
Outline Variation Stationarity Time-plot Transformations Trends Seasonal variation ACF

2. Basic Descriptive Techniques

Haipeng Xing

State University of New York, Stony Brook

Haipeng Xing, State University of New York, Stony Brook

Outline Variation Stationarity Time-plot Transformations Trends Seasonal variation ACF

Outline

1 Types of variation

2 Stationary time series

3 The time plot

4 Transformations

5 Analysing series that contain a trend and no seasonal variation

6 Analysing Series that Contain Seasonal Variation

7 Autocorrelation and the Correlogram

Haipeng Xing, State University of New York, Stony Brook



Outline Variation Stationarity Time-plot Transformations Trends Seasonal variation ACF

Types of variation

Traditional methods of time-series analysis are mainly concerned with
decomposing the variation in a series into components representing trend,
seasonal variation and other cyclic changes. Any remaining variation is
attributed to ‘irregular’ fluctuations.

Trend. This may be loosely defined as ‘long-term change in the
mean level’. A di�culty with this definition is deciding what is
meant by ‘long term’, hence we must take into account the number
of observations available and make a subjective assessment of what
is meant by the phrase ‘long term’.

Seasonal variations. Some time series exhibit variations at a fixed
period.

Irregular fluctuations. After trend and cyclic variations have been
removed from a set of data, we are left with a series of residuals that
may or may not be ‘random’.
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Examples: Financial time series
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Figure 2.1: Daily returns of the adjusted closing prices of S&P500 index from

January 4, 1995 to December 30, 2016.

The mean of the return series seems to be stable with an average return
of approximately zero, but the volatility of data changes over time.
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Stationary time series

A time series is said to be stationary if there is no systematic
change in mean (no trend), if there is no systematic change in
variance and if strictly periodic variations have been removed. In
other words, the properties of one section of the data are much like
those of any other section.

Strictly speaking, it is very often that time series data violate the
stationarity property. However, the phrase is often used for time
series data meaning that they exhibit characteristics that suggest a
stationary model can sensibly be fitted.

Much of the probability theory of time series is concerned with
stationary time series, and for this reason time series analysis often
requires one to transform a non-stationary series into a stationary
one so as to use this theory.
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The time plot

The first, and most important, step in any time-series analysis is to
plot the observations against time. This graph, called a time plot,
will show up important features of the series such as trend,
seasonality, outliers and discontinuities. The plot is vital, both to
describe the data and to help in formulating a sensible model.

Plotting a time series is not as easy as it sounds. The choice of
scales, the size of the intercept and the way that the points are
plotted (e.g. as a continuous line or as separate dots or crosses) may
substantially a↵ect the way the plot ‘looks’, and so the analyst must
exercise care and judgement.
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Transformations: Box-Cox transformation

There are several reasons to transform the data.

To stablize the variance.

To make the seasonal e↵ect additive

To make the data normally distributed

Given an observed time series {xt} and a transformation parameter �,
the the Box–Cox transformation of the series is given by

yt =

⇢
(x

�
t � 1)/� � 6= 0

log xt � = 0.

The ‘best’ value of � can be ‘guesstimated’, or alternatively estimated by
a proper inferential procedure, such as maximum likelihood.
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Analysing series with trend but no seasonal
variations

Curve fitting. A traditional method of dealing with non-seasonal
data that contain a trend, particularly yearly data, is to fit a simple
function of time such as a polynomial curve (linear, quadratic, etc.).
For example, a series Xt with global linear trend is given by

Xt = ↵+ �t+ ✏t,

where ↵, � are constants and ✏t denotes a random error term with
zero mean. Then the trend term is mt = ↵+ �t.
Filtering. Another way is to use a linear filter to converts one time
series, {xt}, into another, {yt}, by the linear operation

yt =

+sX

r=�q

arxt+r,

where {ar} is a set of weights with
P

ar = 1.
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Analysing series with trend but no seasonal
variations

Filtering with weights whose sum is 1 is often referred to as a
moving average. Moving averages are often symmetric with s = q

and aj = a�j .
The simplest example of a symmetric smoothing filter is the simple

moving average, for which ar = 1/(2q + 1) for r = �q, . . . ,+q, and

the smoothed value of xt is given by

Sm(xt) =
1

2q + 1

+qX

r=�q

xt+r. (1)

Another symmetric example is provided by the case where the {ar}
are successive terms in the expansion of ( 12 + 1

2 )
2q
. Thus when

q = 1, the weights are a�1 = a+1 = 1
4 , a0 = 1

2 . As q gets large, the

weights approximate to a normal curve.

Question: How to choose the window size?
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Analysing series with trend but no seasonal
variations

Define B as the backward shift opterator such that Bxt = xt�1.

Example 1 (Backward operators)

Compute the series that results from the following operators: (a)
[1� 2B + 3B

2
]xt, (b) (1�B)(1� 3B)xt, (c) (1�B �B

2
+B

3
)xt (d)

1
1�↵BXt (|↵| < 1, ↵ 6= 0).

Di↵erencing. A special type of filtering is simply to di↵erence a
given time series until it becomes stationary, which is an integral
part of the so-called Box-Jenkins procedure.
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Analysing series with trend but no seasonal
variations

The di↵erencing operator can be written as r := 1�B. Then
rxt = (1�B)xt = xt � xt�1,
r2

xt = (1�B)

2
xt = (1�B)rxt = xt � 2xt�1 + xt�2, and

rj
xt = (1�B)

j
xt = rj�1rxt, j � 3.

