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Stochastic processes and their properties

A stochastic process can be described as a statistical phenomenon
that evolves in time according to probabilistic laws. Mathematically,
a stochastic process is a collection of random variables that are
ordered in time and defined at a set of time points, which may be
continuous or discrete.

Most statistical problems are concerned with estimating the
properties of a population from a sample.

In time-series analysis, the order of observations is determined by
time and it is usually impossible to make more than one observation
at any given time.

We may regard the observed time series as just one example of the
infinite set of time series that might have been observed. This
infinite set of time series is called the ensemble, and every member
of the ensemble is a possible realization of the stochastic process.
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Stochastic processes and their properties

A simple way of describing a stochastic process is to give the moments of
the process. Denote the random variable at time t by X(t) if time is
continuous, and by Xt if time is discrete.

Mean: The mean function µ(t) is defined for all t by

µ(t) = E
⇥
X(t)

⇤

Variance: The variance function �2
(t) is defined for all t by

�2
(t) = Var

⇥
X(t)

⇤

Autocovariance: We define the acv.f. �(t1, t2) to e the covariance of
X(t1) with X(t2),

�(t1, t2) = E
�⇥
X(t1)� µ(t1)

⇤⇥
X(t2)� µ(t2)

⇤ 
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Stationary processes

A time series is said to be strictly stationary if the joint distribution
of X(t1), . . . , X(tk) is the same as the joint distribution of
X(t1 + ⌧), . . . , X(tk + ⌧) for all t1, . . . , tk, ⌧ .

Strict stationarity implies that for k = 1

µ(t) ⌘ µ, �2
(t) ⌘ �2

;

for k = 2,

�(⌧) = E
�⇥

X(t)� µ
⇤⇥
X(t+ ⌧)� µ

⇤ 
= Cov[X(t), X(t+ ⌧)],

which is called the autocovariance coe�cient at lag ⌧ .

The size of �(⌧) depends on the units in which X(t) is measured.
One usually standardizes the acv.f. to produce a function
autocorrelation function (ac.f.), which is defined by

⇢(⌧) = �(⌧)
�
�(0).

Haipeng Xing, State University of New York, Stony Brook
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Stationary processes

A process is called second-order stationary (or weakly stationary) if
its mean is constant and its acv.f. depends only on the lag, so that

E
⇥
X(t)

⇤
= µ

and
Cov

⇥
X(t), X(t+ ⌧)

⇤
= �(⌧)

This weaker definition of stationarity will generally be used from now
on.

Haipeng Xing, State University of New York, Stony Brook
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Some properties of the autocorrelation function

Suppose a stationary stochastic process X(t) has mean µ, variance �2,
acv.f. �(⌧) and ac.f. ⇢(⌧). Then

⇢(⌧) = �(⌧)
�
�(0) = �(⌧)

�
�2, ⇢(0) = 1

The ac.f. is an even function of lag, so that ⇢(⌧) = ⇢(�⌧).
|⇢(⌧)|  1.

The ac.f. does not uniquely identify the underlying model.

Although a given stochastic process has a unique covariance structure,
the converse is not in general true.

Haipeng Xing, State University of New York, Stony Brook
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Purely random processes

A discrete-time process is called a purely random process if it
consists of a sequence of random variables, {Zt}, which are mutually
independent and identically distributed. We normally assume that
Zt ⇠ N(0,�2

Z).

The independence assumption means that

�(k) = Cov(Zt, Zt+k) =

⇢
�2
Z k = 0

0 k = ±1,±2, . . .

⇢(k) =

⇢
1 k = 0

0 k = ±1,±2, . . .

The process is strictly stationary, and hence weakly stationary.

A purely random process is sometimes called white color, particularly
by engineers.

Haipeng Xing, State University of New York, Stony Brook
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Purely random processes
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Figure 3.1: A purely random process with �2
Z = 1 (top) and its correlogram

(bottom).
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Portmanteau tests
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Random walks

Suppose that {Zt} is a discrete-time, purely random process with
mean µ and variance �2

Z . A process {Xt} is said to be a random
walk if Xt = Xt�1 + Zt.

