AMS316 Exam 1 (2012)

1. Consider a series of observationas that are generated by the time series $X_{t}=a+b t+$ $c t^{2}+\epsilon_{t}$, where ϵ_{t} are independent and identically distributed $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables. One would decompose the series as $X_{t}=M_{t}+\eta_{t}$, in which M_{t} is the trend and η_{t} are noises. Use the moving average (i.e., smoothing) formula

$$
S m\left(X_{t}\right)=\frac{1}{2 q+1} \sum_{r=-q}^{q} X_{t+r}
$$

to get an estimate of the trend effect.
2. Suppose we have a seasonal seris of monthly observations $\left\{X_{t}\right\}$, for which the seasonal factor at time t is denoted by $\left\{S_{t}\right\}$. We further assume that the seasonal pattern is constant through time so that $S_{t}=S_{t-6}$ for all t. Denote a stationary seris of random variables by $\left\{\epsilon_{t}\right\}$. Consider the model $X_{t}=b t+S_{t}+\epsilon_{t}$ having a global linear trend and additive seasonality. Show that the seasonal difference operator $\nabla_{6}=1-B^{6}$ acts on X_{t} to produce a stationary series.
3. Let B be the backward operator and X_{t} a time series, we know that $B x_{t}=x_{t-1}$. Write the following time series as linear combinations of X_{t} 's: (a) $(2-B)(1-B) X_{t}$, (b) $\left(B^{3}-2 B^{2}+3 B+2\right) X_{t}$, and (c) $\left(1-B^{12}\right) X_{t}$?
4. Consider the series $X_{t}=2 t+t^{3}$. Compute its first-, second- and third-order differences $\nabla X_{t}, \nabla^{2} X_{t}$, and $\nabla^{3} X_{t}$, where $\nabla=1-B$.
5. Given N observations $x_{1}, \ldots x_{N}$, on a time series. (a) Write down the estimation formula for autocorrelation coefficient at lag 1. (b) In general, what is your estimate for autocorrelation coefficient at lag k.
6. Suppose that a stationary stochastic process $X(t)$ have autocovariance function (acvf) $\gamma_{X}(\tau)$ and autocorrelation function (acf) $\rho_{X}(\tau)$. Show by the definition of acvf and acf that, $\gamma_{X}(\tau)=\gamma_{X}(-\tau)$ for $\tau=1,2, \ldots$ and $\rho_{X}(0)=1$.
7. Write down the definition of the second-order (or weakly) stationary process.

