Inference on One Population Mean
– Hypothesis Testing

Scenario 1. When the population is normal, and the population variance is known

Data: \(X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2) \)

Hypothesis test, for instance:
\[
\begin{align*}
H_0 &: \mu = \mu_0 \\
H_a &: \mu > \mu_0
\end{align*}
\]

Example:
\(H_0 : \mu \leq 57'' \) (null hypothesis): This is the ‘original belief’
\(H_a : \mu > 57'' \) (alternative hypothesis): This is usually your hypothesis (i.e. what you believe is true) if you are conducting the test – and in general, should be supported by your data.

The statistical hypothesis test is very similar to a law suit:
e.g) The famous O.J. Simpson trial
\[H_0 : OJ \text{ is innocent (‘innocent unless proven guilty)} \]
\[H_a : OJ \text{ is guilty (‘supported by the data: the evidence)} \]

<table>
<thead>
<tr>
<th>Jury’s Decision</th>
<th>The truth</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0)</td>
<td>(H_0: OJ \text{ innocent})</td>
<td>Right decision</td>
</tr>
<tr>
<td>(H_a)</td>
<td>(H_a: OJ \text{ guilty})</td>
<td>Type II error</td>
</tr>
<tr>
<td></td>
<td>(H_a: OJ \text{ guilty})</td>
<td>Type I error</td>
</tr>
<tr>
<td></td>
<td>(H_a: OJ \text{ innocent})</td>
<td>Right decision</td>
</tr>
</tbody>
</table>
The **significance level** and three types of hypotheses.

\[P(\text{Type I error}) = \alpha \quad \text{← significance level of a test (Type I error rate)} \]

1. \(H_0 : \mu = \mu_0 \quad \Leftrightarrow \quad H_0 : \mu \leq \mu_0 \)
 \[H_a : \mu > \mu_0 \quad H_a : \mu > \mu_0 \]

2. \(H_0 : \mu = \mu_0 \quad \Leftrightarrow \quad H_0 : \mu \geq \mu_0 \)
 \[H_a : \mu < \mu_0 \quad H_a : \mu < \mu_0 \]

3. \(H_0 : \mu = \mu_0 \quad H_a : \mu \neq \mu_0 \)

Now we derive the hypothesis test for the first pair of hypotheses.

\(H_0 : \mu = \mu_0 \)

\(H_a : \mu > \mu_0 \)

Data: \(X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2), \sigma^2 \) is known and the given a significance level \(\alpha \) (say, 0.05).

Let’s derive the test. (That is, derive the decision rule)

Two approaches (equivalent**) to derive the tests:**

- Likelihood Ratio Test
- Pivotal Quantity Method

Now we will first demonstrate the Pivotal Quantity Method.

1. We have already derived the PQ when we derived the C.I. for \(\mu \)

\[Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1) \text{ is our P.Q.} \]

2. The test statistic is the PQ with the value of the parameter of interest under the null hypothesis (\(H_0 \)) inserted:

\[Z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1) \text{ is our test statistic.} \]

That is, given \(H_0 : \mu = \mu_0 \) in true \(\Rightarrow Z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1) \)
3. * Derive the decision threshold for your test based on the **Type I error rate** the significance level \(\alpha \)

(1) For the pair of hypotheses:

- \(H_0 : \mu = \mu_0 \)

- **Versus**

- \(H_a : \mu > \mu_0 \)

It is intuitive that one should reject the null hypothesis, in support of the alternative hypothesis, when the sample mean is larger than \(\mu_0 \). Equivalently, this means when the test statistic \(Z_0 \) is larger than certain positive value \(c \) - the question is what is the exact value of \(c \) -- and that can be determined based on the significance level \(\alpha \) — that is, how much Type I error we would allow ourselves to commit.

Setting:

\[
P(\text{Type I error}) = P(\text{reject } H_0 \mid H_0) = P(Z_0 \geq c \mid H_0 : \mu = \mu_0) = \alpha
\]

We will see immediately that

\[
c = z_\alpha
\]

from the pdf plot of the test statistic below.

\[
\vdash \text{At the significance level } \alpha, \text{ we will reject } H_0 \text{ in favor of } H_a \text{ if } Z_0 \geq Z_\alpha
\]
Other Hypotheses

(2)

\(H_0 : \mu = \mu_0 \) (one-sided test or one-tailed test)

\(H_a : \mu < \mu_0 \)

Test statistic (same): \(Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1) \)

\(\alpha = P(Z_0 \leq c \mid H_0 : \mu = \mu_0) \Rightarrow c = -Z_{\alpha} \)

(3)

\(H_0 : \mu = \mu_0 \) (Two-sided or Two-tailed test)

\(H_a : \mu \neq \mu_0 \)

Test statistic (same): \(Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1) \)

\(\alpha = P(\mid Z_0 \mid \geq c \mid H_0) = P(Z_0 \geq c \mid H_0) + P(Z_0 \leq -c \mid H_0) \)

\[= 2 \cdot P(Z_0 \geq c \mid H_0) \]

\[\frac{\alpha}{2} = P(Z_0 \geq c \mid H_0) \]

\[\therefore c = Z_{\alpha/2} \]
Reject H_0 if $|Z_0| \geq \frac{Z_{\alpha/2}}{\sqrt{n}}$

4. We have just discussed the "rejection region" approach for decision making. There is another approach for decision making, it is "p-value" approach.