The process is customarily started at zero when t = 0, so that
Xt =

Pt
i=1 Zi.

We find that E(Xt) = tµ and that Var(Xt) = t�2
Z . As the mean

and the variacne change with t, the process is non-stationary.

The first di↵erences of a random walk rXt = Xt �Xt�1 = Zt form
a purely random process, which is stationary.

A good example of time series, which behaves like random walks, are
share prices on successive days.

Haipeng Xing, State University of New York, Stony Brook
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Random walks
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Figure 3.2: Simulated random walk (top) and its correlogram (bottom). The

random walk series is generated from the white noise series in Figure 3.1.
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Moving average processes: MA(q) models

A process {Xt} is said to be a moving average process of order q (or
MA(q) process) if

Xt = �0Zt + �1Zt�1 + · · ·+ �qZt�q, (1)

where {�t} are constants and Zt is a purely random process with
mean 0 and variacne �2

Z . The Zs are usually scaled so that �0 = 1.
We can show that, since Zt’s are independent, E(Xt) = 0, and
Var(Xt) = �2

Z

Pq
i=0 �

2
i .

Using Cov(Zs, Zt) = �2
Z1{s=t}, we have, for k � 0,

�(k) = Cov(�0Zt + · · ·+ �qZt�q,�0Zt+k + · · ·+ �qZt+k�q)

=

⇢
0 k > q

�2
Z

Pq�k
i=0 �i�i+k k = 0, 1, . . . , q.

As �(k) does not depend on t, and the mean is constant, the
process is second-order stationary for all values of the {�i}.

Haipeng Xing, State University of New York, Stony Brook
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MA(q) models: ACFs

The ac.f. of the above MA(q) process is given by, for k � 0,

⇢(k) =

8
>>>><

>>>>:

1 k = 0

q�kX

i=0

�i�i+k

� qX

i=0

�2
i k = 1, . . . , q

0 k > q

(2)

Note that the ac.f. ‘cuts o↵’ at lag q, which is a special feature of
MA processes.

Haipeng Xing, State University of New York, Stony Brook
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Example

Consider the series defined by rthe equation

Xt = Zt + ✓Zt�1, t = 0,±1, . . .

where Zt are independent Normal random variables with mean 0 and
variance �2. we then have

�X(t+ h, t) =

8
<

:

�2
(1 + ✓2) if h = 0,
�2✓, if h = ±1,
0, if |h| > 1.

Hence {Xt} is stationary. The ac.f of {Xt} is

⇢X(h) =

8
<

:

1 if h = 0,
✓
�
(1 + ✓2), if h = ±1,
0, if |h| > 1.

Haipeng Xing, State University of New York, Stony Brook
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Example

Consider the series defined by the equation

Xt = Zt + ✓1Zt�1 + ✓2Zt�2, t = 0,±1, . . .

where Zt are independent Normal random variables with mean 0 and
variance �2. Compute its ACFs.

Hints: Compute the autocovariance �(k) =Cov(Xt, Xt+k) for k = 0, 1, 2
and k � 3, respectively.

Haipeng Xing, State University of New York, Stony Brook
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Example
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Figure 3.3: Simulated MA(1) (top left) and MA(2) (bottom left) processes

and their corresponding correlograms (top right and bottom right).
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Invertibility of an MA(q) process I

Although there are no restrictions on the {�} for a (finite-order) MA
process to be stationary, restrictions are usually imposed on the {�i}
to ensure that the process satisfies a condition called invertibility.

Example: Consider the following MA(1) processes:

(A) : Xt = Zt + ✓Zt�1 (B) : Xt = Zt +
1

✓
Zt�1

We can show that (A) and (B) have exactly the same ac.f., hence
we cannot identify an MA process uniquely from a given ac.f.

Haipeng Xing, State University of New York, Stony Brook
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Invertibility of an MA(q) process II

If we ’invert’ models (A) and (B) by expressing Zt in terms of Xt’s,
we have

(A) : Zt = Xt � ✓Xt�1 + ✓2Xt�2 � . . .

