AMS316 Final in 2012 Solution

Assume that Z_{t} are independent and identically distributed normal random variables with mean 0 and variance σ^{2}.

1. Consider the process $X_{t}=a_{0}+a_{1} t+\cdots+a_{k} t^{k}+s_{t}+y_{t}$, in which s_{t} is a deterministic process satisfying $s_{t}=s_{t+d}$ and $s_{t}+\cdots+s_{t+d-1}=0, y_{t}$ is stationary process with mean zero.
(a) What are the trend and seasonal components in the process X_{t} ?
(b) Let $s_{t} \equiv 0$ and consider the differenced series $Y_{t}=(1-B)^{r} X_{t}$. What is the minimal value of r to make Y_{t} stationary?

Solution: (a) The trend component is $a_{0}+a_{1} t+\cdots+a_{k} t^{k}$ and the seasonal component is s_{t}. (b) Since each differencing operator $1-B$ reduces the order of the polynomial part by 1 , we need at least k differencing steps to make Y_{t} stationary.
2. Consider the stationary process $X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}$.
(a) (8 points) Compute the lag- k autocorrelations $\rho(k)$ for $k \geq 1$.
(b) (12 points) What are the 1-step and 2-step ahead forecasts of the process at forecast origin X_{n} ? What are their corresponding forecasting error?

Solution: (a) By definition of autocovariance functions, we have $\gamma(0)=\operatorname{Var}\left(X_{t}\right)=$ $\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \sigma^{2}, \gamma(1)=\operatorname{Cov}\left(X_{t}, X_{t-1}\right)=\theta_{1}\left(1+\theta_{2}\right) \sigma^{2}, \gamma(2)=\operatorname{Cov}\left(X_{t}, X_{t-2}\right)=\theta_{2} \sigma^{2}$ and $\gamma(k)=0$ for $k \geq 3$. Hence we have

$$
\rho(k)=\gamma(k) / \gamma(0)= \begin{cases}\frac{\theta_{1}\left(1+\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{2}^{2}} & k=1 \\ \frac{\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} & k=2 \\ 0 & k \geq 3\end{cases}
$$

(b) The 1- and 2-step ahead forecasts are $X_{n+1 \mid n}=E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\theta_{1} Z_{n}+\theta_{2} Z_{n-1}$ and $X_{n+2 \mid n}=E\left(X_{n+2} \mid \mathcal{F}_{n}\right)=\theta_{2} Z_{n}$, and the correpsonding forecasting errors are $e_{n}(1)=$ $X_{n+1}-X_{n+1 \mid n}=Z_{n+1}$ and $e_{n}(2)=X_{n+2}-X_{n+2 \mid n}=Z_{n+2}+\theta_{1} Z_{n+1}$.
3. Consider the $\mathrm{AR}(2)$ process:

$$
X_{t}-\frac{2}{a(a+2)} X_{t-1}-\frac{1}{a(a+2)} X_{t-2}=Z_{t}
$$

in which the real number a is a parameter.
(a) (10 points) For what values of real number a, the process is stationary?
(b) (10 points) What is the autocorrelation of the process at lag k, i.e., $\rho(k)$? $(k \geq 0)$.
(c) (10 points) What are the 1-step and 2-step ahead forecasts of the process at forecast origin X_{n} ?

Solution: (a) The roots of

$$
1-\frac{2}{a(a+2)} B-\frac{1}{a(a+2)} B^{2}=0
$$

are a and $-(a+2)$. The stationarity condition needs that $|a|>1$ and $|a+2|>1$. Simplifying these inequalities yields that $a>1$ or $a<-3$. (b) The ACFs have the form

$$
\rho(k)=A_{1}\left(\frac{1}{a}\right)^{|k|}+A_{2}\left(-\frac{1}{a+2}\right)^{|k|}
$$

where $A_{1}+A_{2}=\rho(0)=1, A_{1} / a-A_{2} /(a+2)=\rho(1)$. Note that Yule-Walker equation suggests that

$$
\rho(1)-\frac{2}{a(a+2)} \rho(0)-\frac{1}{a(a+2)} \rho(-1)=0
$$

and hence $\rho(1)=2 /\left(a^{2}+2 a-1\right)$. Solving the linear system

$$
\left\{\begin{array}{l}
A_{1}+A_{2}=1 \\
A_{1} / a-A_{2} /(a+2)=2 /\left(a^{2}+2 a-1\right)
\end{array}\right.
$$

yields

$$
A_{1}=\frac{a(a+3)}{2\left(a^{2}+2 a-1\right)}, \quad A_{2}=\frac{(a-1)(a+2)}{2\left(a^{2}+2 a-1\right)}
$$