*Definition: p-value – it is the probability that we observe a test statistic value that is as extreme, or more extreme, than the one we observed, given that the null hypothesis is true.

\[
\begin{array}{|c|c|c|c|}
\hline
H_0 : \mu = \mu_0 & H_0 : \mu = \mu_0 & H_0 : \mu = \mu_0 \\
H_\alpha : \mu > \mu_0 & H_\alpha : \mu < \mu_0 & H_\alpha : \mu \neq \mu_0 \\
\hline
\end{array}
\]

Observed value of test statistic
\[
Z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)
\]

p-value = \(P(Z_0 \geq z_0 \mid H_0)\)
\hspace{1cm} p-value = \(P(Z_0 \leq z_0 \mid H_0)\)
\hspace{1cm} p-value
\hspace{1cm} = \(P(|Z_0| \geq |z_0| \mid H_0)\)
\hspace{1cm} = 2 \cdot P(Z_0 \geq z_0 \mid H_0)

(1) the area under \(N(0,1)\) pdf to the right of \(z_0\)
(2) the area under \(N(0,1)\) pdf to the left of \(z_0\)
(3) twice the area to the right of \(|z_0|\)
(1)
\[H_0 : \mu = \mu_0 \]
\[H_a : \mu > \mu_0 \]

(2)
\[H_0 : \mu = \mu_0 \]
\[H_a : \mu < \mu_0 \]
(3)

\[H_0 : \mu = \mu_0 \]
\[H_a : \mu \neq \mu_0 \]

(*That is, the p-value is the sum of the two tail areas, or equivalently, the p-value is twice the upper tail area.)

*** The way we make conclusions for the tests based on the p-value is the same for all pairs of hypotheses: **We reject \(H_0 \) in favor of \(H_a \) iff p-value < \(\alpha \)***
Scenario 2. The large sample scenario: Any population (*usually non-normal* – as the exact tests should be used if the population is normal), however, the sample size is large *(this usually refers to: \(n \geq 30 \))

Theorem. The Central Limit Theorem. Let \(X_1, X_2, \ldots, X_n \) be a random sample from a population with mean \(\mu \) and variance \(\sigma^2 \), we have \(Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \to N(0,1) \).

* Thus when \(n \) is large enough \((n \geq 30) \), \(Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1) \) - by CLT.

* When \(\sigma \) is unknown, \((n \geq 30) \), \(Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim N(0,1) \) – by CLT and the Slutsky’s Theorem

Therefore the pivotal quantities *(P.Q.’s)* for this scenario are:

\[
Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1) \text{ or } Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim N(0,1)
\]

We use the first P.Q. if \(\sigma \) is known, and the second when \(\sigma \) is unknown.

The derivation of the hypothesis tests *(rejection region and the p-value)* are almost the same as the derivation of the exact Z-test discussed above.

<table>
<thead>
<tr>
<th>(H_0): (\mu = \mu_0)</th>
<th>(H_0): (\mu = \mu_0)</th>
<th>(H_0): (\mu = \mu_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_a): (\mu > \mu_0)</td>
<td>(H_a): (\mu < \mu_0)</td>
<td>(H_a): (\mu \neq \mu_0)</td>
</tr>
</tbody>
</table>

Test Statistic \(Z_0 = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim N(0,1) \)

Rejection region: we reject \(H_0 \) in favor of \(H_a \) at the significance level \(\alpha \) if

| \(Z_0 \geq Z_{\alpha} \) | \(Z_0 \leq -Z_{\alpha} \) | \(|Z_0| \geq Z_{\alpha/2} \) |
|------------------------|------------------------|------------------------|

p-value = \(P(Z_0 \geq z_0 \mid H_0) \)

p-value = \(P(Z_0 \leq z_0 \mid H_0) \)

p-value = \(P(|Z_0| \geq z_0 \mid H_0) \) = \(2 \cdot P(Z_0 \geq z_0 \mid H_0) \)

(1) the area under \(N(0,1) \) pdf to the right of \(z_0 \)

(2) the area under \(N(0,1) \) pdf to the left of \(z_0 \)

(3) twice the area to the right of \(|z_0| \)
Scenario 3. Normal Population, but the population variance is unknown

100 years ago – people use Z-test

This is OK for n large \(n \geq 30 \) ⇒ per the CLT (Scenario 2)

This is NOT ok if the sample size is small.

“A Student of Statistics”
– pen name of William Sealy Gosset (June 13, 1876–October 16, 1937)

The Student’s t-test

\[
P.Q. \quad T = \frac{X - \mu}{S / \sqrt{n}} \sim t_{n-1}
\]

(Exact t-distribution with n-1 degrees of freedom)

Take-home Quiz due Tuesday, 4/21/2014

Using Scenario 1 (test for one population mean \(\mu \), normal population, population variance is known), please discuss and derive the relationship between the two-sided test at the significance level \(\alpha \), and the corresponding 100(1 – \(\alpha \))% confidence interval for \(\mu \).

Homework/Review Questions

On **Confidence Intervals** for **One Population Mean** or **Proportion**

(* Solutions will be given soon – please try by yourselves first. These are excellent candidates for quizzes & final exam. Read Text Book §5.4, §5.5)

5.4.3, 5.4.4, 5.4.9, 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.5, 5.5.6, 5.5.11, 5.5.15, 5.5.21, 5.5.22, 5.5.30, 5.5.32, 5.5.41