For non-seasonal data, first-order di↵erencing is usually su�cient to
attain apparent stationarity. Here a new series, say {y2, . . . , yN}, is
formed from the original observed series, say {x1, . . . , xN}, by
yt = xt � xt�1 = rxt for t = 2, 3, . . . , N .

Occasionally second-order di↵erencing is required using the operator
r2.
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Analysing Series that Contain Seasonal Variation

Three seasonal models in common use
Additive seasonality: Xt = mt + St + ✏t

Multiplicative seasonality: Xt = mtSt + ✏t

Multiplicative seasonality and error: Xt = mtSt✏t

The seasonality indices {St} are usually assumed that St = St�s,
where s is the period of the cyclic behavior.

The indices {St} are usually normalized to that
Ps

t=1 St = 0 in the
additive case or

Qs
t=1 St = 1 in the multiplicative case.

The analysis of time series with seasonal variation depends on
whether the purpose is to measure the seasonal e↵ect and/or to
eliminate seasonality.
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Seasonal E↵ect Estimation and Elimination

Assume that the seasonal part has a period of d (i.e., St+d = St andPd
j=1 Sj = 0).

Moving average method: We first estimate the trend part by a
moving average filter running over a complete cycle so that the
e↵ect of the seasonality is averaged out. Depending on whether d is
odd or even, we perform one of the following two steps for
t = q + 1, . . . , n� q,

If d = 2q, Sm(xt) = 1
d (

1
2xt�q + xt�q+1 + · · ·+ xt+q�1 + 1

2xt+q).
If d = 2q + 1, Sm(xt) = 1

d (xt�q + xt�q+1 + · · ·+ xt+q�1 + xt+q).

The seasonal e↵ect can then be estimated by calculating
xt � Sm(xt) or xt/Sm(xt) for the additive or multiplicative case.

Seasonal di↵erencing: Use the dth di↵erencing of data
rd = xt � xt�d.
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Autocorrelation and the Correlogram

Sample autocorrelation coe�cients measure the correlation between
observations at di↵erent distances apart.

Given N observations x1, . . . , xN on a time series, we can find the
correlation between observations that are k steps apart, or the
autocorrelation coe�cient at lag k,

rk =

PN�k
t=1 (xt � x̄)(xt+k � x̄)

PN
t=1(xt � x̄)

2

where x̄ =

PN
t=1 xt

�
N .

rk can be calculated by autocovariance coe�cient at lag k,

ck =

1

N

N�kX

t=1

(xt � x̄)(xt+k � x̄)

We then compute rk = ck/c0 for k = 1, . . . ,M where M < N .
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Interpreting the correlogram

A correlogram is the plot of the sample autocorrelation coe�cients
rk against the lag k for k = 0, 1, . . . ,M , where M is usually much
less than N .

For example if N = 200, then the analyst might look at the first 20
or 30 coe�cients.

Note that r0 is always unity, but is still worth plotting for
comparative purposes. The correlogram may alternatively be called
the sample autocorrelation function (ac.f.).
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Interpreting the correlogram: Random series

Random series: A series of independent observations having the
same distribution. For large N , we expect to find that rk ⇡ 0 for all
non-zero values of k.
We can show that, for a random time series, rk, k � 1, is
approximately N(0, 1/N). Thus, if a time series is random, we can
expect 19 out of 20 of the values of rk to lie between ±1.96/

p
N .

As a result, it is common practice to regard any values of rk outside
these limits as being ‘significant’.
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Figure 2.2: A completely random series together with its correlogram. The

dotted lines in the correlogram are at ±1.96/
p
N . Values outside these lines

are said to be significantly di↵erent from zero.
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Interpreting the correlogram: Short-term series

Short-term series: Stationary series that exhibit short-term
correlation are characterized by large values of rk for small lags
followed by values of rk being approximately 0 for larger lags.

0 100 200 300 400

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

Time

S
e
ri

e
s

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Figure 2.3: A time series showing short-term correlation together with its

correlogram.
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Interpreting the correlogram: Non-stationary series

If a time series contains a trend, then the values of rk will not come
down to zero except for very large values of the lag. This is because
an observation on one side of the overall mean tends to be followed
by a large number of further observations on the same side of the
mean because of the trend.

A typical non-stationary time series together with its correlogram is
shown in Figure 2.4. Little can be inferred from a correlogram of
this type as the trend dominates all other features.

In fact the sample ac.f. {rk} is only meaningful for data from a
stationary time-series model and so any trend should be removed
before calculating {rk}.
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Interpreting the correlogram: Non-stationary series
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Figure 2.4: A non-stationary time series together with its correlogram.
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Interpreting the correlogram: Seasonal series

If a time series contains seasonal variation, then the correlogram will
also exhibit oscillation at the same frequency.

The top panel of Figure 2.5 shows the correlogram of the monthly
air temperature data shown in Figure 1.3. The sinusoidal pattern of
the correlogram is clearly evident, but for seasonal data of this type
the correlogram provides little extra information, as the seasonal
pattern is usually displayed in the time plot of the data.

If the seasonal variation is removed from seasonal data, then the
correlogram may provide useful information.
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Interpreting the correlogram: Seasonal series
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Figure 2.5: The correlograms of monthly observations on air temperature in

Anchorage, Alaska for the raw data (top) and for the seasonally adjusted data

(bottom).
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