(c) The 1- and 2-steps ahead predictions are

$$
X_{n+1 \mid n}=\frac{1}{a(a+2)}\left(2 X_{n}+X_{n-1}\right)
$$

and

$$
X_{n+2 \mid n}=\frac{1}{a(a+2)}\left(2 X_{n+1 \mid n}+X_{n}\right)=\frac{2}{a^{2}(a+2)^{2}}\left(2 X_{n}+X_{n-1}\right)+\frac{1}{a(a+2)} X_{n}
$$

4. Consider the $\operatorname{ARMA}(1,2)$ process $X_{t}+\alpha X_{t-1}=Z_{t}+\beta Z_{t-2}$.
(a) (10 points) When α and β are real numbers, under which conditions does the process X_{t} becomes stationary and invertible?
(b) (10 points) Given the observations X_{1}, \ldots, X_{n}, what is your best prediction for X_{n+1} and X_{n+2} at the forecast origin X_{n} ? What is the corresponding forecasting error?
(c) (20 points) Compute its autocorrelation coefficient at lag 1, i.e., $\rho(1)$? (Hint: Compute its autocovariance function at lags 0 and 1, i.e., $\gamma(0)$ and $\gamma(1)$ first)

Solution: (a) The stationary condition for X_{t} is $|\alpha|<1$. The invertibility condition for X_{t} is that the roots of $1+\beta B^{2}=0$ lie outside the unit circle, that is, $-1<\beta<0$ or $0<\beta<1$.
(b) Given the observations X_{1}, \ldots, X_{n}, the 1- and 2-step ahead forecasts are

$$
\begin{gathered}
X_{n+1 \mid n}=E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=-\alpha X_{n}+\beta Z_{n-1} \\
X_{n+2 \mid n}=E\left(X_{n+2} \mid \mathcal{F}_{n}\right)=-\alpha E\left(X_{n+1 \mid n} \mid \mathcal{F}_{n}\right)+\beta Z_{n}=-\alpha\left(-\alpha X_{n}+\beta Z_{n-1}\right)+\beta Z_{n}
\end{gathered}
$$

and their corresponding prediction errors are

$$
\begin{gathered}
e_{n}(1)=X_{n+1}-X_{n+1 \mid n}=Z_{n+1} \\
e_{n}(2)=X_{n+2}-X_{n+2 \mid n}=Z_{n+2}-\alpha e_{n}(1)=Z_{n+2}-\alpha Z_{n+1} .
\end{gathered}
$$

(c) We first notice that

$$
\begin{gathered}
\gamma(0)=\alpha^{2} \gamma(0)+\left(1+\beta^{2}\right) \sigma^{2}-2 \alpha \beta \operatorname{Cov}\left(X_{t-1}, Z_{t-2}\right) \\
\operatorname{Cov}\left(X_{t-1}, Z_{t-2}\right)=\operatorname{Cov}\left(-\alpha X_{t-2}+Z_{t-1}+\beta Z_{t-3}, Z_{t-2}\right)=-\alpha \operatorname{Cov}\left(X_{t-2}, Z_{t-2}\right)
\end{gathered}
$$

and

$$
\operatorname{Cov}\left(X_{t-2}, Z_{t-2}\right)=\operatorname{Cov}\left(-\alpha X_{t-3}+Z_{t-2}+\beta Z_{t-4}, Z_{t-2}\right)=\sigma^{2}
$$

We then have $\left(1-\alpha^{2}\right) \gamma(0)=\left(1+\beta^{2}+2 \alpha^{2} \beta\right) \sigma^{2}$, or

$$
\gamma(0)=\frac{1+\beta^{2}+2 \alpha^{2} \beta}{1-\alpha^{2}}
$$

We now calculate $\gamma(1)$. Note that

$$
\begin{aligned}
\gamma(1) & =\operatorname{Cov}\left(X_{t}, X_{t-1}\right)=-\alpha \gamma(0)+\beta \operatorname{Cov}\left(Z_{t-2}, X_{t-1}\right) \\
& =-\alpha \gamma(0)+\beta \operatorname{Cov}\left(Z_{t-2},-\alpha X_{t-2}+Z_{t-1}+\beta Z_{t-3}\right)=-\alpha \gamma(0)-\alpha \beta \operatorname{Cov}\left(Z_{t-2}, X_{t-2}\right) \\
& =-\alpha \gamma(0)-\alpha \beta \sigma^{2}
\end{aligned}
$$

Therefore

$$
\rho(1)=\gamma(1) / \gamma(0)=-\alpha-\frac{\alpha \beta}{\gamma(0)} \sigma^{2}=-\alpha-\frac{\alpha \beta\left(1-\alpha^{2}\right)}{1+\beta^{2}+2 \alpha^{2} \beta} .
$$