(B) : Zt = Xt �
1

✓
Xt�1 +

1

✓2
Xt�2 � . . .

Note that the series of coe�cients of Xt�j for models (A) and (B)
cannot be convergent at the same time.

In general, a process {Xt} is said to be invertible if the random
disturbance at time t (or innovations) can be expressed as a
convergent sum of present and past values of Xt in the form

Zt =

1X

j=0

⇡jXt�j

where
P1

j=0 |⇡| < 1.

Haipeng Xing, State University of New York, Stony Brook
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Invertibility of an MA(q) process III

The definition above implies that an invertible process can be
rewritten in the form an autoregressive process (possibly of infinite
order), whose coe�cients form a convergent sum.

From the definition above, model (A) is said to be invertible whereas
model (B) is not. — The imposition of the invertibility condition
ensures that there is a unique MA process for a given ac.f.

The invertibility condition for an MA process of any order can be
expressed by using the backward shift operator, denoted by B, which
is defined by

BjXt = Xt�j for all j.

Haipeng Xing, State University of New York, Stony Brook
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Invertibility of an MA(q) process IV

Denote ✓(B) = �0 + �1B + · · ·+ �qBq, then

Xt = �0Zt + �1Zt�1 + · · ·+ �qZt�q , Xt = ✓(B)Zt

It can be shown that an MA(q) process is invertible if the roots of
the equation

✓(B) = �0 + �1B + · · ·+ �qB
q
= 0

all lie outside the unit circle, where B is regarded as a complex
variable instead of as an operator.

Example: In the MA(1) process Xt = Zt + ✓Zt�1, ✓(B) = 1 + ✓B
and the invertibility condition is |✓| < 1.

Haipeng Xing, State University of New York, Stony Brook
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How does the invertibility condition work? I

In the first-order case for model A, we have ✓(B) = 1 + ✓B, which
has root B = �1/✓. Provided that |✓| < 1, the root B = �1/✓ is
real and lies “outside the unit circle”. So again we see that model A
is invertible if |✓| < 1. Furthermore, if we regard B as a complex
variable, the operator 1/✓(B) can be expanded as

1

1 + ✓B
= 1 +

1X

i=1

(�✓)iBi. (3)

When |✓| < 1, this infinite series is convergent since

|1 +
1X

i=1

(�✓)i|  1 +

1X

i=1

|✓|i = 1

1� |✓| .

Haipeng Xing, State University of New York, Stony Brook
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How does the invertibility condition work? II

Hence

Zt =
1

✓(B)

Xt =

⇣
1 +

1X

i=1

(�✓)iBi
⌘
Xt = Xt +

1X

i=1

(�✓)iXt�i,

and thus {Xt} is invertible.

The argument above can be extended to MA(q) processes. Suppose
that ✓(B) can be decomposed as the following form

✓(B) = (1 + ✓1B) · · · (1 + ✓qB),

where ✓1, . . . , ✓q could possibly take complex values. Then the
operator 1/✓(B) can be written as

1

✓(B)

=

qY

j=1

1

1 + ✓jB
=

qY

j=1

⇣
1 +

1X

i=1

(�✓j)iBi
⌘
. (4)

Haipeng Xing, State University of New York, Stony Brook
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How does the invertibility condition work? III

When all the roots, �1/✓1, . . . ,�1/✓q, are outside the unit circle,
the product of infinite series in (4) is convergent, and hence
Zt = 1/✓(B)Xt can be written in the form of (??), and therefore
{Xt} is invertible.

Haipeng Xing, State University of New York, Stony Brook
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Autoregressive processes

A process {Xt} is said to be an autoregressive process of order p (or
AR(p)) if

Xt = ↵1Xt�1 + · · ·+ ↵pXt�p + Zt, (5)

where Zt is a purely random process with mean 0 and variacne �2
Z .

The above AR(p) process can be written as

(1� ↵1B � · · ·� ↵pB
p
)Xt = Zt.

