AMS316 Exam 2 (2012)

In the following problems, $\{Z_t\}$ is a purely random process, i.e., Z_t 's are independent and identically distributed random variables with mean 0 and variance σ_Z^2 .

- 1. Consider the random walk $S_t = S_{t-1} + Z_t$, is this process weakly stationary?
- 2. Consider the MA(2) process: $X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}$. Compute its autocovariance function $\gamma_Z(\tau)$ and autocorrelation function $\rho_Z(\tau)$ for $\tau = 0, 1, 2, \ldots$
- 3. Show that
 - (a) the AR(2) process $X_t = -\frac{1}{12}X_{t-1} + \frac{1}{12}X_{t-2} + Z_t$ is stationary, and
 - (b) the ACFs $\rho(k)$ $(k \ge 0)$ of the process are given by

$$\rho(k) = \frac{45}{77} \left(-\frac{1}{3} \right)^k + \frac{32}{77} \left(\frac{1}{4} \right)^k, \quad \text{for } k \ge 0.$$

- 4. Consider the AR(2) process $X_t = \frac{1}{20}X_{t-1} + \frac{1}{20}X_{t-2} + Z_t$.
 - (a) Show that the process is stationary.
 - (b) Compute the ACFs $\rho(k)$ $(k \ge 0)$ of the process.