1. Consider a series of observations that are generated by the time series \(X_t = a + bt + ct^2 + \epsilon_t \), where \(\epsilon_t \) are independent and identically distributed Normal(0, \(\sigma^2 \)) random variables. One would decompose the series as \(X_t = M_t + \eta_t \), in which \(M_t \) is the trend and \(\eta_t \) are noises. Use the moving average (i.e., smoothing) formula

\[
Sm(X_t) = \frac{1}{2q+1} \sum_{r=-q}^{q} X_{t+r}
\]

to get an estimate of the trend effect.

2. Suppose we have a seasonal series of monthly observations \(\{X_t\} \), for which the seasonal factor at time \(t \) is denoted by \(\{S_t\} \). We further assume that the seasonal pattern is constant through time so that \(S_t = S_{t-6} \) for all \(t \). Denote a stationary series of random variables by \(\{\epsilon_t\} \). Consider the model \(X_t = bt + S_t + \epsilon_t \) having a global linear trend and additive seasonality. Show that the seasonal difference operator \(\nabla_6 = 1 - B^6 \) acts on \(X_t \) to produce a stationary series.

3. Let \(B \) be the backward operator and \(X_t \) a time series, we know that \(Bx_t = x_{t-1} \). Write the following time series as linear combinations of \(X_t \)'s: (a) \((2 - B)(1 - B)X_t\), (b) \((B^3 - 2B^2 + 3B + 2)X_t\), and (c) \((1 - B^{12})X_t\).

4. Consider the series \(X_t = 2t + t^3 \). Compute its first-, second- and third-order differences \(\nabla X_t, \nabla^2 X_t, \) and \(\nabla^3 X_t \), where \(\nabla = 1 - B \).

5. Given \(N \) observations \(x_1, \ldots, x_N \), on a time series. (a) Write down the estimation formula for autocorrelation coefficient at lag 1. (b) In general, what is your estimate for autocorrelation coefficient at lag \(k \).

6. Suppose that a stationary stochastic process \(X(t) \) have autocovariance function (acvf) \(\gamma_X(\tau) \) and autocorrelation function (acf) \(\rho_X(\tau) \). Show by the definition of acvf and acf that, \(\gamma_X(\tau) = \gamma_X(-\tau) \) for \(\tau = 1, 2, \ldots \) and \(\rho_X(0) = 1 \).

7. Write down the definition of the second-order (or weakly) stationary process.