Haipeng Xing, State University of New York, Stony Brook
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An AR(1) process I

Consider the first-order AR process

Xt = ↵Xt�1 + Zt, (6)

By successive substitution, we obtain that, if |↵| < 1,

Xt = ↵(↵Xt�2 + Zt�1) + Zt = ↵2
(↵Xt�3 + Zt�2) + ↵Zt�1 + Zt

= · · · = Zt + ↵Zt�1 + ↵2Zt�2 + . . .

Haipeng Xing, State University of New York, Stony Brook
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An AR(1) process II

We can use the backward shift operator B to explore the duality
between AR and MA process. Note that (6) can be written as

(1� ↵B)Xt = Zt,

so that

Xt = Zt

�
(1� ↵B) = (1 + ↵B + ↵2B2

+ . . . )Zt

= Zt + ↵Zt�1 + ↵2Zt�2 + . . .

Haipeng Xing, State University of New York, Stony Brook
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An AR(1) process III

The above form implies that

E(Xt) = 0, Var(Xt) = �2
Z(1 + ↵2

+ ↵4
+ . . . )

If |↵| < 1, we have Var(Xt) = �2
X = �2

Z(1� ↵2
), and for k � 0,

�(k) = E(XtXt+k) = E
⇥�X

↵iZt�i

��X
↵jZt+k�j

�⇤

= �2
Z

1X

i=0

↵i↵k+i
= ↵k�2

Z

�
(1� |↵|2) if |↵| < 1

= ↵k�2
X

We find that the process (6) is second-order stationary provided
|↵| < 1.

Haipeng Xing, State University of New York, Stony Brook
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An AR(1) process IV

Since ⇢(k) = �(k)
�
�(0) and �(k) = �(�k), we have

⇢(�k) = ⇢(k) = ↵k k = 0, 1, 2, . . .

or
⇢(k) = ↵|k| k = 0,±1,±2, . . .

The acv.f. and ac.f. can also be written recursively

�(k) = ↵�(k � 1), ⇢(k) = ↵⇢(k � 1) for k > 0.

Examples of the ac.f. of the AR(1) process for di↵erent values of ↵.

Haipeng Xing, State University of New York, Stony Brook
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Simulated AR(1) examples
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Figure 3.4: Three simulated AR(1) processes and their correlograms. Top:

Xt = 0.8Xt�1 + Zt, Zt ⇠ N(0, 1); Middle: Xt = �0.8Xt�1 + Zt,

Zt ⇠ N(0, 1); Bottom: Xt = 0.3Xt�1 + Zt, Zt ⇠ N(0, 1).
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General AR(p) process

Consider the AR(p) process

(1� ↵1B � · · ·� ↵pB
p
)Xt = Zt,

or equivalently as

Xt = Zt

�
(1� ↵1B � · · ·� ↵pB

p
) = f(B)Zt (7)

where f(B) = (1� ↵1B � · · ·� ↵pBp
)

�1
= 1 + �1B + �2B2

+ . . .

The relationship between the ↵’s and �’s can be found.
The necessary condition for (7) to be stationary is that its variance
or
P

i �
2
i converges. The acv.f. is given by

�(k) = �2
Z

1X

i=0

�i�i+k for �0 = 1.

A su�cient condition for this to converge, and hence for stationarity
is that

P
|�i| converges.

Haipeng Xing, State University of New York, Stony Brook
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Yule-Walker equations

Since {�j} might be algebriaclly hard to find, an alternative way is to
assume the process is stationary, multiply through (5) by Xt�k, take
expectations and divide by �2

X , asuming that Var(Xt) < 1. Then
using ⇢(�k) = ⇢(k) for all k, we find the Yule-Walker equations

⇢(k) = ↵1⇢(k � 1) + · · ·+ ↵p⇢(k � p) for all k > 0. (8)

This set of di↵erence equations has the general solution

⇢(k) = A1⇡
|k|
1 + · · ·+Ap⇡

|k|
p ,

where {⇡i} are the roots of the so-called auxiliary equation

yp � ↵1y
p�1 � · · ·� ↵p = 0.

