(\mu, \sigma^{2}\right)$ is equivalent to maximize $\log \left(L\left(\mu, \sigma^{2}\right)\right)$, the "Log Likelihood", and we can easily get the following MLE:

$$
\hat{\mu}=\frac{\sum_{i=1}^{n} y_{i}}{n} ; \quad \hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n}
$$

Least Squares Estimators (LS)

LS is another general method of finding estimators. The sample observations are assumed to be of the form $y_{i}=f_{i}(\theta)+\epsilon_{i} ; i=$ $1, \cdots, n$, where $f_{i}(\theta)$ is a known function of the parameter θ and the ϵ_{i} are random variables, usually assumed to have expectation $E\left(\epsilon_{i}\right)=0$. LS estimators are obtained by minimizing the sum of squares

$$
Q=\sum_{i=1}^{n}\left(y_{i}-f_{i}(\theta)\right)^{2}
$$

Here L_{2} distance is used; more generally L_{q} distance can be considered.

Hypothesis Testing

Hypothesis testing is concerned with the state of population, which is usually characterized by some parameters, e.g. we're interested in testing the mean and variance of a normal distribution. There are several components

- Null hypothesis H_{0} : the postulated "default" state (value)
- Alternative hypothesis H_{a} : "abnormal" state
- Test statistics: the empirical information from observed data (usually some functions of data)
- Rejection rules: Type-I error $\alpha=\operatorname{Pr}\left(\right.$ reject $H_{0} \mid H_{0}$ true) and Type-II error $1-\beta=\operatorname{Pr}$ (don't reject $H_{0} \mid H_{0}$ false)

P-value

P-value for a hypothesis test is defined as the probability that the sample outcome is more extreme than the observed one when H_{0} is true.

Large P -values support H_{0} while small P -values support H_{a}. A test can be carried out by comparing the P -value with the specified type-I error α. If P -value $<\alpha$, then H_{0} is rejected.

Note that the calculation of P-value depends on the rejection rules: the selection of rejection regions, which defines what is "more extreme".

P -value is usually a function of the test statistic. It is just another test statistic and has uniform distribution when H_{0} is true.

One Sample Inference about Normal Distribution

- Test $H_{0}: \sigma=\sigma_{0}$ vs $H_{a}: \sigma \neq \sigma_{0}$, under H_{0},

$$
T=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1)
$$

Control Type-I error at level α, rejection regions are constructed as $\left(\chi^{2}(\alpha / 2, n-1), \chi^{2}(1-\alpha / 2, n-1)\right)$.

- Test $H_{0}: \mu=\mu_{0}$ vs $H_{a}: \mu \neq \mu_{0}$, under H_{0},

$$
T=\sqrt{n-1} \frac{\hat{\mu}-\mu_{0}}{\hat{\sigma}} .
$$

Control Type-I error at α, choose rejection regions as ($t(\alpha / 2, n-$ $1), t(1-\alpha / 2, n-1))$. This test is commonly known as one sample t-test.