The constants {Ai} are chosen to satisfy the initial conditions
depending on ⇢(0) = 1. The first (p� 1) Yule–Walker equations
provide (p� 1) further restrictions on the {Ai} using ⇢(0) = 1 and
⇢(k) = ⇢(�k).

Haipeng Xing, State University of New York, Stony Brook
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Statoinary conditions

From the general form of ⇢(k), it is clear that ⇢(k) tends to zero as
k increases provided that |⇡i| < 1 for all i, and this is a necessary
and su�cient condition for the AR(p) process to be stationary.

An equivalent way of expressing the stationarity condition is to say
that the roots of the equation

�(B) = 1� ↵1B � · · ·� ↵pB
p
= 0 (9)

must lie outside the unit circle (where we again regard B as a
complex variable, rather than as an operator, so that the roots,
which may be complex, are greater than one in modulus).

Haipeng Xing, State University of New York, Stony Brook
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For p = 2, the Yule-Walker equation (8) is a set of di↵erence
equations and has the general solution

⇢(k) = A1⇡
|k|
1 +A2⇡

|k|
2 ,

where {⇡i} are the roots of the so-called auxiliary equation

y2 � ↵1y � ↵2 = 0.

Important Example: Computing the ACFs of the AR(2) process
Suppose ⇡1, ⇡2 are the roots of the quadratic equation

y2 � ↵1y � ↵2 = 0.

Here |⇡i| < 1 if
���
↵1 ±

p
↵2
1 + 4↵2

2

��� < 1

from which we can show that the stationarity region is the triangular
region satisfying

↵1 + ↵2 < 1, ↵1 � ↵2 > �1, ↵2 > �1

Haipeng Xing, State University of New York, Stony Brook
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When the roots are real, we have ⇢(k) = A1⇡
|k|
1 +A2⇡

|k|
2 where the

constants A1, A2 are also real and may be found as follows. Since
⇢(0) = 1, we have

A1 +A2 = 1

while the first Yule-Walker equation gives

⇢(1) = ↵1⇢(0) + ↵2⇢(�1) = ↵1 + ↵2⇢(1) ) ⇢(1) = ↵1

�
(1� ↵2).

Hence we find

A1 =

↵1/(1� ↵2)� ⇡2
⇡1 � ⇡2

, A2 = 1�A1

Remark: We only considered process with mean zero here, but
non-zero means can be dealt with by rewritting (??) in the form

Xt � µ = ↵1(Xt�1 � µ) + · · ·+ ↵p(Xt�p � µ) + Zt,

this does not a↵ect the ac.f.

Haipeng Xing, State University of New York, Stony Brook
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Example I

Example 1 Consider the AR(2) process given by

6Xt = �Xt�1 +Xt�2 + Zt,

is this process stationary? If so, what is its ac.f.?
Solution. The roots of 1 + 1

6B � 1
6B

2
= 0 are -2 and 3, they are outside

the unit circle, hence Xt is stationary. Note that the roots of
y2 + 1

6y �
1
6 = 0 are -1/2 and 1/3, the ACFs of this process are given by

⇢(k) = A1

⇣
� 1

2

⌘|k|
+A2

⇣
1

3

⌘|k|
, k = 0, 1, . . . ,

Since ⇢(0) = 1 = A1 +A2, and ⇢(1) = �⇢(0) + 6⇢(�1) gives
⇢(1) = �1/5 = �A1

2 +

A2
3 , we have A1 = 16/25 and A2 = 9/25.
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Example II

Example 2 Consider the AR(2) process given by

Xt = Xt�1 �
1

2

Xt�2 + Zt,

is this process stationary? If so, what is its ac.f.?
Solution. The roots of equation �(B) = 1�B +

1
2B

2
= 0 are complex,

namely, 1± i, whose modulus both exceeds one, hence the process is
stationary. To calculate the ac.f. of the process, we use the first
Yule-Walker equation to give ⇢(1) = ⇢(0)� 1

2⇢(�1) = 1� 1
2⇢(1), which

yields ⇢(1) = 2/3. For k � 2, the Yule-Walker equations are
⇢(k) = ⇢(k � 1)� 1

2⇢(k � 2), which indicates the auxiliary equation

y2 � y + 1
2 = 0 with roots y = (1± i)/2 = e±i⇡/4

�p
2. Using ⇢(0) = 1

and ⇢(1) = 2/3, some algebra gives

⇢(k) = 2

�k/2
⇣
cos

⇡k

4

+

1

3

sin

⇡k

4

⌘
, k = 0, 1, 2, . . .

Haipeng Xing, State University of New York, Stony Brook
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Example III

Example 3 Consider the AR(2) process given by

12Xt = �Xt�1 +Xt�2 + Zt,

is this process stationary? If so, what is its ac.f.?
Solutions: (1) The roots of 12 +B �B2

= 0 are 4 and -3, which are
outside the unit circle, hence Xt is stationary. (2) The ACFs of Xt are

⇢(k) = A1

⇣
1

4

⌘k
+A2

⇣
� 1

3

⌘k
, k � 0,

where A1 +A2 = ⇢(0) = 1 and A1
4 � A2

3 = ⇢(1) = ⇢(1) = � 1
11 , hence

A1 =

32
77 and A2 =

45
77 .

Example 4 Compute the ac.f. of the AR(2) process

Xt =
1

6

Xt�1 +
1

6

Xt�2 + Zt.

Solutions: ⇢(h) = 4
25 (

1
2 )

h
+

21
25 (�

1
3 )

h, h = 0, 1, 2, . . .
Haipeng Xing, State University of New York, Stony Brook
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Example
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Figure 3.5: Two simulated AR(2) processes and their correlograms. Top:

Xt = 1
3Xt�1 + 2

9Xt�2 + Zt, Zt ⇠ N(0, 1); Bottom:

Xt = Xt�1 � 1
2Xt�2 + Zt, Zt ⇠ N(0, 1)
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ARMA(p, q) models

A mixed autoregressive/moving-average process containing p AR
terms and q MA terms is said to be an ARMA process of order
(p, q). It is given by

Xt � ↵1Xt�1 � . . .↵pXt�p = Zt + �1Zt�1 + · · ·+ �qZt�q. (10)

Let �(B) = 1� ↵1B � · · ·� ↵pBp, ✓(B) = 1 + �1B + · · ·+ �qBq.
Equation (10) may be written in the form

�(B)Xt = ✓(B)Zt.

The condition on the model parameters to make the process
stationary and invertible are the same as for a pure AR or MA
process.

Haipeng Xing, State University of New York, Stony Brook
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Stationarity and invertibility conditions I

The conditions on the model parameters to make the process
stationary and invertible are the same as for a pure AR or pure MA
process.

The values of {↵i}, which make the process stationary, are such that
the roots of

�(B) = 0

lie outside the unit circle.

The values of {�i}, which make the process invertible, are such that
the roots of

✓(B) = 0

lie outside the unit circle.

Haipeng Xing, State University of New York, Stony Brook
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Stationarity and invertibility conditions II

The importance of ARMA processes lies in the fact that a stationary
time series may often be adequately modelled by an ARMA model
involving fewer parameters than a pure MA or AR process by itself.

The ac.f. of the general ARMA process can be found using similar
procedures as for AR processes. First, multiply through Equation
(10) by Xt�k and take expectations. Note that, for k � q + 1,
Zt, . . . , Zt�q are independent of Xt�k. Hence the expected values
of ZtXt�k, . . . , Zt�qXt�k are all zero. If k � p, we can further
divide both sides by �(0). Then we find the following Yule-Walker
equations for general ARMA(p, q) processes

⇢(k) = ↵1⇢(k � 1) + · · ·+ ↵p⇢(k � p), k � max(p, q + 1). (11)

Note that (11) has the same form as that of an AR process except
that their initial conditions are di↵erent. The initial conditions of the
Yule-Walker equations are usually computed seperately.

Haipeng Xing, State University of New York, Stony Brook
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Example: ACFs of ARMA(p,q) models I

Xt = ↵Xt�1 + Zt + �Zt�1, |↵| < 1, |�| < 1.

The Yule-Walker equations are ⇢(k) = ↵⇢(k � 1), k � 2.

We can show that

�(1) = ↵�(0) + ��2
Z , �(0) = ↵2�(0) + (1 + 2↵� + �2

)�2
Z .

We then obtain that

�(0) =
1 + 2↵� + �2

1� ↵2
�2
Z , �(1) =

(1 + ↵�)(↵+ �)

1� ↵2
�2
Z .

Therefore,

⇢(1) =
�(1)

�(0)
=

(1 + ↵�)(↵+ �)

1 + 2↵� + �2
.

Haipeng Xing, State University of New York, Stony Brook
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Example: ACFs of ARMA(p,q) models II

Consider the ARMA(2,1) model Xt = ↵Xt�2 + Zt + �Zt�1. (a) Under
which condition, Xt becomes stationary and invertiable? (b) Compute
the ACFs of the process.

Sketch of the solution:

When 0 < ↵ < 1 and � 2 (�1, 0) [ (0, 1), Xt is stationary and
invertible.

From Yule-Walker equation, we have ⇢(k) = ↵⇢(k � 2) for k � 2.
We notice the equations �(0) = ↵2�(0) + (1 + �2

)�2 and
�(1) = ↵�(1) + ��2, and then obtain ⇢(1) = [(1 + ↵)�]

�
(1 + �2

).

Question: How to compute the ACFs of the ARMA(1,2) process:
Xt = ↵Xt�1 + Zt � �Zt�2?

Haipeng Xing, State University of New York, Stony Brook
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Figure 3.6: Two simulated ARMA processes and their correlograms. Top:

Xt = 0.7Xt�1 + Zt � 0.4Zt�1, Zt ⇠ N(0, 1); Bottom:

Xt = 0.9Xt�1 � 0.5Xt�2 + Zt � 0.2Zt�1 + 0.25Zt�2, Zt ⇠ N(0, 0.5).

Haipeng Xing, State University of New York, Stony Brook

Outline Stationarity ACFs Noises RW MA AR ARMA ARIMA ARFIMA Linear

AR and MA representations

An ARMA model can be expressed as a pure MA process in the form
Xt =  (B)Zt, where  (B) =

P
 iBi is the MA operator, which

may be of infinite order. By comparison, we see that
 (B) = ✓(B)/�(B).

An ARMA model can also be expressed as a pure AR process in the
form ⇡(B)Xt = Zt, where ⇡(B) = �(B)/✓(B). By convention we
write ⇡(B) = 1�

P
i�1 ⇡iB

i so that

Xt =

1X

i=1

⇡iXt�i + Zt.

Haipeng Xing, State University of New York, Stony Brook
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Example Find the  weights and ⇡ weights for the ARMA(1,1) process
given by

Xt = 0.5Xt�1 + Zt � 0.3Zt�1.

Here �(B) = 1� 0.5B and ✓(B) = 1� 0.3B. We can show that the
process is stationary and invertible. Then

 (B) = ✓(B)

�
�(B) = (1� 0.3B)(1� 0.5B)

�1

= (1� 0.3B)(1 + 0.5B + 0.52B2
+ . . . )

= 1 + 0.2B + 0.1B2
+ 0.005B3

+ . . .

Hence
 i = 0.2⇥ 0.5i�1 for i = 1, 2, . . .

Similarly we find

⇡i = 0.2⇥ 0.3i�1 for i = 1, 2, . . .

Haipeng Xing, State University of New York, Stony Brook
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ARIMA(p, d, q) models

If the observed time series is nonstationary in the mean, then we can
di↵erence the series, as suggested in Chapter 2.

If Xt is replaced by rdXt in (10), then we have a model capable of
describing certain types of non-stationary series. Such a model is
called an ‘integrated’ model.

Let Wt = rdXt = (1�B)

dXt, the general ARIMA (autoregressive
integrated moving average) process is of the form

Wt � ↵1Wt�1 � · · ·� ↵pWt�p = Zt + · · ·+ �qZt�q (12)

or
�(B)Wt = ✓(B)Zt,

where �(B) and ✓(B) are defined in (10).

Haipeng Xing, State University of New York, Stony Brook
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We may write (12) in the form

�(B)(1�B)

dXt = ✓(B)Zt, (13)

the model above is said to be an ARIMA process of order (p, d, q).

The model for Xt is clearly non-stationary, as the AR operator
�(B)(1�B)

d has d roots on the unit circle. Note that the random
walk can be regarded as an ARIMA(0,1,0) process.

ARIMA models can be extended to include seasonal e↵ects, as
discussed later.

Haipeng Xing, State University of New York, Stony Brook
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Example: ACFs of ARIMA models
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Figure 3.7: Two simulated ARIMA processes and their correlograms. Top:

(1 + 0.5B)(1�B)Xt = (1 + 0.3B)Zt; Bottom:

(1� 0.6B)(1�B)Xt = (1� 0.3B + 0.5B2)Zt.
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Fractional di↵erencing and long-memory models

An interesting variant of ARIMA modelling arises with the use of
what is called fractional di↵erencing, leading to a fractional
integrated ARMA (abbreviated to ARFIMA) model.

When d is not an integer, then the dth di↵erence (1�B)

dXt

becomes a fractional di↵erence, and may be represented by its
binomial expansion, namely

(1�B)

dXt =

h
1�dB+

d(d� 1)

2!

B2� d(d� 1)(d� 2)

3!

B3
+ . . .

i
Xt.

It can be shown that an ARFIMA process is stationary provided that
�0.5 < d < 0.5.

A stationary ARFIMA model, with 0 < d < 0.5, is of particular
interest as such a process is not only stationary, but is also an
example of what is called a long-memory model.

Haipeng Xing, State University of New York, Stony Brook
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Fractional di↵erencing and long-memory models

A stationary process with ac.f. ⇢(k) is said to be a long-memory
process if

P1
k=0 |⇢(k)| does not converge. In particular, the latter

condition applies when the ac.f. ⇢(k) is of the form ⇢(k) ⇠ Ck2d�1

as k ! 1, where C is a constant, not equal to zero, and
0 < d < 0.5.

It can be shown that a stationary ARFIMA model, with di↵erencing
parameter d in the range 0 < d < 0.5, has an ac.f. ⇢k ⇠ Ck2d�1as
k ! 1, where C is a constant. Hence, ARFIMA(d) is a
long-memory process.

Haipeng Xing, State University of New York, Stony Brook
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Example
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Figure 3.8: A simulated ARFIMA(1, d = 0.4, 2) process,
(1� 0.3B)(1�B)dXt = (1� 0.3B + 0.5B2)Zt with Zt ⇠ N(0, 0.04), and its

correlogram.
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General linear processes

A general class of processes may be written as an MA process, of
possibly infinite order, in the form

Xt =

1X

i=0

 iZt�i. (14)

where
P1

i=0 | i| < 1 to that the process is stationary. A stationary
process defined by (14) is called a general linear process.

Stationary AR and ARMA processes can also be expressed as a
general linear process using the duality between AR and MA
processes.
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The Wold decomposition theorem

The Wold decomposition theorem: Any discrete-time stationary
process can be expressed as the sum of two uncorrelated processes,
one purely deterministic and one purely indeterministic, which are
defined as follows.

Regress Xt on (Xt�q, Xt�q�1, . . . ) and denote the residual variance
from the resulting linear regression model by ⌧2q . If limq!1 ⌧2q = 0,
then the process can be forecast exactly, we say that {Xt} is purely
deterministic.

If limq!1 ⌧2q = Var(Xt), then the linear regression on the remote
past is useless for prediction purposes, and we say that {Xt} is
purely indeterministic.

The Wold decomposition theorem also says that the purely
indeterministic component can be wrttien as a linear sum of a
sequence of uncorrelated random variables, say {Zt}.
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